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A TEST OF THE EFFICIENCY OF A GIVEN PORTFOLIO 

BY MICHAEL R. GIBBONS, STEPHENA. ROSS, AND JAY SHANKEN' 

A test for the ex ante efficiency of a given portfolio of assets is analyzed. The relevant 
statistic has a tractable small sample distribution. Its power function is derived and used to 
study the sensitivity of the test to the portfolio choice and to the number of assets used to 
determine the ex post mean-variance efficient frontier. 

Several intuitive interpretations of the test are provided, including a simple mean-stan- 
dard deviation geometric explanation. A univariate test, equivalent to our multivariate-based 
method, is derived, and it suggests some useful diagnostic tools which may explain why the 
null hypothesis is rejected. 

Empirical examples suggest that the multivariate approach can lead to more appropriate 
conclusions than those based on traditional inference which relies on a set of dependent 
univariate statistics. 
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1. INTRODUCTION 

The modern theory of finance has always been rooted in empirical analysis. 
The mean-variance capital asset pricing model (CAPM) developed by Sharpe 
(1964) and Lintner (1965) has been studied and tested in more papers than can 
possibly be attributed here. This is only natural; the quality and quantity of 
financial data, especially stock market price series, are the envy of other fields in 
economics. 

The theory is generally expressed in terms of its first-order conditions on the 
risk premium. Expected returns on assets are linearly related to the regression 
coefficients, or betas, of the asset returns on some index of market returns. In 
other words, risk premiums in equilibrium depend on betas. The standard tests of 
the CAPM are based on regression techniques with various adaptations. For 
some notable examples, see Black, Jensen, and Scholes (1972) and Fama and 
MacBeth (1973). Usually, cross-sectional regressions are run of asset returns on 
estimated beta coefficients, and estimates of the slope are reported. Often the 
data are grouped to reduce measurement errors, and sometimes the estimation is 
done at a sequence of time points to create a time series of estimates from which 
the precision of the overall average can be determined. 

Roll (1977, 1978), among others, has raised serious doubts whether these 
procedures are, in fact, tests of the CAPM. Insofar as proxies are used for the 
market portfolio, the Sharpe-Lintner theory is not being tested. Furthermore, as 
Roll emphasizes, the regression tests are probably of quite low power, and 
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anonymous referees as well as the seminar participants at Duke University, Harvard University, 
Indiana University, Stanford University, University of California at San Diego, University of Illinois 
at Urbana, and Yale University for helpful comments. We appreciate the research assistance of Ajay 
Dravid, Jung-Jin Lee, and Tong-sheng Sun. Financial support was provided in part by the National 
Science Foundation and the Stanford Program in Finance. This paper supersedes an earlier paper 
with the same title by Stephen Ross. 
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grouping may lower the power further. These objections leave the empirical 
testing of the CAPM in an odd state of limbo. If the proxy is not a valid 
surrogate, then as tests of the CAPM the existing empirical investigations are 
somewhat beside the point.2 On the other hand, if the proxy is valid, then the 
small sample distribution and power of the tests are unknown. 

This is unfortunate and indicative of a missed opportunity. The CAPM is one 
of many financial theories which suggest quite specific hypotheses couched in 
terms of observables. The rich data available for testing these hypotheses are an 
incentive to develop tests whch are explicitly directed at them. In this paper we 
develop a canonical example of such a test using multivariate statistical methods. 
The problem we consider is the central one addressed in tests of the CAPM. 
Since the theory is equivalent to the assertion that the market portfolio is 
mean-variance efficient, we wish to test whether any particular portfolio is 
ex ante mean-variance efficient. 

While the paper is organized into seven sections, it also can be viewed as 
consisting of three parts. The first part (Sections 2 through 4) considers a 
multivariate statistic for testing mean-variance efficiency and examines the prop- 
erties of such a test. The second part (Sections 5 and 6) studies the relation 
between this multivariate test and alternative approaches based on a set of 
univariate statistics. The third part (Sections 7 and 8) concludes the paper by 
extending the framework to related hypotheses and providing suggestions for 
future research. A more detailed summary of each section follows. 

