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Backgrounds and main results

◦ The space of closed equicentroaffine plane curves

• ∃Action of the diffeomorphism group of the circle
• Considered as an action of the Virasoro-Bott group.
• The space is considered as the coadjoint orbit of the dual
of the Virasoro algebra.

• Studied from the viewpoint of symplectic geometry.

◦ Today: Consider the space of equicentroaffine curves in
general vector space.

• ∃Action of the diffeomorphism group of the line
• Define projections into the space of plane or space curves.
• The above projections are equivariant w.r.t. the above
action.
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Definition of the equicentroaffine curve

Definition

I : an interval
n = 2, 3, 4, . . .

γ : I → Rn \ {0}: an equicentroaffine curve

m def.

det


γ
γ′

...

γ(n−1)

 = 1

s ∈ I is called an equicentroaffine arclength parameter.
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The fundamental theorem of equicentroaffine
curves

γ : I → Rn \ {0}: an equicentroaffine curve
=⇒ ∃κ1, κ2, . . . , κn−1 : I → R s.t.

γ(n) + κ1γ
(n−2) + κ2γ

(n−3) + · · ·+ κn−1γ = 0

For i = 1, 2, . . . , n − 1, we call κi the i-th curvature.

The fundamental theorem of equicentroaffine curves

κ1, κ2, . . . , κn−1 : I → R
=⇒ ∃γ : I → Rn \ {0}: an equicentroaffine curve with the i-th

curvature κi
Unique up to equiaffine transformation
fixing the origin.

Equiaffine transformation fixing the origin:
◦ Multiplication by the element of SL(n,R)
◦ Called equicentroaffine transformation.
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Example
Equicentroaffine plane curves with constant curvature

Consider equicentroaffine plane curves.
We call the first curvature the equicentroaffine curvature.

Example 1 (Equicentroaffine plane curves with constant
curvature)

γ : I → R2 \ {0}: an equicentroaffine plane curve
κ: the equicentroaffine curvature

◦ κ = 0 ⇐⇒ γ is a part of a line:

γ(s) = (a+ bs, c + ds) (a, b, c , d ∈ R, ad − bc = 1)

◦ κ: a positive constant ⇐⇒ γ is a part of an ellipse:

γ(s) =
(
a cos

s

ab
, b sin

s

ab

) (
a, b > 0, κ =

1

a2b2

)
◦ κ: a negative constant ⇐⇒ γ is a part of a hyperbola.
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Definition of the action of the diffeomorphism
group of the line

◦ Mn: the set of all equicentroaffine curves from R into
Rn \ {0}

◦ Mn/SL(n,R): the set of all congruence classes of
equicentroaffine curves from R into Rn \ {0}

◦ Diff (R): the group of all orientation preserving
diffeomorphisms of R

◦ γ ∈ Mn, g ∈ Diff (R)

γ̃(s) := (γ · g)(s) := (g ′(s))
1−n
2 (γ ◦ g)(s) (s ∈ R)

Proposition

γ · g defines an action of Diff (R) on Mn, Mn/SL(n,R).

Proof

For k = 0, 1, 2, . . . , n − 1,

γ̃(k) = (g ′)
1−n
2

+k(γ(k) ◦ g) + · · · .
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Notations

◦ Consider the action of Diff (R) on Mn:

Mn 3 γ 7→ γ̃ = γ · g ∈ Mn (g ∈ Diff (R))

◦ Derive the transformation rule for the curvatures.

◦ α :=
1− n

2

◦ Write γ(k) ◦ g simply as γ(k).

◦ h :=
g ′′

g ′

◦ Consider h, h′, h′′, . . . as independent variables.
◦ Define the degree of h(k) as (k + 1).
◦ Define the weighted degree of a polynomial P of h, h′, h′′,
. . . .

◦ Denote the weighted degree by degw P.
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Transformation rule for the derivatives of curves
1/3

Lemma

◦ For k = 1, 2, . . . , n,

γ̃(k) =
k−1∑
l=0

Pk,l γ̃
(l) + (g ′)α+kγ(k),

where Pk,l ’s are homogeneous polynomials of h, h′, h′′, . . .
s.t.

degw Pk,l = k − l .

◦ The following three recurrence relations hold:

• For k = 1, 2, . . . , n − 1,

Pk+1,0 =
k−1∑
m=0

∂Pk,0

∂h(m)
h(m+1) − (α+ k)Pk,0h. (R1)
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Transformation rule for the derivatives of curves
2/3

Lemma (continued)

• For k = 2, 3, . . . , n − 1, l = 1, 2, . . . , k − 1,

Pk+1,l =
k−l−1∑
m=0

∂Pk,l

∂h(m)
h(m+1) + Pk,l−1 − (α+ k)Pk,lh. (R2)

• For k = 1, 2, . . . , n − 1,

Pk+1,k = Pk,k−1 + (α+ k)h. (R3)

Proof

First, differentiating the equation

γ̃ = (g ′)αγ,

we have

γ̃′ = αhγ̃ + (g ′)α+1γ′.
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Transformation rule for the derivatives of curves
3/3

Proof (continued)

Hence we have
P1,0 = αh.

