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Backgrounds and main results

Equivariant
projections

B o The space of closed equicentroaffine plane curves

spaces of

Eraaifne e FAction of the diffeomorphism group of the circle

e e Considered as an action of the Virasoro-Bott group.

Atsushi . . .. .

Fujioka e The space is considered as the coadjoint orbit of the dual

of the Virasoro algebra.
e Studied from the viewpoint of symplectic geometry.

Introduction
o Today: Consider the space of equicentroaffine curves in
general vector space.
e FAction of the diffeomorphism group of the line
e Define projections into the space of plane or space curves.
e The above projections are equivariant w.r.t. the above
action.
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Definition of the equicentroaffine curve

Equivariant

projections
between . e

spaces of Defl nition

equicen-

troaffine I: an interval

e =234,
Fusok v : 1 — R™\ {0}: an equicentroaffine curve
$ def.
i
det ’y =1
,}/(n‘—l)

s € | is called an equicentroaffine arclength parameter.
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The fundamental theorem of equicentroaffine

curves

Equivariant v : 1 — R™\ {0}: an equicentroaffine curve

projections 3

between — K1, K2, ..., Kp—1 ! | — R s.t.
spaces of

equicen-

troaffine "}/(n) —+ K/l"}/(n72) + K/2’Y(n73) + -+ Rn-17 = 0

curves

Atsushi

S Fori=1,2,..., n—1, we call k; the i-th curvature.

The fundamental theorem of equicentroaffine curves

K1, k2, ..., Kp_1: 1 — R

Equicentroaffin e 3y : 1 — R"\ {0}: an equicentroaffine curve with the i-th
curvature kK;

Unique up to equiaffine transformation
fixing the origin.

Equiaffine transformation fixing the origin:
o Multiplication by the element of SL(n, R)
o Called equicentroaffine transformation.
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Example

Equicentroaffine plane curves with constant curvature

Equivariant . . .

prajoctions Consider equicentroaffine plane curves.
b . - .

R We call the first curvature the equicentroaffine curvature.
equicen-
troaffine
curves

Example 1 (Equicentroaffine plane curves with constant

Atsushi
Fujioka

curvature)

v : I — R?\ {0}: an equicentroaffine plane curve
K: the equicentroaffine curvature

e o = 0 <= v is a part of a line:

v(s) =(a+bs,c+ds) (a b, c,deR, ad—bc=1)

curves

o K: a positive constant <= «y is a part of an ellipse:

1
~(s) = (acos i,bsin %) <a, b>0, k= ﬁ)

o K: a negative constant <= « is a part of a hyperbola.
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Definition of the action of the diffeomorphism

group of the line

Equivariant o M: the set of all equicentroaffine curves from R into

projections

between Rn \ {0}

spaces of

eauicer- o M,/SL(n, R): the set of all congruence classes of

curves equicentroaffine curves from R into R" \ {0}

A o Diff (R): the group of all orientation preserving
diffeomorphisms of R

o v € M,, g € Diff(R)

—n

5(s) == (v-8)(s) = (g'(s)) 7 (vog)(s) (sER)

Proposition

Action of the

oo 7 - g defines an action of Diff (R) on M,, M, /SL(n,R).

group

For k=0,1,2,..., n—1,
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Notations

Equivariant

projections o Consider the action of Diff (R) on M:

between

soce My>y—=4=v-geM, (gcDiff(R))
troaffine . .
s o Derive the transformation rule for the curvatures.
Atsushi ]_ —n
Fujioka o=
2
o Write 'y(k) o g simply as ’y(k).
/!
o h:= g,
Action of the g
iffeomor- . . .
ohiom o Consider h, H', h”, ... as independent variables.

group

o Define the degree of h(¥) as (k + 1).
o Define the weighted degree of a polynomial P of h, K, h”,

o Denote the weighted degree by deg,, P.
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Transformation rule for the derivatives of curves
1/3

Equivariant

projections

between Lemma

spaces of .

equicen- o For k = 1, 27 coog

troaffine
curves k—1

Atsushi ;}‘/(k) = Z Pk,/:)'/(/) + (gl)a"l‘k’y(k)’

Fujioka
/=0

where Py /'s are homogeneous polynomials of h, A', h’, ...
s.t.
degw Pk’/ =k— I

Acti f th . a
Toomor- o The following three recurrence relations hold:

diffeomor-

phism
group 0Fork=1,2,...,n—1.
k—1 8Pk0
Pit10 = Z_o ah—(r;v)h(m+l) —(a+k)Peoh.  (RI)




Transformation rule for the derivatives of curves
2/3

Equivariant
projections
between

Lemma (continued)
spaces of .Fork:2’3”‘ n_]_’/:]_72’.'.’1(_1v

equicen-
troaffine k—I—1

aPk /

e For k=1, 2, ce.,n—1,
Piy1.k = Pik—1 + (o + k)h. (R3)j
;"hfif:ﬂmm_ First, differentiating the equation

group

¥ =(g")*,

we have

5 = ahy + (g")>Ty.
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Transformation rule for the derivatives of curves
3/3

Equivariant
projections

e Proof (continued)
spaces of

equicen- Hence we have

troaffine

curves P]_’O = ah.