In Section 2 we recall a necessary condition for the efficiency of some portfolio. 
We use this implication as a null hypothesis that can be tested using a statistic 
which has a tractable finite sample distribution under both the null and alternate 
hypotheses. In addition, we relate t h s  statistic to three alternative approaches 
which are based on asymptotic approximations. In the thrd  section the multi- 
variate test is given a geometric interpretation in the mean-standard deviation 
space of portfolio theory. The method and geometry are then applied to a data 
set from one of the classic empirical papers in modern finance; we reaffirm and 
complement the findings of Black, Jensen, and Scholes (1972). The fourth section 
turns to issues relating to the power of the test. Here we consider the sensitivity 
of the test to the choice of the portfolio which is examined for efficiency and the 
effect of the number of assets used to determine the ex post efficient frontier. A 
new data base is analyzed in this section, and we demonstrate that one's 
conclusions regarding the efficiency of a given index can be altered by the type of 
assets used to construct the ex post frontier. 

The fifth section attempts to contrast actual empirical results when the multi- 
variate method is used versus informal inference based on a set of dependent 
univariate statistics. Here we provide examples where the multivariate test rejects 
even though none of the univariate statistics seem to be significant. We also have 

Recent work by Kandel and Stambaugh (1987) and Shanken (1987b) do consider tests of the 
CAPM conditional on an assumption about the correlation between the proxy and the true market 
portfolio. 
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the reverse situation where there are a seemingly large number of "significant" 
univariate statistics; yet, the multivariate test fails to reject at the traditional 
levels of significance. In this section we also introduce another data set which 
allows us to re-examine the size-effect anomaly. Section 6 develops an alternative 
interpretation of the multivariate test. The statistic is equivalent to the usual 
calculation for a t statistic on an intercept term in a univariate simple regression 
model, with the ex post efficient portfolio used as the dependent variable and the 
portfolio whose ex ante efficiency is under examination as the explanatory 
variable. This section also develops some useful diagnostics for explaining why 
the null hypothesis may not be consistent with the data. Most of the empirical 
work in this section focuses on the size effect only in the month of January. 

Section 7 extends the analysis to a case where one wishes to investigate the 
potential efficiency of some linear combination of a set of portfolios, where the 
weights in the combination are not specified. This turns out to be a minor 
adaptation of the work in Section 2. 

2. TEST STATISTIC FOR JUDGING THE EFFICIENCY OF A GIVEN PORTFOLIO 

We assume throughout that there is a given riskless rate of interest, Rf,,for 
each time period. Excess returns are computed by subtracting Rf,from the total 
rates of return. Consider the following multivariate linear regression: 

where F,, = the excess return on asset i in period t; FP,= the excess return on the 
portfolio whose efficiency is being tested; and El,= the disturbance term for asset 
i in period t .  The disturbances are assumed to be jointly normally distributed 
each period with mean zero and nonsingular covariance matrix 2,conditional on 
the excess returns for portfolio p. We also assume independence of the distur- 
bances over time. In order that 2 be nonsingular, 5, and the N left-hand side 
assets must be linearly independent. 

If a particular portfolio is mean-variance efficient (i.e., it minimizes variance 
for a given level of expected return), then the following first-order condition must 
be satisfied for the given N assets: 

Thus, combining the first-order condition in (2) with the distributional assump- 
tion given by (1) yields the following parameter restriction, which is stated in the 
form of a null hypothesis: 

Testing the above null hypothesis is essentially the same proposal as in the 
work by Black, Jensen, and Scholes (1972), except that they replace 5, by a 
portfolio which they call the market portfolio and refer to their test as a test of 
the CAPM. In addition, they do not report the joint significance of the estimated 
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values for a,, across all N equations; instead, they report N univariate t 
statistics based on each equation. 

Given the normality assumption, the null hypothesis in (3) can be tested using 
"Hotelling's T2  test," a multivariate generalization of the univariate t-test (e.g., 
see Malinvaud (1980, page 230)). A brief derivation of the equivalent F test is 
included for completeness and as a means of introducing some notation that will 
be needed later. If we estimate the multivariate system of (1) using ordinary least 
squares for each individual equation, the estimated intercepts have a multivariate 
normal distribution, conditional on r,, (Vt = 1,.. . , T), with 

where T = number of time series observations on returns; 4; ( 2 , , ~ ? ~ ~ .. 
sample varinance of $, wlthout an 8, = ~,/s,; = sample mean of ?,,; and s j  = 


adjustment for degrees of freedom. Furthermore, 2, and H are independent with 
(T-  2)2  having a Wishart distribution with parameters (T - 2) and 2. These 
facts imply (see Morrison (1976, page 131)) that (T(T -N - l)/N(T - 2))Wu has 
a noncentral F distribution with degrees of freedom N and (T -N - I), where 

and 2 = (The corresponding statistic based unbiased residual covariance m a t r i ~ . ~  
on the maximum likelihood estimate of H will be denoted as W.) The noncentral- 
ity parameter, A ,  is given by 

Under the null hypothesis that a e uals zero, X = 0, and we have a central F
4 9.

distribution. More generally, the d~stnbution under the alternative provides a 
way to study the power of the test; more will be said about this in a later section. 
It is also interesting to note that under the null hypothesis the W, statistic has a 
central Fdistribution unconditionally, for the parameters of this central Fdo not 
depend on G, in any way. However, we do not know the unconditional distribu- 
tion of 2, or W, under the alternate, for the conditional distribution depends on 
the sample values of i,, through 8;. 

