Equivariant

 projections between spaces of equicentroaffine curvesAtsushi
Fujioka

Equivariant projections between spaces of equicentroaffine curves

Contents
Introduction
Equicentroaffine curves

Action of the diffeomor-

Atsushi Fujioka

Faculty of Engineering Science
Kansai University

December 3, 2023
Ritsumeikan University
Poisson geometry and related topics 23
Joint work with T. Kurose and H. Moriyoshi

Contents

Equivariant projections between spaces of equicentroaffine curves
 Atsushi
 Fujioka

(1) Introduction

(2) Equicentroaffine curves

Contents
Introduction
(3) Action of the diffeomorphism group

Equicentroaffine curves

Action of the diffeomor-
phism
group
Equivariant projections

Periodic
examples
4 Equivariant projections
(5) Periodic examples

Backgrounds and main results

- The space of closed equicentroaffine plane curves
- ${ }^{\exists}$ Action of the diffeomorphism group of the circle
- Considered as an action of the Virasoro-Bott group.
- The space is considered as the coadjoint orbit of the dual of the Virasoro algebra.
- Studied from the viewpoint of symplectic geometry.
- Today: Consider the space of equicentroaffine curves in general vector space.
- ${ }^{\exists}$ Action of the diffeomorphism group of the line
- Define projections into the space of plane or space curves.
- The above projections are equivariant w.r.t. the above action.

Definition of the equicentroaffine curve

Equivariant

projections between spaces of equicentroaffine curves

Atsushi
Fujioka

Contents
Introduction
Equicentroaffin curves

Action of the diffeomorphism
group
Equivariant projections

Periodic
examples

Definition

I : an interval

$$
n=2,3,4, \ldots
$$

$\gamma: I \rightarrow \mathbf{R}^{n} \backslash\{0\}:$ an equicentroaffine curve \Uparrow def.

$$
\operatorname{det}\left(\begin{array}{c}
\gamma \\
\gamma^{\prime} \\
\vdots \\
\gamma^{(n-1)}
\end{array}\right)=1
$$

$s \in I$ is called an equicentroaffine arclength parameter.

The fundamental theorem of equicentroaffine

curves

Equivariant

 projections between spaces of equicentroaffine curvesAtsushi
Fujioka

Contents
Introduction
Equicentroaffin curves

Action of the diffeomorphism group

Equivariant projections
$\gamma: I \rightarrow \mathbf{R}^{n} \backslash\{0\}$: an equicentroaffine curve
$\Longrightarrow{ }^{\exists} \kappa_{1}, \kappa_{2}, \ldots, \kappa_{n-1}: I \rightarrow \mathbf{R}$ s.t.

$$
\gamma^{(n)}+\kappa_{1} \gamma^{(n-2)}+\kappa_{2} \gamma^{(n-3)}+\cdots+\kappa_{n-1} \gamma=0
$$

For $i=1,2, \ldots, n-1$, we call κ_{i} the i-th curvature.

The fundamental theorem of equicentroaffine curves

$\kappa_{1}, \kappa_{2}, \ldots, \kappa_{n-1}: l \rightarrow \mathbf{R}$
$\Longrightarrow{ }^{\exists} \gamma: I \rightarrow \mathbf{R}^{n} \backslash\{0\}$: an equicentroaffine curve with the i-th curvature κ_{i}
Unique up to equiaffine transformation fixing the origin.

Equiaffine transformation fixing the origin:

- Multiplication by the element of $\operatorname{SL}(n, \mathbf{R})$
- Called equicentroaffine transformation.

Example

Equicentroaffine plane curves with constant curvature

Equivariant

 projections between spaces of equicentroaffine curvesAtsushi
Fujioka

Contents
Introduction
Equicentroaffin curves

Action of the diffeomorphism group

Equivariant
projections
Periodic examples

Consider equicentroaffine plane curves.
We call the first curvature the equicentroaffine curvature.

