Equivariant projections between spaces of equicentroaffine curves

> Atsushi Fujioka

Contents

Introduction

Equicentroaffine curves

Action of the diffeomorphism group

Equivariant projections

Periodic examples

Equivariant projections between spaces of equicentroaffine curves

Atsushi Fujioka

Faculty of Engineering Science Kansai University

December 3, 2023 Ritsumeikan University Poisson geometry and related topics 23 Joint work with T. Kurose and H. Moriyoshi

Contents

Equivariant projections between spaces of equicentroaffine curves

> Atsushi Fujioka

Contents

Introduction

Equicentroaffine curves

Action of the diffeomorphism group

Equivariant projections

Periodic examples

Introduction

2 Equicentroaffine curves

3 Action of the diffeomorphism group

4 Equivariant projections

5 Periodic examples

Backgrounds and main results

Equivariant projections between spaces of equicentroaffine curves

> Atsushi Fujioka

Contents

Introduction

Equicentroaffine curves

Action of the diffeomorphism group

Equivariant projections

Periodic examples

- \circ The space of closed equicentroaffine plane curves
 - \exists Action of the diffeomorphism group of the circle
 - Considered as an action of the Virasoro-Bott group.
 - The space is considered as the coadjoint orbit of the dual of the Virasoro algebra.
 - Studied from the viewpoint of symplectic geometry.
- Today: Consider the space of equicentroaffine curves in general vector space.
 - \exists Action of the diffeomorphism group of the line
 - Define projections into the space of plane or space curves.
 - The above projections are equivariant w.r.t. the above action.

Definition of the equicentroaffine curve

Equivariant projections between spaces of equicentroaffine curves

> Atsushi Fujioka

Contents

Introduction

Equicentroaffine curves

Action of the diffeomorphism group

Equivariant projections

Periodic examples

Definition I: an interval $n = 2, 3, 4, \ldots$ $\gamma: I \to \mathbf{R}^n \setminus \{0\}$: an equicentroaffine curve t def. $\det \left(\begin{array}{c} \gamma \\ \gamma' \\ \vdots \\ \gamma(n-1) \end{array}\right) = 1$

 $s \in I$ is called an equicentroaffine arclength parameter.

The fundamental theorem of equicentroaffine curves

Equivariant projections between spaces of equicentroaffine curves

> Atsushi Fujioka

Contents

Introduction

Equicentroaffine curves

Action of the diffeomorphism group

Equivariant projections

Periodic examples

$$\begin{split} \gamma &: I \to \mathbf{R}^n \setminus \{0\}: \text{ an equicentroaffine curve} \\ \Longrightarrow {}^{\exists}\kappa_1, \kappa_2, \dots, \kappa_{n-1} : I \to \mathbf{R} \text{ s.t.} \\ \gamma^{(n)} + \kappa_1 \gamma^{(n-2)} + \kappa_2 \gamma^{(n-3)} + \dots + \kappa_{n-1} \gamma = 0 \end{split}$$

For i = 1, 2, ..., n - 1, we call κ_i the *i*-th curvature.

The fundamental theorem of equicentroaffine curves

 $\kappa_1, \kappa_2, \ldots, \kappa_{n-1} : I \to \mathbf{R}$ $\implies {}^{\exists}\gamma : I \to \mathbf{R}^n \setminus \{0\}: \text{ an equicentroaffine curve with the } i\text{-th curvature } \kappa_i$ Unique up to equiaffine transformation fixing the origin.

Equiaffine transformation fixing the origin:

- Multiplication by the element of $SL(n, \mathbf{R})$
- Called equicentroaffine transformation.

Example Equicentroaffine plane curves with constant curvature

Equivariant projections between spaces of equicentroaffine curves

> Atsushi Fujioka

Contents

Introduction

Equicentroaffine curves

Action of the diffeomorphism group

Equivariant projections

Periodic examples Consider equicentroaffine plane curves. We call the first curvature the equicentroaffine curvature.

Example 1 (Equicentroaffine plane curves with constant curvature)

 $\gamma: I \to \mathbf{R}^2 \setminus \{0\}$: an equicentroaffine plane curve κ : the equicentroaffine curvature

 $\circ \kappa = \mathbf{0} \iff \gamma$ is a part of a line:

 $\gamma(s) = (a + bs, c + ds) \quad (a, b, c, d \in \mathbf{R}, ad - bc = 1)$

 $\circ \ \kappa:$ a positive constant $\Longleftrightarrow \gamma$ is a part of an ellipse:

$$\gamma(s) = \left(a\cos\frac{s}{ab}, b\sin\frac{s}{ab}\right) \quad \left(a, b > 0, \ \kappa = \frac{1}{a^2b^2}\right)$$

 $\circ \ \kappa:$ a negative constant $\Longleftrightarrow \gamma$ is a part of a hyperbola.

