$\S 8$ ではn 次直交群 O(n) が群であることを述べたが, O(n) をn 次元 Euclid 空間 \mathbf{R}^n と組にして考えると, 次がなりたつ.

定理 10.1 次の (1), (2) がなりたつ.

- (1) 任意の $A, B \in O(n)$ および任意の $x \in \mathbb{R}^n$ に対して, A(Bx) = (AB)x である.
- (2) E を n 次単位行列とすると、任意の $x \in \mathbb{R}^n$ に対して、Ex = x である.

そこで、次のように定める.

定義 10.1 G を群, X を空でない集合, $\varphi: G \times X \to X$ を $G \times X$ から X への写像とする. 次の (1), (2) がなりたつとき, G は X に左から作用するという.

- (1) 任意の $a, b \in G$ および任意の $x \in X$ に対して, $\varphi(a, \varphi(b, x)) = \varphi(ab, x)$ である.
- (2) e を G の単位元とすると、任意の $x \in X$ に対して、 $\varphi(e,x) = x$ である.

このとき, G を X の変換群, X を G 集合という. また, $\varphi(a,x)$ は ax とも表す.

注意 10.1 定義 10.1 において、右からの作用についても定めることができる.右からの作用の場合は ax の代わりに xa と表し、例えば、(1) に対応する条件は (xa)b = x(ab) である.

例 10.1 定理 10.1 より, O(n) は \mathbf{R}^n に左から作用する. 同様に, SO(n), $GL(n,\mathbf{R})$, $SL(n,\mathbf{R})$ は \mathbf{R}^n に左から作用する.

なお、 \mathbf{R}^n の元を行べクトルとして表しておくと、 $\mathrm{O}(n)$ 、 $\mathrm{SO}(n)$ 、 $\mathrm{GL}(n,\mathbf{R})$ 、 $\mathrm{SL}(n,\mathbf{R})$ の元を \mathbf{R}^n の元に右から掛けることにより、右からの作用を定めることができる.

例 10.2 (自明な作用)<math>G を群, X を空でない集合とする. このとき,

$$ax = x \quad ((a, x) \in G \times X)$$

とおくことにより, G は X に左から作用する. これを自明な作用という. 同様に, 右からの自明な作用を定めることができる.

例 10.3 (行列の基本変形) 行列に左から正則行列を掛けることは行に関する基本変形を何回 か施すことに他ならないが、これを群の作用として見てみよう.

m 行 n 列の実行列全体の集合を $M_{m,n}(\mathbf{R})$ と表す。このとき, $(P,X) \in \mathrm{GL}(m,\mathbf{R}) \times M_{m,n}(\mathbf{R})$ に対して, $PX \in M_{m,n}(\mathbf{R})$ を対応させることにより, $\mathrm{GL}(m,\mathbf{R})$ は $M_{m,n}(\mathbf{R})$ に左から作用する。同様に, $\mathrm{GL}(n,\mathbf{R})$ は $M_{m,n}(\mathbf{R})$ に右から作用する。これは列に関する基本変形を何回か施すことに対応する.

例 10.4 (線形変換の表現行列と基底変換) 有限次元ベクトル空間の線形変換は基底を選んでおくことにより,表現行列という正方行列が対応するが,基底を取り替えると,それに応じて表現行列も変わるのであった.このことを群の作用として見てみよう.

 $(X,P) \in M_n(\mathbf{R}) \times \mathrm{GL}(n,\mathbf{R})$ に対して, $P^{-1}XP \in M_n(\mathbf{R})$ を対応させる. ただし, $M_n(\mathbf{R})$ は n 次実行列全体の集合である. このとき, $\mathrm{GL}(n,\mathbf{R})$ は $M_n(\mathbf{R})$ に右から作用することを示そう. まず, $X \in M_n(\mathbf{R})$, $P,Q \in \mathrm{GL}(n,\mathbf{R})$ とすると,

$$Q^{-1}(P^{-1}XP)Q = (PQ)^{-1}X(PQ)$$

である. 次に、

$$E^{-1}XE = X$$

である. よって, $GL(n, \mathbf{R})$ は $M_n(\mathbf{R})$ に右から作用する.

なお, $(P,X)\in \mathrm{GL}(n,\mathbf{R})\times M_n(\mathbf{R})$ に対して, $PXP^{-1}\in M_n(\mathbf{R})$ を対応させると, $\mathrm{GL}(n,\mathbf{R})$ は $M_n(\mathbf{R})$ に左から作用する.

