Multi-Hamiltonian structures associated with the space of closed equicentroaffine curves

Atsushi Fujioka

Faculty of Engineering Science
Kansai University

December 7, 2012
Waseda University

Workshop on Curve flows and integrable systems
Joint work with T. Kurose (Kwansei Gakuin University)
Contents

1. Introduction

2. Flows of equicentroaffine curves

3. Hamiltonian formalism

4. Multi-Hamiltonian structures
Curve flows

- A curve flow is a 1-parameter family of a curve.
- Geometric quantities vary under curve flows.
- Soliton equations appear for special curve flows.
- In some cases, Hamiltonian formalism can be applied.
- Also, it admits bi-Hamiltonian structure.
An example and the main result

- Curve flows associated with the KdV equation can be formulated as Hamiltonian system.
- 1995 U. Pinkall: Considered the space of closed equicentroaffine curves to be an infinite dimensional symplectic manifold.
- The equicentroaffine curvature evolves according to the KdV equation when the flow is generated by a Hamiltonian function given by the total equicentroaffine curvature.
- 2010 F-T. Kurose: Generalized Pinkall’s result to the case of higher KdV flows.
- The above flows also have bi-Hamiltonian structure.
- The main result: The level sets defined by Hamiltonians for higher KdV flows have multi-Hamiltonian structures.
Equicentroaffine curves

Definition

I: an interval

$\gamma : I \rightarrow \mathbb{R}^2$: a plane curve

γ: an equicentroaffine curve
def

Any tangent line does not go through the origin.

$\gamma : I \rightarrow \mathbb{R}^2$: an equicentroaffine curve

Changing the variable, if necessary, may assume that the areal velocity is constant:

$$\det \begin{pmatrix} \gamma & \gamma' \end{pmatrix} = 1.$$

We say the curve is parametrized by equicentroaffine arclength.
Equicentroaffine curvature

$\gamma : I \rightarrow \mathbb{R}^2$: an equicentroaffine curve

Parametrized by equicentroaffine arclength:

$$\begin{align*}
\det \begin{pmatrix} \gamma \\ \gamma' \end{pmatrix} &= 1 \\
\Rightarrow \\
\det \begin{pmatrix} \gamma \\ \gamma'' \end{pmatrix} &= 0 \\
\Rightarrow \\
\gamma'' &= -\det \begin{pmatrix} \gamma' \\ \gamma'' \end{pmatrix} \gamma \\
&=: -\kappa \gamma
\end{align*}$$

κ: the equicentroaffine curvature
Equicentroaffine curves with constant curvature

- If the equicentroaffine curvature is 0, the curve is a piece of a line which does not go through the origin.
- Ellipse:
 \[a, b > 0 \]
 \[\gamma(s) := \left(a \cos \frac{s}{ab}, b \sin \frac{s}{ab} \right) \quad (s \in [0, 2\pi ab]) \]
 \[\Rightarrow s: \text{an equicentroaffine arclength parameter}, \quad \kappa = \frac{1}{a^2 b^2} \]
- Hyperbola:
 \[a, b > 0 \]
 \[\gamma(s) := \left(a \cosh \frac{s}{ab}, b \sinh \frac{s}{ab} \right) \quad (s \in \mathbb{R}) \]
 \[\Rightarrow s: \text{an equicentroaffine arclength parameter}, \quad \kappa = -\frac{1}{a^2 b^2} \]
The fundamental theorem of equicentroaffine curves

Equicentroaffine transformations: Equiaffine transformations fixing the origin

\[x \in \mathbb{R}^2 \mapsto xA \quad (A \in \text{SL}(2, \mathbb{R})) \]

The fundamental theorem of equicentroaffine curves

\(I \): an interval
\[\kappa : I \rightarrow \mathbb{R} \]
\[\iff \exists \gamma : I \rightarrow \mathbb{R}^2: \text{an equicentroaffine curve with equicentroaffine curvature } \kappa \text{ parametrized by equicentroaffine arclength unique up to equicentroaffine transformations} \]
Flows of equicentroaffine curves

Consider a flow of an equicentroaffine curve:

\[\gamma = \gamma(s, t) : I \times J \rightarrow \mathbb{R}^2 \]

\(I, J \): intervals

For each fixed \(t \in J \), \(\gamma(\cdot, t) \) is an equicentroaffine curve parametrized by equicentroaffine arclength.