Definition of the action of the diffeomorphism group of the line

Equivariant projections between spaces of equicentroaffine curves

> Atsushi Fujioka

Contents

Introduction

Equicentroaffine curves

Action of the diffeomorphism group

Equivariant projections

Periodic examples

- \circ M_n : the set of all equicentroaffine curves from **R** into **R**ⁿ \ {0}
- $\mathcal{M}_n/SL(n, \mathbf{R})$: the set of all congruence classes of equicentroaffine curves from \mathbf{R} into $\mathbf{R}^n \setminus \{0\}$
- \circ Diff (R): the group of all orientation preserving diffeomorphisms of R

$$\gamma \in \mathcal{M}_n, \ g \in \mathsf{Diff}(\mathsf{R})$$

 $\widetilde{\gamma}(s) := (\gamma \cdot g)(s) := (g'(s))^{\frac{1-n}{2}} (\gamma \circ g)(s)$

Proposition

 $\gamma \cdot g$ defines an action of Diff(**R**) on \mathcal{M}_n , $\mathcal{M}_n/SL(n, \mathbf{R})$.

Proof

0 1

For
$$k = 0, 1, 2, ..., n - 1,$$

 $\tilde{\gamma}^{(k)} = (g')^{\frac{1-n}{2}+k} (\gamma^{(k)} \circ g) + \cdots$

 $(s \in \mathbf{R})$

٠

Notations

Equivariant projections between spaces of equicentroaffine curves

> Atsushi Fujioka

Contents

Introductior

Equicentroaffine curves

Action of the diffeomorphism group

Equivariant projections

Periodic examples • Consider the action of Diff (**R**) on \mathcal{M}_n : $\mathcal{M}_n \ni \gamma \mapsto \tilde{\gamma} = \gamma \cdot g \in \mathcal{M}_n \quad (g \in \text{Diff}(\mathbf{R}))$

 $\,\circ\,$ Derive the transformation rule for the curvatures.

$$\circ \alpha := \frac{1-n}{2}$$

1

• Write
$$\gamma^{(k)} \circ g$$
 simply as $\gamma^{(k)}$.

$$\circ h := \frac{g''}{g'}$$

. . . .

• Consider h, h', h'', \ldots as independent variables. • Define the degree of $h^{(k)}$ as (k + 1).

 \circ Define the weighted degree of a polynomial P of h, h', h'',

 \circ Denote the weighted degree by deg_w P.

Transformation rule for the derivatives of curves $\frac{1}{3}$

Equivariant projections between spaces of equicentroaffine curves

> Atsushi Fujioka

Contents

Introduction

Equicentroaffine curves

Action of the diffeomorphism group

Equivariant projections

Periodic examples

Lemma

$$\circ$$
 For $k=1,\,2,\,\ldots,\,n,$
 $ilde{\gamma}^{(k)}=\sum_{l=0}^{k-1}P_{k,l} ilde{\gamma}^{(l)}+(g')^{lpha+k}\gamma^{(k)}$

where $P_{k,l}$'s are homogeneous polynomials of h, h', h'', \ldots s.t.

$$\deg_w P_{k,l} = k - l.$$

 \circ The following three recurrence relations hold:

• For
$$k = 1, 2, ..., n - 1$$
,

$$P_{k+1,0} = \sum_{m=0}^{k-1} \frac{\partial P_{k,0}}{\partial h^{(m)}} h^{(m+1)} - (\alpha + k) P_{k,0} h.$$
(R1)

Transformation rule for the derivatives of curves $^{\mbox{\tiny 2/3}}$

Equivariant projections between spaces of equicentroaffine curves

> Atsushi Fujioka

Contents

Introduction

Equicentroaffine curves

Action of the diffeomorphism group

Equivariant projections

Periodic examples

Lemma (continued) • For k = 2, 3, ..., n - 1, l = 1, 2, ..., k - 1, $P_{k+1,l} = \sum_{m=0}^{k-l-1} \frac{\partial P_{k,l}}{\partial h^{(m)}} h^{(m+1)} + P_{k,l-1} - (\alpha + k) P_{k,l} h.$