Example 1 (Equicentroaffine plane curves with constant curvature)

$\gamma: I \rightarrow \mathbf{R}^{2} \backslash\{0\}$: an equicentroaffine plane curve
κ : the equicentroaffine curvature

- $\kappa=0 \Longleftrightarrow \gamma$ is a part of a line:

$$
\gamma(s)=(a+b s, c+d s) \quad(a, b, c, d \in \mathbf{R}, a d-b c=1)
$$

○ κ : a positive constant $\Longleftrightarrow \gamma$ is a part of an ellipse:

$$
\gamma(s)=\left(a \cos \frac{s}{a b}, b \sin \frac{s}{a b}\right) \quad\left(a, b>0, \kappa=\frac{1}{a^{2} b^{2}}\right)
$$

○ κ : a negative constant $\Longleftrightarrow \gamma$ is a part of a hyperbola.

Definition of the action of the diffeomorphism group of the line

Equivariant

 projections between spaces of equicentroaffine curvesAtsushi
Fujioka

Contents
Introduction
Equicentroaffine curves

Action of the diffeomorphism group

Equivariant projections

Periodic examples

- \mathcal{M}_{n} : the set of all equicentroaffine curves from \mathbf{R} into $\mathbf{R}^{n} \backslash\{0\}$
- $\mathcal{M}_{n} / \operatorname{SL}(n, \mathbf{R})$: the set of all congruence classes of equicentroaffine curves from \mathbf{R} into $\mathbf{R}^{n} \backslash\{0\}$
- $\operatorname{Diff}(\mathbf{R})$: the group of all orientation preserving diffeomorphisms of \mathbf{R}
- $\gamma \in \mathcal{M}_{n}, g \in \operatorname{Diff}(\mathbf{R})$

$$
\tilde{\gamma}(s):=(\gamma \cdot g)(s):=\left(g^{\prime}(s)\right)^{\frac{1-n}{2}}(\gamma \circ g)(s) \quad(s \in \mathbf{R})
$$

Proposition

$\gamma \cdot g$ defines an action of $\operatorname{Diff}(\mathbf{R})$ on $\mathcal{M}_{n}, \mathcal{M}_{n} / \operatorname{SL}(n, \mathbf{R})$.
Proof

$$
\begin{aligned}
& \text { For } k=0,1,2, \ldots, n-1, \\
& \tilde{\gamma}^{(k)}=\left(g^{\prime}\right)^{\frac{1-n}{2}+k}\left(\gamma^{(k)} \circ g\right)+\cdots .
\end{aligned}
$$

Notations

Equivariant
projections
between
spaces of equicentroaffine curves

Atsushi
Fujioka

Contents
Introduction
Equicentroaffin curves

Action of the diffeomorphism
group
Equivariant
projections
Periodic
examples

- Consider the action of $\operatorname{Diff}(\mathbf{R})$ on \mathcal{M}_{n} :

$$
\mathcal{M}_{n} \ni \gamma \mapsto \tilde{\gamma}=\gamma \cdot g \in \mathcal{M}_{n} \quad(g \in \operatorname{Diff}(\mathbf{R}))
$$

- Derive the transformation rule for the curvatures.
- $\alpha:=\frac{1-n}{2}$
- Write $\gamma^{(k)} \circ g$ simply as $\gamma^{(k)}$.
- $h:=\frac{g^{\prime \prime}}{g^{\prime}}$
- Consider $h, h^{\prime}, h^{\prime \prime}, \ldots$ as independent variables.
- Define the degree of $h^{(k)}$ as $(k+1)$.
- Define the weighted degree of a polynomial P of $h, h^{\prime}, h^{\prime \prime}$,
- Denote the weighted degree by $\operatorname{deg}_{w} P$.

Transformation rule for the derivatives of curves 1/3

Equivariant projections

 between spaces of equicentroaffine curvesAtsushi
Fujioka

Contents

Action of the diffeomorphism
group
Equivariant
projections
Periodic examples

Lemma

- For $k=1,2, \ldots, n$,

$$
\tilde{\gamma}^{(k)}=\sum_{l=0}^{k-1} P_{k, I} \tilde{\gamma}^{(I)}+\left(g^{\prime}\right)^{\alpha+k} \gamma^{(k)}
$$

where $P_{k, l}$'s are homogeneous polynomials of $h, h^{\prime}, h^{\prime \prime}, \ldots$ s.t.