Gを群, Xを空でない集合とし, G が X に左から作用しているとする. このとき, $x \in X$ に対して, $Gx \subset X$ を

$$Gx = \{ax \mid a \in G\}$$

により定め、これをxの軌道という。同様に、右からの作用の場合も軌道を定めることができる。このときは、xの軌道をxGと表す。軌道に関して、次がなりたつ。

定理 10.2 *G* を群, *X* を空でない集合とし, *G* が *X* に左または右から作用しているとする. $x, y \in X$ に対して, $x \in y$ が同じ軌道の元であるとき, $x \sim y$ と表す. このとき, 次の(1), (2) が なりたつ.

- $(1) \sim k X$ 上の同値関係である.
- (2) 任意の $x \in X$ に対して, x の同値類はx の軌道に等しい.

証明 左からの作用の場合に示す. 右からの作用の場合も同様である.

(1): まず, $x \in X$ とする. このとき, 群の作用および軌道の定義より,

$$x = ex \in Gx$$

すなわち, $x \in Gx$ である. よって, $x \sim x$ だから, 反射律がなりたつ.

また、~の定義より、対称律と推移律がなりたつことは明らかである.

(2): $C(x) \subset Gx$ および $Gx \subset C(x)$ を示せばよい.

まず, $y \in C(x)$ とする. このとき, 同値類および \sim の定義より, x と y は同じ軌道の元である. ここで, $x \in Gx$ だから, $y \in Gx$ である. よって, $C(x) \subset Gx$ である.

次に, $y \in Gx$ とする. このとき, $x \in Gx$ だから, x と y は同じ軌道の元である. よって, \sim の定義より, $x \sim y$ だから, 同値類の定義より, $y \in C(x)$ である. したがって, $Gx \subset C(x)$ である. \square

定理 10.2 において、(2) より、 \sim による X の商集合 X/\sim は X の軌道全体からなる集合となる。また、 X/\sim は左からの作用の場合は $G\backslash X$ 、右からの作用の場合は X/G と表し、これらを G による X の商空間または商という。特に、軌道全体は X を互いに素な部分集合の和に分解する。この分解を X の軌道分解という。

例 10.5 例 10.1 で述べた O(n) の \mathbb{R}^n への左からの作用を考える.

まず, 任意の $A \in O(n)$ に対して, A0 = 0 だから, 0 の軌道は $\{0\}$ である.

次に, $x \in \mathbf{R}^n \setminus \{0\}$ とする. このとき, \mathbf{R}^n の正規直交基底 $\{a_1, a_2, \ldots, a_n\}$ を $a_1 = \frac{x}{\|x\|}$ となるように選んでおくと, 定理 5.4 より, $P \in \mathrm{O}(n)$ を $P = (a_1, a_2, \ldots, a_n)$ により定めることができる. ここで, $P^{-1}P = E$ だから, $P^{-1}a_1$ は基本ベクトル e_1 である. よって,

$$P^{-1}x = ||x||e_1$$

であり, $P^{-1} \in O(n)$ だから, $x \ge ||x||e_1$ は同じ軌道の元である.

したがって, $x, y \in \mathbf{R}^n$ に対して, $x \in y$ が同じ軌道の元となるのは ||x|| = ||y|| のときである. また, $x \in \mathbf{R}^n$ の軌道の代表としては $||x||e_1$ を選ぶことができる.

例 10.6 G を群, X を空でない集合とし, G の X への自明な作用を考える. このとき, $x \in X$ の軌道は $\{x\}$ である. また, 同じ軌道であるという同値関係は相等関係である.

例 10.7 例 10.1 で述べた SO(n) の \mathbb{R}^n への左からの作用を考える.

n = 1 のとき, $SO(1) = \{1\}$ だから, 作用は自明となり, $x \in \mathbb{R}$ の軌道は $\{x\}$ である.

n > 2 のときは例 10.5 と同様である.

例 10.8 例 10.1 で述べた $GL(n, \mathbf{R})$ の \mathbf{R}^n への左からの作用を考える.

まず,0の軌道は {0} である.

次に, $x \in \mathbf{R}^n \setminus \{0\}$ とする. このとき, \mathbf{R}^n の基底 $\{a_1, a_2, \ldots, a_n\}$ を $a_1 = x$ となるように選んでおくと, $P \in GL(n, \mathbf{R})$ を $P = (a_1, a_2, \ldots, a_n)$ により定めることができる. ここで, $P^{-1}P = E$ だから, $P^{-1}a_1 = e_1$ である. よって,

$$P^{-1}x = e_1$$

であり, $P^{-1} \in GL(n, \mathbf{R})$ だから, $x \ge e_1$ は同じ軌道の元である.