Proposition

\[\exists \alpha : I \times J \rightarrow \mathbb{R} \text{ s.t.} \]

\[
\begin{cases}
\begin{pmatrix}
\gamma \\
\gamma_s
\end{pmatrix}_s =
\begin{pmatrix}
0 & 1 \\
-\kappa & 0
\end{pmatrix}
\begin{pmatrix}
\gamma \\
\gamma_s
\end{pmatrix} \\
\begin{pmatrix}
\gamma \\
\gamma_s
\end{pmatrix}_t =
\begin{pmatrix}
-\frac{1}{2} \alpha_s & \alpha \\
-\frac{1}{2} \alpha_{ss} - \kappa \alpha & \frac{1}{2} \alpha_s
\end{pmatrix}
\begin{pmatrix}
\gamma \\
\gamma_s
\end{pmatrix}
\end{cases}
\]

\begin{align}
\star
\end{align}
Proof of Proposition

Proof

Put

\[\gamma_t = \beta \gamma + \alpha \gamma_s. \]

Then we have

\[\gamma_{ts} = (\beta_s - \kappa \alpha) \gamma + (\beta + \alpha_s) \gamma_s. \]

Since \(\gamma(\cdot, t) \) is parametrized by equicentroaffine arc length,

\[
0 = \det \begin{pmatrix} \gamma_t \\ \gamma_s \end{pmatrix} + \det \begin{pmatrix} \gamma \\ \gamma_{st} \end{pmatrix} \\
= \det \begin{pmatrix} \beta \gamma + \alpha \gamma_s \\ \gamma_s \end{pmatrix} + \det \begin{pmatrix} \gamma \\ (\beta_s - \kappa \alpha) \gamma + (\beta + \alpha_s) \gamma_s \end{pmatrix} \\
= 2\beta + \alpha_s.
\]
The integrability condition for the system of linear partial differential equations (\(\ast\)) is

\[
\kappa_t = \frac{1}{2} \alpha_{sss} + 2 \kappa \alpha_s + \kappa_s \alpha.
\]

\[
\downarrow
\]

\[
\kappa_t = \Omega \alpha_s, \quad \Omega = \frac{1}{2} D_s^2 + 2 \kappa + \kappa_s D_s^{-1}
\]

\(\Omega\) is the recursion operator of the KdV equation:

\[
\kappa_t = \frac{1}{2} \kappa_{sss} + 3 \kappa \kappa_s.
\]

In particular, when

\[
\alpha = D_s^{-1} \Omega^{n-1} \kappa_s \quad (n \in \mathbb{N}),
\]

we have the \(n\)th KdV equation.
The space of closed equicentroaffine curves

\[\mathcal{M} : \text{The space of closed equicentroaffine curves parametrized by equicentroaffine arclength with enclosing area } \pi \]

\[\mathcal{M} = \left\{ \gamma : S^1 \rightarrow \mathbb{R}^2 \left| \det \begin{pmatrix} \gamma \\ \gamma_s \end{pmatrix} = 1 \right\} \right. \quad (S^1 = \mathbb{R}/2\pi\mathbb{Z}) \]

\[\gamma \in \mathcal{M} \]

From the system of linear partial differential equations (*)

\[T_\gamma \mathcal{M} = \left\{ -\frac{1}{2} \alpha_s \gamma + \alpha \gamma_s \left| \alpha : S^1 \rightarrow \mathbb{R} \right\} \right. \]

\[X, Y \in T_\gamma \mathcal{M} \]

\[\omega_0(X, Y) := \int_{S^1} \det \begin{pmatrix} X \\ Y \end{pmatrix} \, ds \]
A presymplectic form

Proposition

ω_0 defines a presymplectic form on \mathcal{M}.