$$
\operatorname{deg}_{w} P_{k, I}=k-I .
$$

- The following three recurrence relations hold:
- For $k=1,2, \ldots, n-1$,

$$
\begin{equation*}
P_{k+1,0}=\sum_{m=0}^{k-1} \frac{\partial P_{k, 0}}{\partial h^{(m)}} h^{(m+1)}-(\alpha+k) P_{k, 0} h \tag{R1}
\end{equation*}
$$

Transformation rule for the derivatives of curves 2/3

Equivariant

projections between spaces of equicentroaffine curves

Atsushi
Fujioka

Contents
Introduction
Equicentroaffin curves

Action of the diffeomorphism
group
Equivariant projections

Lemma (continued)

- For $k=2,3, \ldots, n-1, I=1,2, \ldots, k-1$,

$$
\begin{equation*}
P_{k+1, l}=\sum_{m=0}^{k-I-1} \frac{\partial P_{k, l}}{\partial h^{(m)}} h^{(m+1)}+P_{k, l-1}-(\alpha+k) P_{k, l} h \tag{R2}
\end{equation*}
$$

- For $k=1,2, \ldots, n-1$,

$$
\begin{equation*}
P_{k+1, k}=P_{k, k-1}+(\alpha+k) h . \tag{R3}
\end{equation*}
$$

Proof

First, differentiating the equation

$$
\tilde{\gamma}=\left(g^{\prime}\right)^{\alpha} \gamma
$$

we have

$$
\tilde{\gamma}^{\prime}=\alpha h \tilde{\gamma}+\left(g^{\prime}\right)^{\alpha+1} \gamma^{\prime}
$$

Transformation rule for the derivatives of curves 3/3

Equivariant

 projections between spaces of equicentroaffine curvesAtsushi
Fujioka

Contents

Equicentroaffin curves

Action of the diffeomorphism group

Equivariant projections

Proof (continued)

Hence we have

$$
P_{1,0}=\alpha h .
$$

$\tilde{\gamma}^{\prime}$ is expressed as above.
$P_{1,0}$ is a homogeneous polynomial s.t. $\operatorname{deg}_{w} P_{1,0}=1$.
Next, for $k=1,2, \ldots, n-1$, assume that

- $\tilde{\gamma}^{(k)}$'s are expressed as above.
- $P_{k, l}$'s are homogeneous polynomials s.t. $\operatorname{deg}_{w} P_{k, l}=k-l$.
- Compute $\tilde{\gamma}^{(k+1)}$ using that $P_{k, l}$ is a polynomial of h, h^{\prime}, $\ldots, h^{(k-l-1)}$.
- Recurrence relations are derived.
- Compute $\operatorname{deg}_{w} P_{k+1, l}$.

Example
 $P_{k+1, k}$

Equivariant projections

 between spaces of equicentroaffine curvesAtsushi
Fujioka
Example $2\left(P_{k+1, k}\right)$
$k=1,2, \ldots, n-1$
From $P_{1,0}=\alpha h$ and (R3):

$$
P_{k+1, k}=P_{k, k-1}+(\alpha+k) h
$$

we have

$$
\begin{aligned}
P_{k+1, k} & =P_{1,0}+\sum_{l=1}^{k}(\alpha+I) h \\
& =(k+1)\left(\alpha+\frac{k}{2}\right) h .
\end{aligned}
$$

Since $\alpha=\frac{1-n}{2}$, we have

$$
\left.P_{n, n-1}=0 . \quad \text { (Assume the weighted degree is } 1 .\right)
$$

Example

$P_{2,0}, P_{3,0}$

Equivariant

 projections between spaces of equicentroaffine curvesAtsushi
Fujioka

Contents
Introduction
Equicentroaffin

curves

Action of the diffeomorphism group

Equivariant projections

Periodic
examples

Example 3 ($P_{2,0}, P_{3,0}$)

