Centroaffine minimal surfaces

Atsushi Fujioka

Faculty of Engineering Science
Kansai University

October 26, 2012
Petite Hotel Sonntag
The 18th International Symposium on Complex Geometry
Introduction

Centroaffine surfaces

Fundamental examples of centroaffine minimal surfaces

Examples with non-vanishing Tchebychev operator
Centroaffine minimal hypersurfaces:

- Hypersurfaces in the Euclidean space
- Objects in centroaffine differential geometry

\[\text{Study properties of submanifolds which are invariant under the affine transformations fixing the origin.} \]

(centroaffine transformations)

- Defined for non-degenerate centroaffine hypersurfaces
- Extremals for the area integral of the centroaffine metric
Background

- 1994 C. P. Wang: Definition of centroaffine minimal hypersurfaces
- Proper affine hyperspheres centered at the origin are centroaffine minimal.
- Only a few essentially new examples are known even if the case of surfaces.
- The integrability conditions for centroaffine minimal surfaces include Tzitzéica equation:

\[(\log \psi)_{xy} = -\psi - \frac{1}{\psi^2}\]

- 2000 W. Schief: A generalization and a discretization of Tzitzéica transformation for proper affine spheres
Review of Euclidean differential geometry

Euclidean differential geometry: Study properties of submanifolds in \mathbb{R}^n which are invariant under the Euclidean motions.

In the following, we consider surfaces in \mathbb{R}^3.

Gauss formula

$f : D \to \mathbb{R}^3$: a surface

(x_1, x_2): local coordinates

$\langle \ , \ \rangle$: the standard inner product on \mathbb{R}^3

n: the unit normal vector field

\implies Gauss formula:

$$f_{x_i x_j} = \Gamma^1_{ij} f_{x_1} + \Gamma^2_{ij} f_{x_2} + \langle f_{x_i x_j}, n \rangle n \quad (i, j = 1, 2)$$ (1)
Definition of centroaffine surfaces

Definition

\(f : D \rightarrow \mathbb{R}^3 \): a surface

\(f \): a centroaffine surface

\(\updownarrow \text{ def} \)

\(f \): transversal to the tangent plane

Gauss formula

\(f : D \rightarrow \mathbb{R}^3 \): a centroaffine surface

\((x_1, x_2) \): local coordinates

\[
 f_{x_i x_j} = \tilde{\Gamma}^1_{ij} f_{x_1} + \tilde{\Gamma}^2_{ij} f_{x_2} - h(\partial_{x_i}, \partial_{x_j})f \quad (i, j = 1, 2) \quad (2)
\]
Centroaffine metric

The symmetric $(0, 2)$-tensor field h in Gauss formula (2) is called the centroaffine metric.

Definition

$f : D \rightarrow \mathbb{R}^3$: a centroaffine surface

- f: non-degenerate (resp. definite, indefinite)
- h: non-degenerate (resp. definite, indefinite)

Proposition

$f : D \rightarrow \mathbb{R}^3$: a centroaffine surface

- f: definite (resp. indefinite)

\updownarrow

The Euclidean Gaussian curvature: positive (resp. negative)
Recall two kinds of Gauss formula:

\[f_{x_i x_j} = \Gamma^1_{ij} f_{x_1} + \Gamma^2_{ij} f_{x_2} + \langle f_{x_i x_j}, n \rangle n \] \hspace{1cm} (1)

\[f_{x_i x_j} = \tilde{\Gamma}^1_{ij} f_{x_1} + \tilde{\Gamma}^2_{ij} f_{x_2} - h(\partial_{x_i}, \partial_{x_j}) f \] \hspace{1cm} (2)

From (1) and (2)

\[\langle f_{x_i x_j}, n \rangle = -h(\partial_{x_i}, \partial_{x_j}) \langle f, n \rangle \]
For simplicity, we consider indefinite case.