したがって, $x, y \in \mathbf{R}^n$ に対して, $x \in y$ が同じ軌道の元となるのは x = y = 0 または $x, y \neq 0$ のときである. また, $x \neq 0$ のとき, $x \in \mathbf{R}^n$ の軌道の代表としては e_1 を選ぶことができる.

例 10.9 例 10.1 で述べた $SL(n, \mathbf{R})$ の \mathbf{R}^n への左からの作用を考える.

n=1 のとき, $SL(1,\mathbf{R})=\{1\}$ だから, 作用は自明となり, $x\in\mathbf{R}$ の軌道は $\{x\}$ である. n>2 のときは例 10.8 と同様である.

例 10.10 例 10.3 で述べた $GL(m, \mathbf{R})$ の $M_{m,n}(\mathbf{R})$ への左からの作用を考える. 行に関する基本変形を考えることにより, 軌道の代表としては階数標準形や階段行列を選ぶことができる. 特に, $X, Y \in M_{m,n}(\mathbf{R})$ に対して, $X \in Y$ が同じ軌道の元ならば,

$$\operatorname{rank} X = \operatorname{rank} Y$$

である.

例10.11 例 10.4 で述べた $\operatorname{GL}(n,\mathbf{R})$ の $M_n(\mathbf{R})$ への右からの作用を考える. $X \in M_n(\mathbf{R})$ とする と, X が対角化可能なとき, X の軌道の代表としては対角行列を選ぶことができる. 特に, $X,Y \in M_n(\mathbf{R})$ であり, X と Y がともに対角化可能なとき, X と Y が同じ軌道の元となるのは X,Y の 固有値が一致するときである.

なお, 実際には対角化可能ではない正方行列も存在するため, この作用については, 数を複素数の範囲まで拡げ, Jordan 標準形というものを考えた方が見通しがよい.

例 10.12 実対称行列の固有方程式の解はすべて実数であり、実対称行列は直交行列によって対角化可能である。このことを群の作用として見てみよう。

 $(X,P) \in \operatorname{Sym}(n) \times \operatorname{O}(n)$ に対して、 $P^{-1}XP \in \operatorname{Sym}(n)$ を対応させることができる.ただし、 $\operatorname{Sym}(n)$ は n 次実対称行列全体の集合である. $P^{-1} = {}^tP$ であることに注意しよう.このとき,例 10.4 と同様に、 $\operatorname{O}(n)$ は $\operatorname{Sym}(n)$ に右から作用する.

 $X \in \mathrm{Sym}(n)$ とすると, X は直交行列によって対角化可能だから, X の軌道の代表としては対角行列を選ぶことができる. 特に, $X,Y \in \mathrm{Sym}(n)$ に対して, X と Y が同じ軌道の元となるのは X,Y の固有値が一致するときである. 更に, 実対称行列の固有方程式の解はすべて実数だから, 各実対称行列に対して, その固有値を小さい順に並べたものを対応させると, $\mathrm{Sym}(n)/\mathrm{O}(n)$ は集合

$$\{(x_1, x_2, \ldots, x_n) \mid x_1, x_2, \ldots, x_n \in \mathbf{R}, x_1 \le x_2 \le \cdots \le x_n\}$$

とみなすことができる.

問題 10

1. X を実数を係数とする x_1, x_2, \ldots, x_n の多項式全体の集合とし, $(\sigma, f) \in S_n \times X$ に対して, $\sigma f \in X$ を

$$(\sigma f)(x_1, x_2, \dots, x_n) = f(x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, \dots, x_{\sigma^{-1}(n)})$$

により定める. このとき, (σ, f) から σf への対応は S_n の X への左からの作用を定めることを示せ.

2. G を群, X を空でない集合とし, G が X に左から作用しているとする. このとき, $a \in G$ に対して, X から X への写像 $\varphi(a): X \to X$ を

$$\varphi(a)(x) = ax \quad (x \in X)$$

により定める.

- (1) 任意の $a \in G$ に対して, $\varphi(a)$ は全射であることを示せ.
- (2) 任意の $a \in G$ に対して, $\varphi(a)$ は単射であることを示せ.
- (3) X から X への全単射全体の集合を S(X) と表す. このとき, S(X) は写像の合成に関して群となる. また, (1), (2) より, 任意の $a \in G$ に対して, $\varphi(a) \in S(X)$ である. 任意の $a, b \in G$ に対して、等式

$$\varphi(ab) = \varphi(a)\varphi(b)$$

がなりたつことを示せ.