From $P_{1,0}=\alpha h$ and (R1):

$$
P_{k+1,0}=\sum_{m=0}^{k-1} \frac{\partial P_{k, 0}}{\partial h^{(m)}} h^{(m+1)}-(\alpha+k) P_{k, 0} h
$$

we have

$$
\begin{aligned}
P_{2,0} & =\frac{\partial P_{1,0}}{\partial h} h^{\prime}-(\alpha+1) P_{1,0} h \\
& =\alpha h^{\prime}-\alpha(\alpha+1) h^{2} .
\end{aligned}
$$

Moreover, if $n \geq 3$, we have

$$
P_{3,0}=\alpha h^{\prime \prime}-\alpha(3 \alpha+4) h h^{\prime}+\alpha(\alpha+1)(\alpha+2) h^{3} .
$$

Transformation rule for the curvatures

 1/3
Equivariant

 projections between spaces of equicentroaffine curvesAtsushi
Fujioka

Contents
Introduction
Equicentroaffin curves

Action of the diffeomorphism group

Equivariant projections

Periodic examples

Theorem 1

$\gamma \in \mathcal{M}_{n}$
κ_{i} : the i-th curvature of $\gamma(i=1,2, \ldots, n-1)$
$\tilde{\gamma}=\gamma \cdot g(g \in \operatorname{Diff}(\mathbf{R}))$
$\tilde{\kappa}_{i}$: the i-th curvature of $\tilde{\gamma}$
\Longrightarrow For $I=0,1,2, \ldots, n-3$,

$$
\begin{gathered}
\tilde{\kappa}_{n-l-1}=\left(g^{\prime}\right)^{n-l} \kappa_{n-I-1}-P_{n, l}-\sum_{k=l+1}^{n-2}\left(g^{\prime}\right)^{n-k} \kappa_{n-k-1} P_{k, l} \\
\tilde{\kappa}_{1}=\left(g^{\prime}\right)^{2} \kappa_{1}+\frac{n\left(n^{2}-1\right)}{12} S(g),
\end{gathered}
$$

where $S(g)$ is the Schwarzian derivative of g :

$$
S(g)=\left(\frac{g^{\prime \prime}}{g^{\prime}}\right)^{\prime}-\frac{1}{2}\left(\frac{g^{\prime \prime}}{g^{\prime}}\right)^{2}
$$

Transformation rule for the curvatures 2/3

Equivariant

projections between spaces of equicentroaffine curves

Atsushi
Fujioka

Contents
Introduction
Equicentroaffine

curves

Action of the diffeomorphism
group
Equivariant
projections

Proof

First, by use of the transformation rule for the derivatives of curves (Lemma), we have

$$
\begin{aligned}
\tilde{\gamma}^{(n)}= & \sum_{l=0}^{n-2} P_{n, I} \tilde{\gamma}^{(I)}-\left(g^{\prime}\right)^{n} \kappa_{n-1} \tilde{\gamma} \\
& -\sum_{k=1}^{n-2}\left(g^{\prime}\right)^{n-k} \kappa_{n-k-1}\left(\tilde{\gamma}^{(k)}-\sum_{l=0}^{k-1} P_{k, I} \tilde{\gamma}^{(I)}\right)
\end{aligned}
$$

Hence we have the first equation in Theorem 1 and

$$
\tilde{\kappa}_{1}=\left(g^{\prime}\right)^{2} \kappa_{1}-P_{n, n-2} .
$$

Next, compute $P_{n, n-2}$.

Transformation rule for the curvatures 3/3

Equivariant

projections between spaces of equicentroaffine curves

Atsushi
Fujioka

Contents
Introduction
Equicentroaffine curves

Action of the diffeomorphism
group
Equivariant
projections
Periodic
examples

Proof (continued)

From (R2) and Example $2\left(P_{k+1, k}\right)$, we have

$$
\begin{aligned}
P_{k+1, k-1}-P_{k, k-2}= & \frac{\partial P_{k, k-1}}{\partial h} h^{\prime}-(\alpha+k) P_{k, k-1} h \\
= & k\left(\alpha+\frac{k-1}{2}\right) h^{\prime} \\
& -(\alpha+k) k\left(\alpha+\frac{k-1}{2}\right) h^{2}
\end{aligned}
$$