Atsushi

Fujioka 7' is expressed as above.
P10 is a homogeneous polynomial s.t. deg, P1o = 1.

Next, for k =1, 2, ..., n— 1, assume that

e 5(K)'s are expressed as above.
Action of the e Py /'s are homogeneous polynomials s.t. deg,, Py, =k — I.

diffeomor-

phion o Compute '"y(k+1) using that Py is a polynomial of h, #,
..., hlk=1=1),

o Recurrence relations are derived.

o Compute deg,, Pxy1,-
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Example

Pry1,k

Equivariant
projections
between
spaces of — —
pac k=1,2,...,n—1

equicen-

troaffine From PLO = ah and (R3)

curves

Example2 (Px1.k)

Atsushi Pk+1,k = Pk,k—l aF (a + k)h,
Fujioka
we have
k
Piy1k = Pro + Z(a + Nh

Action of the =1 k
diffeomor-
phism = (k + 1) (O{ + —) h
group 2

Since o = % we have

Pnn—1=0. (Assume the weighted degree is 1.)

v
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Example
P20, P3o

Equivariant
projections
between Example3 (P20, P3p)

spaces of

equicen- From Pl,O = Oéh and (R]-)

troaffine

curves
k—1

tsushi 8P m
= Pesto =D s h™ — (@ + k)Pioh,
we have
P19 p
P =h — (a+ 1)Proh
Action of the 2,0 ah ( ) 1,0
:vhhfirse;mm_ —ah — Oé(Oz + 1)h2

group

Moreover, if n > 3, we have
Pso = ah” — a(3a + 4)hh + a(a + 1)(a + 2)h3.
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Transformation rule for the curvatures
1/3

Equivariant
projections Theorem 1
between

spaces of Y € Mn

equicen-

troaffine Ki: the i-th curvature of v (i=1,2, ..., n—1)
R 7 =g (g € Diff(R))
Fujioka Rj: the i-th curvature of ¥
— For/=0,1,2,..., n—3,
n—2
Fini—1=(&8")"'Knt—1 — Pny — Z (8")" *Kn—k—1Pi,-
k=I+1
A.ction of the 2
diffeomor- - n(n—1
1= (g + D)
group 12

where 5(g) is the Schwarzian derivative of g:

0-(5)-3(6)
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Transformation rule for the curvatures
2/3

Equivariant

projections P ro Of

between

S;a;ij:’_f First, by use of the transformation rule for the derivatives of
troaffine curves (Lemma)' we have

curves

Atsushi
Fujioka n—2

50 = 3 P A0 — (g s
1=0
n—2

k—1
=) (&) *knk (a(“ = Pk,r"y“)) :
1=0

Action of the k=1
diffeomor-
phism

group Hence we have the first equation in Theorem 1 and

1= (g)?k1 — Pnp-2.

Next, compute Pp ,_».
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Transformation rule for the curvatures
3/3

Equivariant
projections
between
spaces of
S From (R2) and Example2 (Py1.4), we have

curves

Proof (continued)

Atiushi aPk k—
Fujioka Pk-‘r].,k—]_ — Pk,k—z — avh 1 h/ — (O[ + k)PkJ{—lh

k—1
=k — K
<a+ 5 )

— (a+ k)k (a+ %) h?.

Action of the

diffeomor-
phism

sroup Moreover, from Example 3 (P2), we have

Uil PN

Pn,n—2 = 12
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Equivariant projections into M5
1/2

Equivariant

projections

between n=3,4,5,...
spaces of _/\’/l ’ ’
equicen- (-

troaffine 7 n

curves K1: the first curvature of

o ¥ € M>: an equicentroaffine plane curve s.t.

the equicentroaffine curvature =

Consider the action of Diff (R).

The correspondence from  to 4 defines an equivariant map
from M, into M5 :

projections W = '7 - g (g c DIﬂ:(R))

Equivariant
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Equivariant projections into M5
1/2

Equivariant

projections P ro Of

between . 0 g
spaces of By Theorem 1, the transformation rule for the first curvature is

equicen-

troaffine giVe n by

curves 2
. n(n-—1
Atsushi R1 = (gl)2"€1 + Ms(g)
Fujioka 12
R1, 1: the equicentroaffine curvature of 7, ¥-g
Then
n(n®—1) 5 n(n®—1)_ n(n -1)

—R = (g " r + B s(e)
)

Equivariant

5 _ 1
projections R1 = (g,)2K‘1 + Es(g)

This is the transformation rule for the equicentroaffine
curvature when n = 2.
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Example

Equicentroaffine curves with vanishing higher curvatures

Equivariant
projections

Example 4 (Equicentroaffine curves with vanishing higher
<paces of curvatures)

equicen-

troaffine n = 3’ 4, 5’ ..

curves . ) . n—2) - 5 .