 $(4) \psi: G \to S(X)$ を G から S(X) への写像とし、任意の $a, b \in G$ に対して、等式

$$\psi(ab) = \psi(a)\psi(b)$$

がなりたつと仮定する. このとき, $(a,x) \in G \times X$ に対して, $(\psi(a))(x) \in X$ を対応させると, G は X に左から作用することを示せ.

3. G を群, X を空でない集合とし, G が X に左から作用しているとする. このとき, $x \in X$ に対して, $G_x \subset G$ を

$$G_x = \{ a \in G \mid ax = x \}$$

により定める. G_x は G の部分群であることを示せ. なお, G_x を x の固定化部分群という.

問題 10 の解答

$$((\sigma\tau)f)(x_1, x_2, \dots, x_n) = f(x_{(\sigma\tau)^{-1}(1)}, x_{(\sigma\tau)^{-1}(2)}, \dots, x_{(\sigma\tau)^{-1}(n)})$$

$$= f(x_{\tau^{-1}(\sigma^{-1}(1))}, x_{\tau^{-1}(\sigma^{-1}(2))}, \dots, x_{\tau^{-1}(\sigma^{-1}(n))})$$

$$= (\tau f)(x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, \dots, x_{\sigma^{-1}(n)})$$

$$= (\sigma(\tau f))(x_1, x_2, \dots, x_n),$$

すなわち,

$$((\sigma\tau)f)(x_1, x_2, \dots, x_n) = (\sigma(\tau f))(x_1, x_2, \dots, x_n)$$

である. よって, $(\sigma\tau)f = \sigma(\tau f)$ だから, 定義 10.1 の (1) の条件がなりたつ.

次に, $\varepsilon \in S_n$ を恒等置換, $f \in X$ とすると, 明らかに, $\varepsilon f = f$ である. よって, 定義 10.1 の (2) の条件がなりたつ.

したがって, (σ, f) から σf への対応は S_n の X への左からの作用を定める.

2. (1) $x \in X$ とすると, φ および群の作用の定義より,

$$\varphi(a)(a^{-1}x) = a(a^{-1}x)$$

$$= (aa^{-1})x$$

$$= ex$$

$$= x,$$

すなわち, $\varphi(a)(a^{-1}x) = x$ である. よって, $\varphi(a)$ は全射である.

(2) $x, y \in X$, $\varphi(a)(x) = \varphi(a)(y)$ とすると, φ の定義より, ax = ay である. よって, 群の作用 の定義より,

$$x = ex$$

$$= (a^{-1}a)x$$

$$= a^{-1}(ax)$$

$$= a^{-1}(ay)$$

$$= y,$$

すなわち, x = y である. したがって, $\varphi(a)$ は単射である.

(3) $x \in X$ とすると, φ , 群の作用および S(X) における積の定義より,

$$\varphi(ab)(x) = (ab)x$$

$$= a(bx)$$

$$= a(\varphi(b)(x))$$

$$= \varphi(a)(\varphi(b)(x))$$

$$= (\varphi(a)\varphi(b))(x),$$

すなわち,

$$\varphi(ab)(x) = \varphi(a)\varphi(b)(x)$$

である. よって, 題意の等式がなりたつ.

(4) まず, $a, b \in G, x \in X$ とすると, 仮定より,

$$a(bx) = a((\psi(b))(x))$$

$$= (\psi(a))((\psi(b))(x))$$

$$= (\psi(a)\psi(b))(x)$$

$$= (\psi(ab))(x)$$

$$= (ab)x,$$

すなわち, a(bx) = (ab)x である. よって, 定義 10.1 の (1) の条件がなりたつ. 次に, 仮定の等式において, a = b = e とおく. このとき, ee = e だから,

$$\psi(e) = \psi(e)\psi(e)$$

となり、両辺に右または左から $\psi(e)^{-1}$ を掛けると、 $\psi(e)=1_X$ である. よって、 $x\in X$ とすると、

$$ex = (\psi(e))(x)$$
$$= 1_X(x)$$
$$= x,$$

すなわち, ex = x である. したがって, 定義 10.1 の (2) の条件がなりたつ. 以上より, G は X に左から作用する.

$$(ab)x = a(bx)$$
$$= ax$$
$$= x,$$

すなわち, (ab)x = x である. よって, $ab \in G_x$ である. 次に, 群の作用の定義より, $e \in G_x$ である. 更に, $a \in G_x$ とすると, ax = x だから, 群の作用の定義より,

$$a^{-1}x = a^{-1}(ax)$$

$$= (a^{-1}a)x$$

$$= ex$$

$$= x,$$

すなわち, $a^{-1}x = x$ である. よって, $a^{-1} \in G_x$ である. したがって, G_x は G の部分群である.