Moreover, from Example 3 ($P_{2,0}$), we have

$$
P_{n, n-2}=-\frac{n\left(n^{2}-1\right)}{12} S(g)
$$

Equivariant projections into \mathcal{M}_{2}

Equivariant

projections between spaces of equicentroaffine curves

Atsushi
Fujioka

Contents
Introduction
Equicentroaffine
curves
Action of the diffeomor-
group
Equivariant projections
$n=3,4,5, \ldots$
$\gamma \in \mathcal{M}_{n}$
κ_{1} : the first curvature of γ
$\bar{\gamma} \in \mathcal{M}_{2}$: an equicentroaffine plane curve s.t.

$$
\text { the equicentroaffine curvature }=\frac{6}{n\left(n^{2}-1\right)} \kappa_{1}
$$

Consider the action of $\operatorname{Diff}(\mathbf{R})$.

Theorem 2

The correspondence from γ to $\bar{\gamma}$ defines an equivariant map from \mathcal{M}_{n} into \mathcal{M}_{2} :

$$
\overline{\gamma \cdot g}=\bar{\gamma} \cdot g \quad(g \in \operatorname{Diff}(\mathbf{R}))
$$

Equivariant projections into \mathcal{M}_{2}

1/2

Equivariant projections between spaces of equicentroaffine curves

Atsushi
Fujioka

Contents
Introduction
Equicentroaffine curves

Action of the diffeomor-

Proof

By Theorem 1, the transformation rule for the first curvature is given by

$$
\tilde{\kappa}_{1}=\left(g^{\prime}\right)^{2} \kappa_{1}+\frac{n\left(n^{2}-1\right)}{12} S(g)
$$

$\bar{\kappa}_{1}, \overline{\tilde{\kappa}}_{1}$: the equicentroaffine curvature of $\bar{\gamma}, \bar{\gamma} \cdot g$
Then

$$
\begin{gathered}
\frac{n\left(n^{2}-1\right)}{6} \overline{\tilde{\kappa}}_{1}=\left(g^{\prime}\right)^{2} \cdot \frac{n\left(n^{2}-1\right)}{6} \bar{\kappa}_{1}+\frac{n\left(n^{2}-1\right)}{12} S(g) \\
\Uparrow \\
\overline{\tilde{\kappa}}_{1}=\left(g^{\prime}\right)^{2} \bar{\kappa}_{1}+\frac{1}{2} S(g)
\end{gathered}
$$

This is the transformation rule for the equicentroaffine curvature when $n=2$.

Example

Equicentroaffine curves with vanishing higher curvatures

Equivariant projections between spaces of equicentroaffine curves

Atsushi
Fujioka

Contents

Equicentroaffine curves

Action of the diffeomor-

Example 4 (Equicentroaffine curves with vanishing higher curvatures)

$$
n=3,4,5, \ldots
$$

$\rho: \mathbf{R} \rightarrow \mathbf{R}^{2} \backslash\{0\}$: a curve s.t. $\rho^{(n-2)}$ is an equicentroaffine plane curve with the equicentroaffine curvature κ
Define an equicentroaffine curve $\gamma: \mathbf{R} \rightarrow \mathbf{R}^{n} \backslash\{0\}$ by

$$
\gamma(s)=\left(1, s, \frac{1}{2!} s^{2}, \ldots, \frac{1}{(n-3)!} s^{n-3}, \rho\right) \quad(s \in \mathbf{R}) .
$$

$\Longrightarrow \kappa_{1}=\kappa, \kappa_{2}=\kappa_{3}=\cdots=\kappa_{n-1}=0$
\Longrightarrow The projection into \mathcal{M}_{2} is given by

$$
\bar{\gamma}(s)=\rho^{(n-2)}\left(\sqrt{\frac{6}{n\left(n^{2}-1\right)}} s\right) \quad(s \in \mathbf{R}) .
$$

Equivariant projections into \mathcal{M}_{3}

1/3

Equivariant

projections between spaces of equicentroaffine curves

Atsushi
Fujioka

Contents
Introduction
Equicentroaffine curves

Action of the diffeomor-
$n=4,5,6, \ldots$
$\gamma \in \mathcal{M}_{n}$
κ_{1}, κ_{2} : the first and the second curvature of γ
$\bar{\gamma} \in \mathcal{M}_{3}$: an equicentroaffine space curve s.t.

$$
\begin{aligned}
\text { the first curvature } & =\frac{24}{n\left(n^{2}-1\right)} \kappa_{1} \\
\text { the second curvature } & =\frac{24}{n\left(n^{2}-1\right)(n-2)} \kappa_{2}
\end{aligned}
$$

Consider the action of $\operatorname{Diff}(\mathbf{R})$.