A p:R— R\ {0}: a curve s.t. p(. ) is an ('eqwcentrc?afﬁne

Fujioka plane curve with the equicentroaffine
curvature K

Define an equicentroaffine curve v : R — R" \ {0} by

1 1
=(1,s,—s% ..., —— g3 R).
(s) <35,2!S, IO ,,0> (s €R)
— Kl =K Kp=Kz=-+=Kp_1=0

—> The projection into M5 is given by

S(s) = g2 ( ﬁs) (s €R).

Equivariant
projections
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Equivariant projections into M3

1/3

Equivariant

rojections =

pro} n=456,...
etween

spaces of ’y [ Mn

equicen-

troaffine K1, k2: the first and the second curvature of
At ~ € Ma3: an equicentroaffine space curve s.t.
Fujioka i 24
the first curvature = ——— k1
n(n? —1)
24
the second curvature = K2

n(n? —1)(n —2)

Consider the action of Diff (R).

Equivariant

e The correspondence from  to 74 defines an equivariant map
from M, to Ms.
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Equivariant projections into M3
2/3

Equivariant
projections

between
spaces of
equicen- P ro Of

over By Theorem 1, the transformation rule for the first curvature is

curves

Atsushi given by
Fujioka
2
~ n(n-—1
K1 = (g,)szl + M
The transformation rule for the second curvature is given by
Ko = (g’)3/<52 — Pon_3— (g/)zlilpn—z,n—&

From Example2 (Py41,k), we have

Equivariant Pn72,n73 = —(n = 2)h

projections

21/27



Equivariant projections into M3
2/3

Equivariant

projections Proof (continued)

between
seza}iizrif From (R2), we have
troaffine
curves 8Pk k=2 ., aPk k=2 .1
tsushi P 2 = ’ h : h P -3 — k P — h
?ujiol:a kt1k=2 8h + 8h/ i o= (a_'_ ) kik=2
Hence we have
Pn,n—3 = P3,0
n—1
OPxx—2,,  OPkk—2,,
2 h 2 h" — K)Py _oh | .
-l-z( 3 + B (o + k)P k—2
k=3
Erqojievcatriic?:st Further computation shows that
n(n? —1)(n—2
Prns = -0 =2 ().
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Example

Closed equicentroaffine curves with constant curvatures when n is even

Equivariant

projections Example 5 (Closed equicentroaffine curves with constant

between

i curvatures when n is even)

equicen-
PR )i o, A €N A £ (P # )
Atsushi Define an equicentroaffine curve v : R — R?>™\ {0} by

Fujioka

v(s) = (cos A1s, sin A1s, ..., COSAms, psin \ps) (s € R),

where
m

IR R

1 —
HOE ey

Then

27+ k1 2T bt Kooy = (P AD) (P + A2)

Periodic

examples

(k2 =Ka ="+ = Kom—2=0).
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Example

Closed equicentroaffine curves with constant curvatures when n is even

(continued)

Equivariant

projections Examp|e5 (continued)

between
spaces of
equicen- I (S N

troaffine )\1 = /7 )\2 = 3/7 cee )\m = (2”’7 — 1)/

Fuioka !

6
— k1 =2
2m{(2m)2 — 1}

Hence the projection into Mo is given by

A(s) = (cos Is, %sin ls) (s € R).

Moreover, the projection into M3 is given by

1
Periodic (s) = (cos 2ls,sin 2ls, @) (s €R).

examples
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Example

Closed equicentroaffine curves with constant curvatures when n is odd

Equivariant

projections Example 6 (Closed equicentroaffine curves with constant

between

spaces of curvatures when n is odd)

equicen-
Pl )i, o, Am € NN £ (£ )

Atsushi Define an equicentroaffine curve v : R — R*™+1\ {0} by
Fujioka

v(s) = (cos A1s, sin A1s, ..., COSAms, sin Ams, 1) (s € R),

where
= H” [10F -2
= i<j
Then

P 2T e kom = H(E M) (B4 AR)

Periodic

examples

(ko = ka =+ = Kom = 0).
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Example

Closed equicentroaffine curves with constant curvatures when n is odd

(continued)

Equivariant

projections Examp|e6 (continued)

between
spaces of

equicen- I (S N

troaffine

curves )\1 o

Fuoke !
0 Ky = I?
Cm+D{2m+12 -1} "

Hence the projection into Mo is given by

A(s) = (cos Is, %sin ls) (s € R).

Moreover, the projection into M3 is given by

1
Periodic (s) = (cos Is,sin Is, I_3) (s €R).

examples
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Equivariant
projections

between
spaces of
equicen-
troaffine
curves

Atsushi
Fujioka

Thank you for your attention.

Periodic
examples
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