• For
$$k = 1, 2, ..., n - 1$$
,

$$P_{k+1,k} = P_{k,k-1} + (\alpha + k)h.$$
 (R3)

Proof

First, differentiating the equation

$$\tilde{\gamma} = (\mathbf{g}')^{\alpha} \gamma,$$

we have

$$\tilde{\gamma}' = \alpha h \tilde{\gamma} + (g')^{\alpha + 1} \gamma'.$$

(R2)

Transformation rule for the derivatives of curves $\frac{3}{3}$

Equivariant projections between spaces of equicentroaffine curves

> Atsushi Fujioka

Contents

Introductio

Equicentroaffine curves

Action of the diffeomorphism group

Equivariant projections

Periodic examples

Proof (continued)

Hence we have

$$P_{1,0} = \alpha h.$$

 $\tilde{\gamma}'$ is expressed as above. $P_{1,0}$ is a homogeneous polynomial s.t. $\deg_w P_{1,0}=1.$

Next, for $k = 1, 2, \ldots, n-1$, assume that

- $\tilde{\gamma}^{(k)}$'s are expressed as above.
- $P_{k,l}$'s are homogeneous polynomials s.t. $\deg_w P_{k,l} = k l$.
- Compute $\tilde{\gamma}^{(k+1)}$ using that $P_{k,l}$ is a polynomial of h, h', ..., $h^{(k-l-1)}$.
- Recurrence relations are derived.
- \circ Compute deg_w $P_{k+1,l}$.

Example $P_{k+1,k}$

Equivariant projections between spaces of equicentroaffine curves

> Atsushi Fujioka

Contents

Introduction

Equicentroaffine curves

Action of the diffeomorphism group

Equivariant projections

Periodic examples

Example 2 $(P_{k+1,k})$

$$k = 1, 2, \dots, n-1$$

From $P_{1,0} = \alpha h$ and (R3):
 $P_{k+1,k} = P_{k,k-1} + (\alpha + k)h$

we have

$$\mathcal{P}_{k+1,k} = \mathcal{P}_{1,0} + \sum_{l=1}^{k} (\alpha + l)h$$

= $(k+1)\left(\alpha + \frac{k}{2}\right)h.$

Since $\alpha = \frac{1-n}{2}$, we have

 $P_{n,n-1} = 0.$ (Assume the weighted degree is 1.)

Example *P*_{2,0}, *P*_{3,0}

Equivariant projections between spaces of equicentroaffine curves

> Atsushi Fujioka

Contents

Introduction

Equicentroaffine curves

Action of the diffeomorphism group

Equivariant projections

Periodic examples

Example 3 $(P_{2,0}, P_{3,0})$

From
$$P_{1,0} = \alpha h$$
 and (R1):

$$P_{k+1,0} = \sum_{m=0}^{k-1} \frac{\partial P_{k,0}}{\partial h^{(m)}} h^{(m+1)} - (\alpha + k) P_{k,0} h,$$

we have

$$egin{aligned} P_{2,0} &= rac{\partial P_{1,0}}{\partial h}h' - (lpha+1)P_{1,0}h \ &= lpha h' - lpha (lpha+1)h^2. \end{aligned}$$

Moreover, if $n \ge 3$, we have $P_{3,0} = \alpha h'' - \alpha(3\alpha + 4)hh' + \alpha(\alpha + 1)(\alpha + 2)h^3.$

Transformation rule for the curvatures $\frac{1}{3}$

Equivariant projections between spaces of equicentroaffine curves

Theorem 1

Atsushi Fujioka

Contents

Introductior

Equicentroaffine curves

Action of the diffeomorphism group

Equivariant projections

Periodic examples

$\gamma \in \mathcal{M}_n$ κ_i : the *i*-th curvature of γ ($i = 1, 2, \ldots, n-1$) $\tilde{\gamma} = \gamma \cdot g \ (g \in \text{Diff}(\mathbf{R}))$ $\tilde{\kappa}_i$: the *i*-th curvature of $\tilde{\gamma}$ \implies For $l = 0, 1, 2, \ldots, n-3$. $\tilde{\kappa}_{n-l-1} = (g')^{n-l}\kappa_{n-l-1} - P_{n,l} - \sum_{j=1}^{n-1} (g')^{n-k}\kappa_{n-k-1}P_{k,l}.$ k = l + 1 $\tilde{\kappa}_1 = (g')^2 \kappa_1 + \frac{n(n^2 - 1)}{12} S(g),$

where S(g) is the Schwarzian derivative of g: $S(g) = \left(\frac{g''}{g'}\right)' - \frac{1}{2}\left(\frac{g''}{g'}\right)^2.$