Theorem 3

The correspondence from γ to $\bar{\gamma}$ defines an equivariant map from \mathcal{M}_{n} to \mathcal{M}_{3}.

Equivariant projections into \mathcal{M}_{3}

2/3

Equivariant

projections between spaces of equicentroaffine curves

Atsushi
Fujioka

Contents
Introduction
Equicentroaffin curves

Action of the diffeomor-

Equivariant projections

Proof

By Theorem 1, the transformation rule for the first curvature is given by

$$
\tilde{\kappa}_{1}=\left(g^{\prime}\right)^{2} \kappa_{1}+\frac{n\left(n^{2}-1\right)}{12} S(g)
$$

The transformation rule for the second curvature is given by

$$
\tilde{\kappa}_{2}=\left(g^{\prime}\right)^{3} \kappa_{2}-P_{n, n-3}-\left(g^{\prime}\right)^{2} \kappa_{1} P_{n-2, n-3} .
$$

From Example $2\left(P_{k+1, k}\right)$, we have

$$
P_{n-2, n-3}=-(n-2) h .
$$

Equivariant projections into \mathcal{M}_{3}

Equivariant

 projections between spaces of equicentroaffine curvesAtsushi
Fujioka

Contents

Introduction

Equicentroaffine curves

Action of the diffeomorphism

group

Equivariant projections

Proof (continued)

From (R2), we have

$$
P_{k+1, k-2}=\frac{\partial P_{k, k-2}}{\partial h} h^{\prime}+\frac{\partial P_{k, k-2}}{\partial h^{\prime}} h^{\prime \prime}+P_{k, k-3}-(\alpha+k) P_{k, k-2} h .
$$

Hence we have

$$
P_{n, n-3}=P_{3,0}
$$

$$
+\sum_{k=3}^{n-1}\left(\frac{\partial P_{k, k-2}}{\partial h} h^{\prime}+\frac{\partial P_{k, k-2}}{\partial h^{\prime}} h^{\prime \prime}-(\alpha+k) P_{k, k-2} h\right) .
$$

Further computation shows that

$$
P_{n, n-3}=-\frac{n\left(n^{2}-1\right)(n-2)}{24}(S(g))^{\prime}
$$

Example

Closed equicentroaffine curves with constant curvatures when n is even

Equivariant projections between spaces of equicentroaffine curves

Atsushi
Fujioka

Contents
Introduction
Equicentroaffine curves

Action of the diffeomorphism group

Equivariant projections

Periodic examples

Example 5 (Closed equicentroaffine curves with constant

 curvatures when n is even)$\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \in \mathbf{N}, \lambda_{i} \neq \lambda_{j}(i \neq j)$
Define an equicentroaffine curve $\gamma: \mathbf{R} \rightarrow \mathbf{R}^{2 m} \backslash\{0\}$ by

$$
\gamma(s)=\left(\cos \lambda_{1} s, \sin \lambda_{1} s, \ldots, \cos \lambda_{m} s, \mu \sin \lambda_{m} s\right) \quad(s \in \mathbf{R})
$$

where

$$
\frac{1}{\mu}=\prod_{i=1}^{m} \lambda_{i} \prod_{i<j}\left(\lambda_{i}^{2}-\lambda_{j}^{2}\right)^{2}
$$

Then

$$
\begin{gathered}
t^{2 m}+\kappa_{1} t^{2 m-2}+\cdots+\kappa_{2 m-1}=\left(t^{2}+\lambda_{1}^{2}\right) \cdots\left(t^{2}+\lambda_{m}^{2}\right) \\
\left(\kappa_{2}=\kappa_{4}=\cdots=\kappa_{2 m-2}=0\right)
\end{gathered}
$$