γ̃′ is expressed as above.
P1,0 is a homogeneous polynomial s.t. degw P1,0 = 1.

Next, for k = 1, 2, . . . , n − 1, assume that

• γ̃(k)’s are expressed as above.
• Pk,l ’s are homogeneous polynomials s.t. degw Pk,l = k − l .

◦ Compute γ̃(k+1) using that Pk,l is a polynomial of h, h′,
. . . , h(k−l−1).

◦ Recurrence relations are derived.
◦ Compute degw Pk+1,l .
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Example
Pk+1,k

Example 2 (Pk+1,k)

k = 1, 2, . . . , n − 1
From P1,0 = αh and (R3):

Pk+1,k = Pk,k−1 + (α+ k)h,

we have

Pk+1,k = P1,0 +
k∑

l=1

(α+ l)h

= (k + 1)

(
α+

k

2

)
h.

Since α = 1−n
2 , we have

Pn,n−1 = 0. (Assume the weighted degree is 1.)
12 / 27
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Example
P2,0, P3,0

Example 3 (P2,0, P3,0)

From P1,0 = αh and (R1):

Pk+1,0 =
k−1∑
m=0

∂Pk,0

∂h(m)
h(m+1) − (α+ k)Pk,0h,

we have

P2,0 =
∂P1,0

∂h
h′ − (α+ 1)P1,0h

= αh′ − α(α+ 1)h2.

Moreover, if n ≥ 3, we have

P3,0 = αh′′ − α(3α+ 4)hh′ + α(α+ 1)(α+ 2)h3.

13 / 27
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Transformation rule for the curvatures
1/3

Theorem1

γ ∈ Mn

κi : the i-th curvature of γ (i = 1, 2, . . . , n − 1)
γ̃ = γ · g (g ∈ Diff (R))
κ̃i : the i-th curvature of γ̃
=⇒ For l = 0, 1, 2, . . . , n − 3,

κ̃n−l−1 = (g ′)n−lκn−l−1 − Pn,l −
n−2∑

k=l+1

(g ′)n−kκn−k−1Pk,l .

κ̃1 = (g ′)2κ1 +
n(n2 − 1)

12
S(g),

where S(g) is the Schwarzian derivative of g :

S(g) =

(
g ′′

g ′

)′
− 1

2

(
g ′′

g ′

)2

.
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Transformation rule for the curvatures
2/3

Proof

First, by use of the transformation rule for the derivatives of
curves (Lemma), we have

γ̃(n) =
n−2∑
l=0

Pn,l γ̃
(l) − (g ′)nκn−1γ̃

−
n−2∑
k=1

(g ′)n−kκn−k−1

(
γ̃(k) −

k−1∑
l=0

Pk,l γ̃
(l)

)
.

Hence we have the first equation in Theorem1 and

κ̃1 = (g ′)2κ1 − Pn,n−2.

Next, compute Pn,n−2.
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Transformation rule for the curvatures
3/3

Proof (continued)

From (R2) and Example 2 (Pk+1,k), we have

Pk+1,k−1 − Pk,k−2 =
∂Pk,k−1

∂h
h′ − (α+ k)Pk,k−1h

= k

(
α+

k − 1

2

)
h′

− (α+ k)k

(
α+

k − 1

2

)
h2.

Moreover, from Example 3 (P2,0), we have

Pn,n−2 = −n(n2 − 1)

12
S(g).
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Equivariant projections into M2
1/2

n = 3, 4, 5, . . .
γ ∈ Mn

κ1: the first curvature of γ
γ̄ ∈ M2: an equicentroaffine plane curve s.t.

the equicentroaffine curvature =
6

n(n2 − 1)
κ1

Consider the action of Diff (R).

Theorem2

The correspondence from γ to γ̄ defines an equivariant map
from Mn into M2 :

γ · g = γ̄ · g (g ∈ Diff (R)).

17 / 27
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Equivariant projections into M2
1/2

Proof

By Theorem1, the transformation rule for the first curvature is
given by

κ̃1 = (g ′)2κ1 +
n(n2 − 1)

12
S(g).

κ̄1, ¯̃κ1: the equicentroaffine curvature of γ̄, γ · g
Then

n(n2 − 1)

6
¯̃κ1 = (g ′)2 · n(n

2 − 1)

6
κ̄1 +

n(n2 − 1)

12
S(g)

m

¯̃κ1 = (g ′)2κ̄1 +
1

2
S(g)

This is the transformation rule for the equicentroaffine
curvature when n = 2.
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Example
Equicentroaffine curves with vanishing higher curvatures

Example 4 (Equicentroaffine curves with vanishing higher
curvatures)

n = 3, 4, 5, . . .
ρ : R → R2 \ {0}: a curve s.t. ρ(n−2) is an equicentroaffine

plane curve with the equicentroaffine
curvature κ

Define an equicentroaffine curve γ : R → Rn \ {0} by

γ(s) =

(
1, s,

1

2!
s2, . . . ,

1

(n − 3)!
sn−3, ρ

)
(s ∈ R).