- $f : D \rightarrow \mathbb{R}^3$: an indefinite centroaffine surface
- K: the Euclidean Gaussian curvature < 0
- (x, y): asymptotic line coordinates
- $\psi := h(\partial_x, \partial_y)$
- d: the signed distance from the origin to the tangent plane
- $\rho := -\frac{1}{4} \log \left(-\frac{K}{d^4} \right)$
- $\alpha := \psi \det \begin{pmatrix} f \\ f_x \\ f_{xx} \end{pmatrix} / \det \begin{pmatrix} f_x \\ f_y \\ f_{xy} \end{pmatrix}$
- $\beta := \psi \det \begin{pmatrix} f \\ f_y \\ f_{yy} \end{pmatrix} / \det \begin{pmatrix} f_y \\ f_x \\ f_{yx} \end{pmatrix}$
Gauss formula in asymptotic line coordinates

Gauss formula

\[
\begin{aligned}
 f_{xx} &= \left(\frac{\psi_x}{\psi} + \rho_x \right) f_x + \frac{\alpha}{\psi} f_y \\
 f_{xy} &= -\psi f + \rho_y f_x + \rho_x f_y \\
 f_{yy} &= \left(\frac{\psi_y}{\psi} + \rho_y \right) f_y + \frac{\beta}{\psi} f_x
\end{aligned}
\]

(3)

Proof

Use

\[
\Gamma_{12}^1 = -\frac{1}{4} \frac{K_y}{K}, \quad \Gamma_{12}^2 = -\frac{1}{4} \frac{K_x}{K}
\]

e tc.
Proposition

The integrability conditions for Gauss formula (3) are

\[
\begin{align*}
(\log |\psi|)_{xy} &= -\psi - \frac{\alpha \beta}{\psi^2} + \rho_x \rho_y \\
\alpha_y + \rho_x \psi_x &= \rho_{xx} \psi \\
\beta_x + \rho_y \psi_y &= \rho_{yy} \psi
\end{align*}
\]

(4)

If \(\rho \) is constant and \(\alpha, \beta \neq 0 \), changing the coordinates, if necessary, we obtain Tzitzéica equation:

\[
(\log \psi)_{xy} = -\psi - \frac{1}{\psi^2}
\]
Centroaffine scalar curvature

\(f : D \to \mathbb{R}^3 \): an indefinite centroaffine surface

\((x, y)\): asymptotic line coordinates

\(\kappa \): the scalar curvature of the centroaffine metric \(h \)

(the centroaffine scalar curvature)

\[
\kappa = -\frac{(\log |\psi|)_{xy}}{\psi} \quad (\psi = h(\partial_x, \partial_y))
\]

If \(f \) is flat, i.e., \(\kappa = 0 \), we may assume that \(\psi = 1 \)

\(\implies \) The integrability conditions (4) are equivalent to equation of associativity in topological field theory:

\[
g_{xxx}g_{yyy} - g_{xxy}g_{xyy} + 1 = 0, \quad (5)
\]

where

\[
\rho = g_{xy}, \quad \alpha = g_{xxx}, \quad \beta = g_{yyy}.
\]
Centroaffine Tchebychev vector field and centroaffine Tchebychev operator

\(f : D \to \mathbb{R}^3 \): a non-degenerate centroaffine surface

\(\tilde{\nabla} \): the connection induced by the centroaffine surface \(f \)

(The corresponding Christoffel symbols are \(\tilde{\Gamma}^k_{ij} \) in (2).)

\(\nabla^h \): the Levi-Civita connection for the centroaffine metric \(h \)

\(C := \tilde{\nabla} - \nabla^h \): the difference tensor

\(T := \frac{1}{2} \text{tr}_h C \): the centroaffine Tchebychev vector field

\(h_{ij} := h(\partial_{x_i}, \partial_{x_j}), \quad (h^{ij}) := (h_{ij})^{-1}, \quad C^k_{ij} \partial_{x_k} := C(\partial_{x_i}, \partial_{x_j}) \)

\(\text{tr}_h C := h^{ij} C^k_{ij} \partial_{x_k} \)

\(\nabla^h T \): the centroaffine Tchebychev operator
Definition of centroaffine minimal surfaces

Centroaffine minimal surfaces: Extremals for the area integral of the centroaffine metric

\[f : D \rightarrow \mathbb{R}^3 : \text{an indefinite centroaffine surface} \]

\((x, y): \text{asymptotic line coordinates} \]

\[\rho = -\frac{1}{4} \log \left(-\frac{K}{d^4} \right) \]

\(\nabla^h T: \text{the centroaffine Tchebychev operator} \)

Proposition

\[f: \text{centroaffine minimal } \iff \rho_{xy} = 0 \]

\[\iff \text{tr} \nabla^h T = 0 \]
Quadrics

Ellipsoids centered at the origin
Hyperboloids of one sheet centered at the origin
Hyperboloids of two sheets centered at the origin
\[\Rightarrow T = 0 \]

Elliptic paraboloids removing the vertex which is the origin
Hyperbolic paraboloids removing the saddle point which is the origin
\[\Rightarrow T \neq 0, \nabla^h T = 0 \]
Proper affine spheres

Proper affine spheres: Blaschke surfaces whose affine shape operator is a non-zero scalar operator.

