§12. コントラスト関数

ここでは、コントラスト関数というものを用いて、統計多様体を構成できることについて述べよう.

M を C^{∞} 級多様体とし, $\rho \in C^{\infty}(M \times M)$ とする.

q を固定しておくと, $\rho(p,q)$ は p を変数とする M 上の C^{∞} 級関数とみなすことができる. よって, $X \in \mathfrak{X}(M)$ に対して p の関数 $\rho(p,q)$ を X で微分することができる. これを

$$X_p \rho(p,q)$$

と表す。更に、p=qとすると、 $X_p\rho(p,q)$ は p を変数とする M 上の C^∞ 級関数となる。これを $\rho(X|\cdot)$ と表す。同様に、 $\rho(p,q)$ を q を変数とする M 上の C^∞ 級関数とみなすことにより、M 上の C^∞ 級関数 $\rho(\cdot|X)$ を定めることができる。

更に, $X_1, \ldots, X_l, Y_1, \ldots, Y_m \in \mathfrak{X}(M)$ とすると, M 上の C^{∞} 級関数 $\rho(X_1 \ldots X_l | Y_1 \ldots Y_m)$ を

$$\rho(X_1 \cdots X_l | Y_1 \cdots Y_m)(r) = (X_1 \cdots X_l)_p (Y_1 \cdots Y_m)_q \rho(p, q)|_{p=r, q=r} \quad (r \in M)$$

により定めることができる.

これらの記号を用いて、コントラスト関数を次のように定める.

定義 ρ は次の (1)~(3) をみたすとき, M 上のコントラスト関数という.

(1) 任意の $p \in M$ に対して

$$\rho(p,p) = 0.$$

(2) 任意の $X \in \mathfrak{X}(M)$ に対して

$$\rho(X|\cdot) = \rho(\cdot|X) = 0.$$

(3) $X,Y \in \mathfrak{X}(M)$ に対して

$$g(X,Y) = -\rho(X|Y)$$

とおくと, q は M の非退化計量となる.

例 $M \in C^{\infty}$ 級多様体とし, $\rho \in C^{\infty}(M \times M)$ とする. ここで, 任意の $p, q \in M$ に対して

$$\rho(p,q) \ge 0$$

がなりたち, $\rho(p,q) = 0$ となるのは p = q のときに限ると仮定しよう.

まず、仮定より、ρが上の定義の(1)をみたすことは明らかである.

また, q を固定しておき, $\rho(p,q)$ を p を変数とする関数とみなすと, 仮定より, $\rho(p,q)$ は q において最小値 0 をとる.

よって、任意の $X \in \mathfrak{X}(M)$ に対して

$$\rho(X|\cdot) = 0 \tag{*}$$

がなりたつ.

同様に,

$$\rho(\cdot | X) = 0$$

もなりたつから, ρ は上の定義の (2) をみたす.

次に, $Y \in \mathfrak{X}(M)$ とすると, (*) より,

$$0 = Y \rho(X|\cdot)$$

= $\rho(YX|\cdot) + \rho(X|Y)$.

すなわち,

$$g(X,Y) = \rho(YX|\cdot).$$

同様に、

$$g(Y,X) = \rho(XY|\cdot).$$

 $[X,Y] \in \mathfrak{X}(M)$ に注意すると, 再び(*)より,

$$g(Y,X) - g(X,Y) = \rho(XY - YX|\cdot)$$
$$= \rho([X,Y]|\cdot)$$
$$= 0.$$

よって, g は M 上の (0,2) 型対称テンソル場となり,

$$g(X,Y) = \rho(XY|\cdot) = \rho(\cdot|XY)$$

がなりたつ. 特に, ρ に対する仮定を再び用いると, g は半正定値である. したがって, g が正定値ならば, 上の定義の (3) がなりたち, ρ は M 上のコントラスト関数となる. コントラスト関数を用いて, アファイン接続を定めよう.

M を C^{∞} 級多様体, ρ を M 上のコントラスト関数とし, $X,Y \in \mathfrak{X}(M)$ とする. 上の定義の (3) により定まる M の非退化計量 q を用いて, 任意の $Z \in \mathfrak{X}(M)$ に対して

$$g(\nabla_X Y, Z) = -\rho(XY|Z), \ g(Z, \nabla_X^* Y) = -\rho(Z|XY)$$

がなりたつように, $\nabla_X Y, \nabla_X^* Y \in \mathfrak{X}(M)$ を定めよう. このとき, ∇, ∇^* は M のアファイン接続となる.

定理 ∇^* は ∇ の双対接続で, (M, ∇, g) は統計多様体.

証明 $X,Y,Z \in \mathfrak{X}(M)$ とする. まず, g および ∇, ∇^* の定義より,

$$Xg(Y,Z) = -X\rho(Y|Z)$$

$$= -\rho(XY|Z) - \rho(Y|XZ)$$

$$= g(\nabla_X Y, Z) + g(Y, \nabla_X^* Z).$$

よって、 ∇^* は ∇ の双対接続. 次に、T を ∇ の捩率とすると、

$$\begin{split} g(T(X,Y),Z) &= g(\nabla_X Y - \nabla_Y X - [X,Y],Z) \\ &= g(\nabla_X Y,Z) - g(\nabla_Y X,Z) - g([X,Y],Z) \\ &= -\rho(XY|Z) + \rho(YX|Z) + \rho(XY - YX|Z) \\ &= 0. \end{split}$$

よって,

$$T=0$$
.

同様に、 ∇^* も捩れをもたない. したがって、 (M, ∇, g) は統計多様体. 統計的モデルに対する Fisher 計量と α 接続は α ダイバージェンスというコントラスト関数を用いて表すことができる.