=⇒ κ1 = κ, κ2 = κ3 = · · · = κn−1 = 0

=⇒ The projection into M2 is given by

γ̄(s) = ρ(n−2)

(√
6

n(n2 − 1)
s

)
(s ∈ R).
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Equivariant projections into M3
1/3

n = 4, 5, 6, . . .
γ ∈ Mn

κ1, κ2: the first and the second curvature of γ
γ̄ ∈ M3: an equicentroaffine space curve s.t.

the first curvature =
24

n(n2 − 1)
κ1

the second curvature =
24

n(n2 − 1)(n − 2)
κ2

Consider the action of Diff (R).

Theorem3

The correspondence from γ to γ̄ defines an equivariant map
from Mn to M3.
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Equivariant projections into M3
2/3

Proof

By Theorem1, the transformation rule for the first curvature is
given by

κ̃1 = (g ′)2κ1 +
n(n2 − 1)

12
S(g).

The transformation rule for the second curvature is given by

κ̃2 = (g ′)3κ2 − Pn,n−3 − (g ′)2κ1Pn−2,n−3.

From Example 2 (Pk+1,k), we have

Pn−2,n−3 = −(n − 2)h.

21 / 27
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Equivariant projections into M3
2/3

Proof (continued)

From (R2), we have

Pk+1,k−2 =
∂Pk,k−2

∂h
h′+

∂Pk,k−2

∂h′
h′′+Pk,k−3− (α+k)Pk,k−2h.

Hence we have

Pn,n−3 = P3,0

+
n−1∑
k=3

(
∂Pk,k−2

∂h
h′ +

∂Pk,k−2

∂h′
h′′ − (α+ k)Pk,k−2h

)
.

Further computation shows that

Pn,n−3 = −n(n2 − 1)(n − 2)

24
(S(g))′.
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Example
Closed equicentroaffine curves with constant curvatures when n is even

Example 5 (Closed equicentroaffine curves with constant
curvatures when n is even)

λ1, λ2, . . . , λm ∈ N, λi 6= λj (i 6= j)
Define an equicentroaffine curve γ : R → R2m \ {0} by

γ(s) = (cosλ1s, sinλ1s, . . . , cosλms, µ sinλms) (s ∈ R),

where
1

µ
=

m∏
i=1

λi

∏
i<j

(λ2
i − λ2

j )
2.

Then

t2m + κ1t
2m−2 + · · ·+ κ2m−1 = (t2 + λ2

1) · · · (t2 + λ2
m)

(κ2 = κ4 = · · · = κ2m−2 = 0).
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Example
Closed equicentroaffine curves with constant curvatures when n is even
(continued)

Example 5 (continued)

l ∈ N
λ1 := l , λ2 := 3l , . . . , λm := (2m − 1)l

⇓
6

2m{(2m)2 − 1}
κ1 = l2

Hence the projection into M2 is given by

γ̄(s) =

(
cos ls,

1

l
sin ls

)
(s ∈ R).

Moreover, the projection into M3 is given by

γ̄(s) =

(
cos 2ls, sin 2ls,

1

8l3

)
(s ∈ R).
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Example
Closed equicentroaffine curves with constant curvatures when n is odd

Example 6 (Closed equicentroaffine curves with constant
curvatures when n is odd)

λ1, λ2, . . . , λm ∈ N, λi 6= λj (i 6= j)
Define an equicentroaffine curve γ : R → R2m+1 \ {0} by

γ(s) = (cosλ1s, sinλ1s, . . . , cosλms, sinλms, µ) (s ∈ R),

where
1

µ
=

m∏
i=1

λ3
i

∏
i<j

(λ2
i − λ2

j )
2.

Then

t2m+1 + κ1t
2m−1 + · · ·+ κ2m = t(t2 + λ2

1) · · · (t2 + λ2
m)

(κ2 = κ4 = · · · = κ2m = 0).
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Example
Closed equicentroaffine curves with constant curvatures when n is odd
(continued)

Example 6 (continued)

l ∈ N
λ1 := 2l , λ2 := 4l , . . . , λm := 2ml

⇓
6

(2m + 1){(2m + 1)2 − 1}
κ1 = l2

Hence the projection into M2 is given by

γ̄(s) =

(
cos ls,

1

l
sin ls

)
(s ∈ R).

Moreover, the projection into M3 is given by

γ̄(s) =

(
cos ls, sin ls,

1

l3

)
(s ∈ R).
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Thank you for your attention.
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