The center: The point where the affine normals of proper affine spheres meet.

\(f : D \rightarrow \mathbb{R}^3 \): a non-degenerate centroaffine surface

\[\rho := -\frac{1}{4} \log \left| \frac{K}{d^4} \right| \]

\(T \): the centroaffine Tchebychev vector field

Proposition

\(f \): a proper affine sphere centered at the origin \(\iff \rho \): constant \(\iff T = 0 \)
Flat proper affine spheres

\(f : D \rightarrow \mathbb{R}^3 \): a proper affine sphere centered at the origin.

In the following, we put \(f = (X, Y, Z) \), if necessary.

We consider centroaffine surfaces modulo centroaffine congruence.

Theorem (cf. M. A. Magid-P. J. Ryan 1990)

If \(f \) is flat, we have the following:

1: \(XYZ = 1 \) (negative definite)
2: \((X^2 + Y^2)Z = 1 \) (indefinite)
Proper affine spheres with constant centroaffine scalar curvature

\[f : D \rightarrow \mathbb{R}^3 \]: a proper affine sphere centered at the origin
\(\kappa \): the centroaffine scalar curvature

Theorem (cf. U. Simon 1991)

If \(\kappa \) is constant, then \(\kappa = 0, 1 \).
If \(\kappa = 1 \), we have the following:

1. Ellipsoids centered at the origin (positive definite)
2. Hyperboloid of two sheets centered at the origin (negative definite)
3. \(f = A'(u) + vA(u) \), \(A \) is any \(\mathbb{R}^3 \)-valued function s.t.
 \[
 \det \begin{pmatrix}
 A & & \\
 A' & & \\
 A'' & &
 \end{pmatrix}
 \]
 is non-zero constant. (indefinite)
Theorem (H. L. Liu-C. P. Wang 1995)

If $\nabla^h T = 0$, except the above examples, we have the following:

In 1~3, $a, b, c \in \mathbb{R}$.

1: $X^a Y^b Z^c = 1$, $abc(a + b + c) \neq 0$

2: $\left\{ \exp \left(-a \tan^{-1} \frac{X}{Y} \right) \right\} (X^2 + Y^2)^b Z^c = 1,$

 $c(2b + c)(a^2 + b^2) \neq 0$

3: $Z = -X(a \log X + b \log Y)$, $b(a + b) \neq 0$

4: $Z = \pm X \log X + \frac{Y^2}{X}$

5: $f = (e^x, A_1(x)e^y, A_2(x)e^y)$, A_1 and A_2 are any linearly independent solutions to the differential equation:

 $A'' - A' - a(x)A = 0$ for any function $a = a(x)$.
Solutions to equation of associativity

All the examples 1~5 in Theorem due to Liu-Wang are flat.

Proposition

Solutions to equation of associativity (5) corresponding to indefinite flat centroaffine surfaces with $\nabla^h T = 0$ are one of the following:

1: $g = \frac{\alpha}{6} x^3 + \frac{\beta}{6} y^3 + \frac{c_1}{2} x^2 y + \frac{c_2}{2} xy^2$

+ (any polynomials of x and y with degree ≤ 2)

$\alpha, \beta \in \mathbb{R} \setminus \{0\}, \ c_1, c_2 \in \mathbb{R}, \ \alpha \beta - c_1 c_2 + 1 = 0$

2: By changing x and y, if necessary,

$g = \frac{c_1}{2} x^2 y + \frac{c_2}{2} xy^2 + c_3 xy + (\text{any function of } x)$

+ (any polynomial of y with degree ≤ 2)

$c_1, c_2, c_3 \in \mathbb{R}, \ c_1 c_2 = 1$
Examples with constant centroaffine scalar curvature