例 $(\alpha$ ダイバージェンス)

 Ω を高々可算集合または \mathbf{R}^k とし.

$$S = \{p(x; \xi) | \xi \in \Xi\}$$

を Ω 上のn次元統計的モデルとする.

 $\alpha \in \mathbf{R}$ に対して, t > 0 の範囲で定義された関数 $\varphi^{(\alpha)} = \varphi^{(\alpha)}(t)$ を

$$\varphi^{(\alpha)}(t) = \begin{cases} \frac{4}{1 - \alpha^2} \left(1 - t^{\frac{1 + \alpha}{2}} \right) & (\alpha \neq \pm 1), \\ t \log t & (\alpha = 1), \\ -\log t & (\alpha = -1) \end{cases}$$

により定める.

このとき, $p,q \in S$ に対して

$$\rho(p,q) = \int_{\Omega} p\varphi^{(\alpha)} \left(\frac{q}{p}\right) dx$$

とおく.

 $\varphi^{(\alpha)}$ は凸関数であることが分かるから、 $\S7$ においても扱った Jensen の不等式より、

$$\rho(p,q) \ge \varphi^{(\alpha)} \left(\int_{\Omega} p \frac{q}{p} dx \right)$$
$$= \varphi^{(\alpha)}(1)$$
$$= 0.$$

また, $\rho(p,q) = 0$ となるのは p = q のときに限ることも分かる.

よって, ρ は上の例の仮定をみたす. この $\rho(p,q)$ を $D^{(\alpha)}(p||q)$ と表し, $D^{(\alpha)}$ を α ダイバージェンスという. $\alpha=0$ のときは Hellinger 距離ともいう. また, $\alpha=\pm 1$ のときは相対エントロピーまたは Kullback-Leibler ダイバージェンスともいう.

定理 S の Fisher 計量, α 接続はそれぞれ $D^{(\alpha)}$ の定める非退化計量, アファイン接続.

証明 $\alpha \neq \pm 1$ の場合に Fisher 計量についてのみ示す.

$$D^{(\alpha)}(p||q) = \frac{4}{1 - \alpha^2} \int_{\Omega} \left(p - p^{\frac{1 - \alpha}{2}} q^{\frac{1 + \alpha}{2}} \right) dx$$

となるから,

$$D^{(\alpha)}(\partial_i \| \partial_j)(r) = \frac{4}{1 - \alpha^2} \int_{\Omega} \left(-\frac{1 - \alpha}{2} p^{-\frac{1 + \alpha}{2}} \partial_i p \cdot \frac{1 + \alpha}{2} q^{-\frac{1 - \alpha}{2}} \partial_j q \right) dx \Big|_{p = r, q = r}$$
$$= -\int_{\Omega} (\partial_i \log r) (\partial_j \log r) r dx.$$

なお, 逆に任意の統計多様体に対して, それに対応するコントラスト関数が存在することが知られている.

関連事項 12. Karamata の不等式

 φ を R 上の凸関数とし, $x_1, x_2, \ldots, x_n \in \mathbf{R}$ とすると, 不等式

$$\frac{\varphi(x_1) + \varphi(x_2) + \dots + \varphi(x_n)}{n} \ge \varphi\left(\frac{x_1 + x_2 + \dots + x_n}{n}\right)$$

がなりたつ. これは Jensen の不等式の 1 つの例である. 実際, 確率空間 (Ω, \mathcal{F}, P) を

$$\Omega = \{1, 2, \dots, n\}, \ \mathcal{F} = 2^{\Omega}, \ P(\{i\}) = \frac{1}{n} \ (i = 1, 2, \dots, n)$$

により定め.

$$X(i) = x_i \quad (i = 1, 2, \dots, n)$$

により定まる (Ω, \mathcal{F}, P) 上の確率変数 X を考えればよい.

上の不等式を一般化したものとして、Karamata の不等式というものが知られている. φ を \mathbf{R} 上の凸関数とし、 $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n \in \mathbf{R}$ とする. 更に、

$$x_1 + x_2 + \dots + x_n = y_1 + y_2 + \dots + y_n$$

がなりたち、必要ならば番号を付け替えることにより、

$$x_1 \ge x_2 \ge \cdots \ge x_n, \ y_1 \ge y_2 \ge \cdots \ge y_n$$

としたとき、任意のi = 1, 2, ..., n-1に対して

$$x_1 + x_2 + \dots + x_i \ge y_1 + y_2 + \dots + y_i$$

がなりたつと仮定する.

このとき、不等式

$$\varphi(x_1) + \varphi(x_2) + \dots + \varphi(x_n) \ge \varphi(y_1) + \varphi(y_2) + \dots + \varphi(y_n)$$

がなりたつ. これが Karamata の不等式である. 特に, y_1, y_2, \ldots, y_n がすべて x_1, x_2, \ldots, x_n の平均の場合が最初に述べた形の Jensen の不等式である.

Karamata の不等式を証明するには、任意の $i=1,2,\ldots,n$ に対して $x_i\neq y_i$ としてよい.このとき、

$$c_i = \frac{\varphi(x_i) - \varphi(y_i)}{x_i - y_i}, \ S_k = \sum_{i=1}^k x_i, \ T_k = \sum_{i=1}^k y_i, \ S_0 = T_0 = 0$$

とおくと,

$$\sum_{i=1}^{n} \varphi(x_i) - \sum_{i=1}^{n} \varphi(y_i) = \sum_{i=1}^{n} c_i (x_i - y_i)$$

$$= \sum_{i=1}^{n} c_i (S_i - S_{i-1} - T_i + T_{i-1})$$

$$= c_n (S_n - T_n) + \sum_{i=0}^{n-1} (c_i - c_{i+1})(S_i - T_i)$$

となる. 仮定より、最後の式の第1項は0で、第2項は φ の凸性と仮定より、0以上である.