Transformation rule for the curvatures $_{\mbox{\tiny 2/3}}$

Equivariant projections between spaces of equicentroaffine curves

Fujioka

Contents

Introduction

Equicentroaffine curves

Action of the diffeomorphism group

Equivariant projections

Periodic examples

Proof

 $\tilde{\gamma}^{(I)}$

First, by use of the transformation rule for the derivatives of curves (Lemma), we have

Hence we have the first equation in Theorem 1 and

$$\tilde{\kappa}_1 = (g')^2 \kappa_1 - P_{n,n-2}$$

Next, compute $P_{n,n-2}$.

Transformation rule for the curvatures 3/3

Equivariant projections between spaces of equicentroaffine curves

> Atsushi Fujioka

Contents

Introduction

Equicentroaffine curves

Action of the diffeomorphism group

Equivariant projections

Periodic examples

Proof (continued)

From (R2) and Example 2 $(P_{k+1,k})$, we have

$$P_{k+1,k-1} - P_{k,k-2} = \frac{\partial P_{k,k-1}}{\partial h} h' - (\alpha + k) P_{k,k-1} h$$
$$= k \left(\alpha + \frac{k-1}{2} \right) h'$$
$$- (\alpha + k) k \left(\alpha + \frac{k-1}{2} \right) h^2.$$

Moreover, from Example 3 $(P_{2,0})$, we have $P_{n,n-2} = -\frac{n(n^2-1)}{12}S(g).$

Equivariant projections into \mathcal{M}_2

Equivariant projections between spaces of equicentroaffine curves

> Atsushi Fujioka

Contents

Introduction

Equicentroaffine curves

Action of the diffeomorphism group

Equivariant projections

Periodic examples
$$\begin{split} n &= 3, 4, 5, \dots \\ \gamma &\in \mathcal{M}_n \\ \bar{\gamma} &\in \mathcal{M}_2: \text{ an equicentroaffine plane curve s.t.} \\ & \text{ the equicentroaffine curvature} = \frac{6}{n(n^2 - 1)} \kappa_1 \end{split}$$

Consider the action of $Diff(\mathbf{R})$.

Theorem 2

The correspondence from γ to $\bar{\gamma}$ defines an equivariant map from \mathcal{M}_n into \mathcal{M}_2 :

$$\overline{\gamma \cdot g} = \overline{\gamma} \cdot g \quad (g \in \operatorname{Diff}(\mathsf{R})).$$

Equivariant projections into \mathcal{M}_2 $_{1/2}$

Equivariant projections between spaces of equicentroaffine curves

> Atsushi Fujioka

Contents

Introduction

Equicentroaffine curves

Action of the diffeomorphism group

Equivariant projections

Periodic examples

Proof By Theorem 1, the transformation rule for the first curvature is given by

$$\tilde{\kappa}_1 = (g')^2 \kappa_1 + \frac{n(n^2 - 1)}{12} S(g)$$

 $\bar\kappa_1,\ \bar{\tilde\kappa}_1$: the equicentroaffine curvature of $\bar\gamma,\ \overline{\gamma\cdot g}$ Then

$$\frac{n(n^2-1)}{6}\bar{\tilde{\kappa}}_1 = (g')^2 \cdot \frac{n(n^2-1)}{6}\bar{\kappa}_1 + \frac{n(n^2-1)}{12}S(g)$$

$$\hat{\bar{\kappa}}_1 = (g')^2\bar{\kappa}_1 + \frac{1}{2}S(g)$$

This is the transformation rule for the equicentroaffine curvature when n = 2.