$\gamma(\cdot, t_1, t_2, t_3) \in \mathcal{M}$: a 3-parameter family of an element of \mathcal{M}

ω_0: closed

\[
\frac{\partial}{\partial t_1} \omega_0(\gamma_{t_2}, \gamma_{t_3}) + \frac{\partial}{\partial t_2} \omega_0(\gamma_{t_3}, \gamma_{t_1}) + \frac{\partial}{\partial t_3} \omega_0(\gamma_{t_1}, \gamma_{t_2}) = 0
\]

$X = -\frac{1}{2} \alpha_s \gamma + \alpha \gamma_s$, $Y = -\frac{1}{2} \beta_s \gamma + \beta \gamma_s$ \quad ($\alpha, \beta : S^1 \to \mathbb{R}$)

\[
\omega_0(X, Y) = \int_{S^1} \alpha \beta_s ds
\]
Closedness

\(\gamma(\cdot, t_1, t_2, t_3) \in \mathcal{M} \): a 3-parameter family of an element of \(\mathcal{M} \)

Put

\[\gamma_{t_i} = -\frac{1}{2} \alpha_{is} \gamma + \alpha_i \gamma_s \quad (\alpha_i : S^1 \to \mathbb{R}, \ i = 1, 2, 3) \]

Since \(\gamma_{t_i t_j} = \gamma_{t_j t_i} \ (i, j = 1, 2, 3) \), we have

\[\alpha_{it_j} - \alpha_{jt_i} = \alpha_j \alpha_{is} - \alpha_i \alpha_{js}. \]

On the other hand,

\[
\frac{\partial}{\partial t_1} \omega_0(\gamma_{t_2}, \gamma_{t_3}) = \frac{\partial}{\partial t_1} \int_{S^1} \alpha_2 \alpha_3 s \, ds
\]

\[= \int_{S^1} \alpha_{2t_1} \alpha_3 s \, ds + \int_{S^1} \alpha_2 \alpha_{3st_1} \, ds \]

\[= \int_{S^1} \alpha_{2t_1} \alpha_3 s \, ds - \int_{S^1} \alpha_2 \alpha_{3t_1} \, ds, \]

which vanishes by the cyclic sum.
Hamiltonian functions

The nth KdV equation:

$$\kappa_t = \Omega^n \kappa_s \quad (\kappa : S^1 \to \mathbb{R})$$

has infinite numbers of conserved quantities $\{H_m\}_{m \in \mathbb{N}}$ which can be represented as

$$H_m = \int_{S^1} h_m(\kappa, \kappa_s, \kappa_{ss}, \ldots) \, ds.$$

For example,

$$h_1 = \kappa, \quad h_2 = \frac{1}{2} \kappa^2, \quad h_3 = \frac{1}{2} \kappa^3 - \frac{1}{4} \kappa_s^2.$$
Hamiltonian formalism

$n \in \mathbb{N}$: fixed

\[X_n := -\frac{1}{2}(\Omega^{n-1}\kappa_s)\gamma + (D_s^{-1}\Omega^{n-1}\kappa_s)\gamma_s \quad (\gamma \in \mathcal{M}) \]

\[\implies X_n \text{ is a Hamiltonian vector field for } H_n \text{ with respect to } \omega_0: \]

\[dH_n = \omega_0(X_n, \cdot) \]

In particular, H_n is a Hamiltonian function for the nth KdV flow:

\[\gamma_t = X_n. \]
Another presymplectic form

\[X, Y \in T_{\gamma}M \]

\[\omega_1(X, Y) := \int_{S^1} \det \left(X \begin{pmatrix} D_s^2 + \kappa \end{pmatrix} Y \right) ds \]

\[X = -\frac{1}{2} \alpha_s \gamma + \alpha \gamma_s, \quad Y = -\frac{1}{2} \beta_s \gamma + \beta \gamma_s \quad (\alpha, \beta : S^1 \rightarrow \mathbb{R}) \]

\[\Downarrow \]

\[\omega_1(X, Y) = \int_{S^1} \alpha \Omega \beta_s ds \]

Theorem (F-T. Kurose)

\(\omega_1 \) defines a presymplectic form on \(M \).