Example

Closed equicentroaffine curves with constant curvatures when n is even (continued)

Equivariant

projections between spaces of equicentroaffine curves

Atsushi
Fujioka

Contents
Introduction
Equicentroaffine curves

Action of the diffeomorphism
group
Equivariant projections

Periodic
examples

Example 5 (continued)

$$
I \in \mathbf{N}
$$

$$
\lambda_{1}:=I, \quad \lambda_{2}:=3 /, \quad \ldots, \quad \lambda_{m}:=(2 m-1) /
$$

\Downarrow

$$
\frac{6}{2 m\left\{(2 m)^{2}-1\right\}} \kappa_{1}=I^{2}
$$

Hence the projection into \mathcal{M}_{2} is given by

$$
\bar{\gamma}(s)=\left(\cos / s, \frac{1}{l} \sin / s\right) \quad(s \in \mathbf{R})
$$

Moreover, the projection into \mathcal{M}_{3} is given by

$$
\bar{\gamma}(s)=\left(\cos 2 / s, \sin 2 / s, \frac{1}{8 / 3}\right) \quad(s \in \mathbf{R}) .
$$

Example

Closed equicentroaffine curves with constant curvatures when n is odd

Equivariant projections between spaces of equicentroaffine curves

Atsushi
Fujioka

Contents
Introduction
Equicentroaffine curves

Action of the diffeomorphism group

Equivariant projections

Periodic examples

Example 6 (Closed equicentroaffine curves with constant

 curvatures when n is odd)$\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \in \mathbf{N}, \lambda_{i} \neq \lambda_{j}(i \neq j)$
Define an equicentroaffine curve $\gamma: \mathbf{R} \rightarrow \mathbf{R}^{2 m+1} \backslash\{0\}$ by

$$
\gamma(s)=\left(\cos \lambda_{1} s, \sin \lambda_{1} s, \ldots, \cos \lambda_{m} s, \sin \lambda_{m} s, \mu\right) \quad(s \in \mathbf{R}),
$$

where

$$
\frac{1}{\mu}=\prod_{i=1}^{m} \lambda_{i}^{3} \prod_{i<j}\left(\lambda_{i}^{2}-\lambda_{j}^{2}\right)^{2}
$$

Then

$$
\begin{gathered}
t^{2 m+1}+\kappa_{1} t^{2 m-1}+\cdots+\kappa_{2 m}=t\left(t^{2}+\lambda_{1}^{2}\right) \cdots\left(t^{2}+\lambda_{m}^{2}\right) \\
\left(\kappa_{2}=\kappa_{4}=\cdots=\kappa_{2 m}=0\right) .
\end{gathered}
$$

Example

Closed equicentroaffine curves with constant curvatures when n is odd (continued)

Equivariant

 projections between spaces of equicentroaffine curvesAtsushi
Fujioka

Contents
Introduction
Equicentroaffine curves

Action of the diffeomorphism
group
Equivariant projections

Periodic
examples

Example 6 (continued)

$$
I \in \mathbf{N}
$$

$$
\lambda_{1}:=2 I, \quad \lambda_{2}:=4 I, \quad \ldots, \quad \lambda_{m}:=2 m l
$$

$$
\Downarrow
$$

$$
\frac{6}{(2 m+1)\left\{(2 m+1)^{2}-1\right\}} \kappa_{1}=I^{2}
$$

Hence the projection into \mathcal{M}_{2} is given by

$$
\bar{\gamma}(s)=\left(\cos / s, \frac{1}{l} \sin / s\right) \quad(s \in \mathbf{R}) .
$$

Moreover, the projection into \mathcal{M}_{3} is given by

$$
\bar{\gamma}(s)=\left(\cos / s, \sin / s, \frac{1}{13}\right) \quad(s \in \mathbf{R}) .
$$

Equivariant projections between spaces of equicentroaffine
 curves
 Atsushi
 Fujioka
 Contents
 Thank you for your attention.

Introduction
Equicentroaffine curves

Action of the diffeomor-
phism
group
Equivariant projections

Periodic
examples