Example Equicentroaffine curves with vanishing higher curvatures

Equivariant projections between spaces of equicentroaffine curves

> Atsushi Fujioka

Contents

Introduction

Equicentroaffine curves

Action of the diffeomorphism group

Equivariant projections

Periodic examples

Example 4 (Equicentroaffine curves with vanishing higher curvatures)

 $\begin{array}{l} n=3,\,4,\,5,\,\ldots\\ \rho:\mathbf{R}\to\mathbf{R}^2\setminus\{0\}\text{: a curve s.t. }\rho^{(n-2)}\text{ is an equicentroaffine}\\ \text{ plane curve with the equicentroaffine}\\ \text{ curvature }\kappa\end{array}$

Define an equicentroaffine curve $\gamma: \mathbf{R} \to \mathbf{R}^n \setminus \{\mathbf{0}\}$ by

$$\gamma(s)=\left(1,s,rac{1}{2!}s^2,\ldots,rac{1}{(n-3)!}s^{n-3},
ho
ight)\quad(s\in{\sf R}).$$

$$\implies \kappa_1 = \kappa, \ \kappa_2 = \kappa_3 = \cdots = \kappa_{n-1} = 0$$

 \implies The projection into \mathcal{M}_2 is given by

$$ar\gamma(s)=
ho^{(n-2)}\left(\sqrt{rac{6}{n(n^2-1)}}s
ight)\quad(s\in{\sf R}).$$

Equivariant projections into \mathcal{M}_3 1/3

Equivariant projections between spaces of equicentroaffine curves

-

Fuijoka

Equicentroaffine

Equivariant projections

$$n = 4, 5, 6, \dots$$

$$\gamma \in \mathcal{M}_n$$

$$\kappa_1, \kappa_2: \text{ the first and the second curvature of } \gamma$$

$$\bar{\gamma} \in \mathcal{M}_3: \text{ an equicentroaffine space curve s.t.}$$

$$\text{ the first curvature} = \frac{24}{n(n^2 - 1)} \kappa_1$$

$$\text{ the second curvature} = \frac{24}{n(n^2 - 1)(n - 2)} \kappa_2$$

Consider the action of $Diff(\mathbf{R})$.

Theorem 3

The correspondence from γ to $\bar{\gamma}$ defines an equivariant map from \mathcal{M}_n to \mathcal{M}_3 .

Equivariant projections into \mathcal{M}_3

Equivariant projections between spaces of equicentroaffine curves

Fuijoka

Proof

By Theorem 1, the transformation rule for the first curvature is given by

$$\tilde{\kappa}_1 = (g')^2 \kappa_1 + \frac{n(n^2 - 1)}{12} S(g).$$

Introduction

Equicentroaffine curves

Action of the diffeomorphism group

Equivariant projections

Periodic examples The transformation rule for the second curvature is given by $\tilde{\kappa}_2 = (g')^3 \kappa_2 - P_{n,n-3} - (g')^2 \kappa_1 P_{n-2,n-3}.$

From Example 2 $(P_{k+1,k})$, we have

$$P_{n-2,n-3} = -(n-2)h.$$

Equivariant projections into \mathcal{M}_3 $_{2/3}$

Equivariant projections between spaces of equicentroaffine curves

> Atsushi Fujioka

Contents

Introduction

Equicentroaffine curves

Action of the diffeomorphism group

Equivariant projections

Periodic examples

Proof (continued)

From (R2), we have

$$P_{k+1,k-2} = \frac{\partial P_{k,k-2}}{\partial h}h' + \frac{\partial P_{k,k-2}}{\partial h'}h'' + P_{k,k-3} - (\alpha+k)P_{k,k-2}h.$$

Hence we have

$$P_{n,n-3} = P_{3,0}$$

$$+\sum_{k=3}^{n-1}\left(\frac{\partial P_{k,k-2}}{\partial h}h'+\frac{\partial P_{k,k-2}}{\partial h'}h''-(\alpha+k)P_{k,k-2}h\right).$$

Further computation shows that

$$P_{n,n-3} = -\frac{n(n^2-1)(n-2)}{24}(S(g))'.$$

Closed equicentroaffine curves with constant curvatures when n is even

Equivariant projections between spaces of equicentroaffine curves

> Atsushi Fujioka

Contents

Introduction

Equicentroaffine curves

Action of the diffeomorphism group

Equivariant projections

Periodic examples Example 5 (Closed equicentroaffine curves with constant curvatures when n is even)

$$\begin{split} \lambda_1, \, \lambda_2, \, \dots, \lambda_m &\in \mathbf{N}, \, \lambda_i \neq \lambda_j \, (i \neq j) \\ \text{Define an equicentroaffine curve } \gamma : \mathbf{R} \to \mathbf{R}^{2m} \setminus \{0\} \text{ by} \\ \gamma(s) &= (\cos \lambda_1 s, \, \sin \lambda_1 s, \, \dots, \, \cos \lambda_m s, \, \mu \sin \lambda_m s) \quad (s \in \mathbf{R}), \end{split}$$

where

$$\frac{1}{u} = \prod_{i=1}^m \lambda_i \prod_{i < j} (\lambda_i^2 - \lambda_j^2)^2.$$