\(X_n \) is a Hamiltonian vector field for \(H_{n+1} \) with respect to \(\omega_1 \).
Hamiltonian vector field and Poisson structure

\((M, \omega)\): a symplectic manifold

\(H \in C^\infty(M)\)

\(X_H\): a Hamiltonian vector field

\(\{ \cdot, H \}\): the Poisson structure

Proposition

\[X_H = \{ \cdot, H \} \]

Proof

For \(f \in C^\infty(M)\),

\[X_H f = df(X_H) = \omega(X_f, X_H) = \{ f, H \} \]
Bi-Hamiltonian structure:

- There exist two Poisson structures on a Poisson manifold.
 \[
 \{ \cdot, \}^1, \{ \cdot, \}^2
 \]

- A Hamiltonian vector field can be expressed in two ways.
 \[
 \{ \cdot, H_2 \}^1 = \{ \cdot, H_1 \}^2
 \]

\(\omega_0\) and \(\omega_1\) define bi-Hamiltonian structure on \(M\).

\[
dH_n = \omega_0(X_n, \cdot) = \omega_1(X_{n-1}, \cdot)
\]
Magri’s theorem

Theorem (F. Magri 1978)

\(M \): a manifold with compatible Poisson structures i.e.

\[
\{ , \}_1, \{ , \}_2 : \text{Poisson structures}
\]

\[
\{ , \}_1 + \{ , \}_2 : \text{Poisson structure}
\]

\[
\{ , \}_1 : \text{non-degenerate (induced by a symplectic structure)}
\]

\[\exists H_1, H_2 \in C^\infty(M) \text{ s.t.} \]

\[
\{ \cdot , H_2 \}_1 = \{ \cdot , H_1 \}_2
\]

\[\implies \exists H_i \in C^\infty(M) (i \in \mathbb{N}) \text{ s.t.} \]

\[
\{ \cdot , H_{i+1} \}_1 = \{ \cdot , H_i \}_2 \quad (\forall i \in \mathbb{N}) \quad (1)
\]

\[
\{ H_i , H_j \}_1 = 0, \quad \{ H_i , H_j \}_2 = 0 \quad (\forall i, j \in \mathbb{N})
\]

\[
\{ , \}_1, \{ , \}_2 : \text{Poisson structures}
\]

\[
\{ , \}_1 + \{ , \}_2 : \text{Poisson structure}
\]

\[
\{ , \}_1 : \text{non-degenerate (induced by a symplectic structure)}
\]
Involutiveness

By involutiveness (2), \(\{H_i\} \)'s become first integrals.

Proposition

(2) can be deduced from (1).

Proof

If \(i > j \),

\[
\{ H_i, H_j \}_1 = \{ H_{i-1}, H_j \}_2 \\
= \{ H_{i-1}, H_{j+1} \}_1.
\]

If \(1 \leq k < i \),

\[
\{ H_i, H_j \}_1 = \{ H_{i-k}, H_{j+k} \}_1 = \{ H_{i-k}, H_{j+k-1} \}_2.
\]

Devide into two cases that \(i - j \) is odd or even.
The level sets of Hamiltonians

\[m \in \mathbb{N} \]
\[C_m := (c_1, \ldots, c_m) \in \mathbb{R}^m \]

\[\mathcal{M}(C_m) := H_1^{-1}(c_1) \cap \cdots \cap H_m^{-1}(c_m) \]

Assume \(\mathcal{M}(C_m) \neq \emptyset \).
\[\gamma \in \mathcal{M}(C_m) \]

Proposition

\[T_{\gamma} \mathcal{M}(C_m) = \left\{ -\frac{1}{2} \alpha_s \gamma + \alpha \gamma_s \ \bigg| \begin{array}{c} \alpha : S^1 \to \mathbb{R} \\ \int_{S^1} \kappa \Omega^k \alpha_s ds = 0 \\ (k = 0, 1, 2, \ldots, m - 1) \end{array} \right\} \]
Presymplectic forms on the level sets

Generalize ω_0 and ω_1.