- Centroaffine minimal \(\iff\) \(\text{tr} \nabla^h T = 0\)
- All the above examples: \(\nabla^h T = 0\)
- 2006 F: Classification of centroaffine minimal surfaces with constant \(\kappa\) under the assumption on some cubic differentials
- Obtained new examples. \((\nabla^h T \neq 0)\)
- Indefinite case:

\[
\begin{align*}
 f &= \left(\frac{e^{-u}}{u} \cos \nu, \frac{e^{-u}}{u} \sin \nu, 1 - \frac{1}{u} \right) \\
 \kappa &= 1 \\
 T &\text{ is an eigenvector of } \nabla^h T \text{ (cf. 2004 L. Vrancken)}
\end{align*}
\]
Ruled surface

- 2009 F: Classification of centroaffine minimal surfaces with constant κ such that $\nabla^h T$ is not diagonalizable
- 2010 F: Classification of centroaffine minimal surfaces with constant κ and constant Pick function
- Pick function:
 \[J = \frac{1}{2} \| C \|^2 = \frac{1}{2} h_{kr} h^{ip} h^{jq} C_{ij}^k C_{pq} \quad (C: \text{the difference tensor}) \]
- In both classification, obtained new examples with $\kappa = 0, 1$.
- One is a ruled surface:
 \[f = A'(u) + vA(u), \quad A \text{ is an } \mathbb{R}^3\text{-valued function such that} \]
 \[\det \begin{pmatrix} A \\ A' \\ A'' \end{pmatrix} \neq 0 \]
- $\kappa = 1, J = 0$
Another example is flat. \((\kappa = 0)\)

\[f = \left(\sum_{n=0}^{\infty} \varphi_{n,1}(x)y^n, \sum_{n=0}^{\infty} \varphi_{n,2}(x)y^n, \sum_{n=0}^{\infty} \varphi_{n,3}(x)y^n \right) \]

\((x, y)\): asymptotic line coordinates around \((x_0, 0)\) such that \(x_0 \neq 0\)

\(\varphi_{0,1}, \varphi_{0,2}, \varphi_{0,3}\): Linearly independent solutions to the differential equation:

\[x\varphi''' + \varphi'' - \varphi = 0 \]

\(\varphi_{n+1,i} = \frac{x}{n+1}\varphi_{n,i}''\quad (i = 1, 2, 3)\)

\(J = -1\)
Solution to equation of associativity

Proposition

By changing the coordinates, if necessary, solution to equation of associativity (5) corresponding to the above example is

\[g = \frac{1}{6}x^3 y - \frac{1}{2}y^2 \log y \]

\[+ \text{(any polynomials of } x \text{ and } y \text{ with degree } \leq 2) \]
Solution to the third order differential equation

The differential equation (6) can be solved by using Meijer G-functions:

\[
\phi = c_1 G^{2,0}_{0,3} \left(\frac{x^2}{8} \left| \frac{1}{2}, \frac{1}{2}, 0 \right. \right) + ic_2 G^{1,0}_{0,3} \left(-\frac{x^2}{8} \left| \frac{1}{2}, \frac{1}{2}, 0 \right. \right)
+ c_3 G^{1,0}_{0,3} \left(-\frac{x^2}{8} \left| 0, \frac{1}{2}, \frac{1}{2} \right. \right) \quad (c_1, c_2, c_3 \in \mathbb{R})
\]

The second and the third terms can be written by using the generalized hypergeometric function \({}_0F_2 \).
Meijer G-function

- Meijer G-function:

\[
G_{m,n}^{p,q}(z \mid a_1, \ldots, a_p) \bigg| b_1, \ldots, b_q
\]

\[
= \frac{1}{2\pi i} \int_L \frac{\prod_{j=1}^{m} \Gamma(b_j + s) \prod_{j=1}^{n} \Gamma(1 - a_j - s)}{\prod_{j=m+1}^{q} \Gamma(1 - b_j - s) \prod_{j=n+1}^{p} \Gamma(a_j + s)} z^{-s} ds
\]

- \(m, n, p, q \in \mathbb{Z}, 0 \leq m \leq q, 0 \leq n \leq p \)
- Satisfies a linear differential equation of order \(\max\{p, q\} \).
Thank you for your attention.