Then

$$t^{2m} + \kappa_1 t^{2m-2} + \dots + \kappa_{2m-1} = (t^2 + \lambda_1^2) \cdots (t^2 + \lambda_m^2)$$

$$(\kappa_2 = \kappa_4 = \cdots = \kappa_{2m-2} = 0).$$

Closed equicentroaffine curves with constant curvatures when n is even (continued)

Equivariant projections between spaces of equicentroaffine curves

> Atsushi Fujioka

Contents

Introduction

Equicentroaffine curves

Action of the diffeomorphism group

Equivariant projections

Periodic examples

Example 5 (continued)

 $l \in \mathbf{N}$

$$\lambda_1 := l, \quad \lambda_2 := 3l, \quad \dots, \quad \lambda_m := (2m-1)l$$

$$\downarrow$$

$$\frac{6}{2m\{(2m)^2 - 1\}}\kappa_1 = l^2$$

Hence the projection into \mathcal{M}_2 is given by

$$ar{\gamma}(s) = \left(\cos {\it ls}, rac{1}{{\it l}} \sin {\it ls}
ight) \quad (s \in {f R}).$$

Moreover, the projection into \mathcal{M}_3 is given by

$$ar{\gamma}(s) = \left(\cos 2ls, \sin 2ls, rac{1}{8l^3}
ight) \quad (s \in \mathbf{R}).$$

Closed equicentroaffine curves with constant curvatures when n is odd

Equivariant projections between spaces of equicentroaffine curves

> Atsushi Fujioka

Contents

Introduction

Equicentroaffine curves

Action of the diffeomorphism group

Equivariant projections

Periodic examples Example 6 (Closed equicentroaffine curves with constant curvatures when n is odd)

$$\begin{split} \lambda_1, \, \lambda_2, \, \dots, \, \lambda_m &\in \mathbf{N}, \; \lambda_i \neq \lambda_j \; (i \neq j) \\ \text{Define an equicentroaffine curve } \gamma : \mathbf{R} \to \mathbf{R}^{2m+1} \setminus \{0\} \; \text{by} \\ \gamma(s) &= (\cos \lambda_1 s, \, \sin \lambda_1 s, \, \dots, \, \cos \lambda_m s, \, \sin \lambda_m s, \, \mu) \quad (s \in \mathbf{R}), \end{split}$$

where

$$\frac{1}{u} = \prod_{i=1}^m \lambda_i^3 \prod_{i < j} (\lambda_i^2 - \lambda_j^2)^2.$$

Then

$$t^{2m+1} + \kappa_1 t^{2m-1} + \dots + \kappa_{2m} = t(t^2 + \lambda_1^2) \cdots (t^2 + \lambda_m^2)$$

$$(\kappa_2 = \kappa_4 = \cdots = \kappa_{2m} = 0).$$

Example 6 (continued)

Closed equicentroaffine curves with constant curvatures when n is odd (continued)

Equivariant projections between spaces of equicentroaffine curves

> Atsushi Fujioka

Contents

Introduction

Equicentroaffine curves

Action of the diffeomorphism group

Equivariant projections

Periodic examples

$$l \in \mathbf{N}$$

$$\lambda_1 := 2l, \quad \lambda_2 := 4l, \quad \dots, \quad \lambda_m := 2ml$$

$$\downarrow$$

$$\frac{6}{(2m+1)\{(2m+1)^2 - 1\}}\kappa_1 = l^2$$
Hence the projection into \mathcal{M}_2 is given by
$$\bar{\gamma}(s) = \left(\cos ls, \frac{1}{l}\sin ls\right) \quad (s \in \mathbf{R}).$$
Moreover, the projection into \mathcal{M}_3 is given by

$$ar{\gamma}(s) = \left(\cos{ls}, \sin{ls}, rac{1}{l^3}
ight) \quad (s \in \mathbf{R}).$$

Equivariant projections between spaces of equicentroaffine curves

> Atsushi Fujioka

Contents

Introduction

Equicentroaffine curves

Action of the diffeomorphism group

Equivariant projections

Periodic examples

Thank you for your attention.