$X, Y \in T_\gamma \mathcal{M}$

$$X = -\frac{1}{2} \alpha_s \gamma + \alpha \gamma_s, \quad Y = -\frac{1}{2} \beta_s \gamma + \beta \gamma_s \quad (\alpha, \beta : S^1 \to \mathbb{R})$$

$k = 0, 1, 2, \ldots$

Assume $\Omega^k \alpha_s$ and $\Omega^k \beta_s$ can be defined.

$$\omega_k(X, Y) := \int_{S^1} \alpha \Omega^k \beta_s ds$$

Theorem (F-T. Kurose)

$\omega_0, \omega_1, \ldots, \omega_{m+1}$ define presymplectic forms on $\mathcal{M}(C_m)$.

For each $k = 0, 1, \ldots, m + 1$, X_n is a Hamiltonian vector field for H_{n+k} with respect to ω_k.
Key lemma

\[p, q, r = 0, 1, 2, \ldots \]
\[i = 1, 2, 3 \]
Assume \(\Omega^{p+1}_i \), \(\Omega^{q+1}_i \) and \(\Omega^{r+1}_i \) can be defined.

\[A(p, q, r) := \int_{S^1} (\Omega^p \alpha_1)(D_s^{-1} \Omega^q \alpha_2)(\Omega^r \alpha_3)ds \]
\[+ \int_{S^1} (\Omega^p \alpha_2)(D_s^{-1} \Omega^q \alpha_3)(\Omega^r \alpha_1)ds \]
\[+ \int_{S^1} (\Omega^p \alpha_3)(D_s^{-1} \Omega^q \alpha_1)(\Omega^r \alpha_2)ds \]

Lemma

\[A(p, q, r + 1) + A(q, r, p + 1) + A(r, p, q + 1) \]
\[- A(p + 1, q, r) - A(q + 1, r, p) - A(r + 1, p, q) = 0 \]
Moment maps

S^1 acts on \mathcal{M} by parameter shift:

$$\mathcal{M} \ni \gamma \mapsto \gamma(\cdot + \sigma) \quad (\sigma \in S^1),$$

which is symplectic with respect to ω_1. Moreover, the action is Hamiltonian and the moment map is given by H_1.

S^1 also acts on $\mathcal{M}(C_m)$ by parameter shift, which is symplectic with respect to ω_{m+1}.

Theorem (F-T. Kurose)

The moment map μ_{m+1} for the S^1-action on $\mathcal{M}(C_m)$ with respect to ω_{m+1} is given by

$$\mu_{m+1}(\gamma) \left(\frac{\partial}{\partial \sigma} \right) = H_{m+1}(\gamma) \quad (\gamma \in \mathcal{M}(C_m)).$$
The Miura transformation:

\[\kappa = \frac{\sqrt{-1}}{2} \hat{\kappa}_s + \frac{1}{4} \hat{\kappa}^2 \]

If \(\hat{\kappa} \) is a solution to the mKdV equation:

\[\hat{\kappa}_t = \frac{1}{2} \hat{\kappa}_{sss} + \frac{3}{4} \hat{\kappa}^2 \hat{\kappa}_s, \]

\(\kappa \) is a solution to the KdV equation.

- Higher mKdV equations are associated with curve flows in the Euclidean plane.
- The Miura transformation can be defined geometrically as maps between complexification of the set of closed curves.
- Multi-Hamiltonian structures are connected via the geometric Miura transformation.
Thank you for your attention.