Generally, the normality assumption has been viewed as providing a "good 
working approximation" to the distribution of monthly stock returns (see Fama 
(1976, Chapter 1) for a summary of the relevant empirical work). There is some 
evidence, however, that the true distributions are slightly leptokurtic relative to 
the normal distribution. While departures from normality of the disturbances in 
(1) will affect the small-sample distribution of the test statistic, simulation 
evidence by MacKinlay (1985) suggests that the F test is fairly robust to such 
mis~~ecifications.~This is important, since the application of standard asymp- 
totic tests to the efficiency problem can result in faulty inferences, given the 
sample sizes often used in financial empirical work. 

We assume that N is less than or equal to T - 2 so that 5 is nonsingular. 
Tests for normality of the residuals of the size and industry portfolios, which are used below, do 

reveal excess kurtosis and some skewness as well. These results are available on request to the authors. 
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TABLE 1 
A COMPARlSON OF FOUR ASYMPTOTICALLY EQUIVALENT TESTS OF EX ANTE EFFICIENCY OF A 
GIVEN PORTFOLIO. THE W STATISTIC IS DISTR~BUTEDAS A TRANSFORM OF A CENTRAL F 
DISTR~BUTIONIN FINITE SAMPLES. THEWALDTEST, THE LIKELIHOOD RATIO TEST (LRT), 
AND THE LAGRANGEMULTIPLIER TEST ( L M T )  ARE MONOTONE TRANSFORMS OF W , AND 
EACH IS DISTRIBUTED AS CHI-SQUARE WITH N DEGREES OF FREEDOM AS T APPROACHES 
INFINITY. 

P-Values Using P-Value Using Asymptotic Approximations 
Exact Distribution 

of W Wald LRT LMT 

Note: N is the number of assets used together with portfolio p to construct the ex post frontier, and T is the 
number of time series observations. 

Table I illustrates this problem for the Wald, likelihood ratio, and Lagrange 
multiplier tests, each of which is asymptotically distributed as chi-square with N 
degrees of freedom as T + Since the small-sample distribution of W is 
known (assuming normality), the implied realization of W can be inferred from 
the information in the first three columns of Table I (i.e., N, T, and the 
hypothetical p-value). The implied asymptotic p-values given in the last three 

Jobson and Korkie (1982) also discuss these three tests using a simulation. They approximate the 
distribution of the likelihood ratio test with an F distribution based on Rao's (1951) work. In their 
1985 paper they recognize that a small sample distribution is available under the null hypothesis. 
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columns are then obtained using the fact that each test statistic is a monotonic 
function of W.6 

Consistent with the results of Berndt and Savin (1977), the p-values are always 
lowest for the Wald test and hghest for the Lagrange multiplier test with the 
likelihood ratio test in between. Clearly, the asymptotic approximation becomes 
worse as the number of assets, N, approaches the number of time series 
observations, T. Shanken (1985) reaches similar conclusions based on an approxi- 
mation when the riskless asset is not observable. 

3. A GEOMETRIC INTERPRETATION OF THE TEST STATISTIC, W 

So far, the primary motivation for the W statistic has been its well-known 
distributional properties. For rigorous statistical inference such results are an 
absolute necessity. Just as important, though, is the development of a measure 
which allows one to examine the economic significance of departures from the 
null hypothesis. Fortunately, our test has a nice geometric interpretation. 

It is shown in the Appendix that: 

where 8* is the ex post price of risk (i.e., the maximum excess sample mean 
return per unit of sample standard deviation) and 8, is the ratio of ex post 
average excess return on portfolio p to its standard deviation (i.e., 8, = C/sp). 
Note that 4 cannot be less than one since 8* is the slope of the ex post frontier 
based on all assets used in the test (including portfolio p). 

The curve in Figure l a  represents the (ex post) minimum-variance frontier of 
the risky assets. When a riskless investment is available, the frontier is a straight 
line emanating from the origin and tangent to the curve at rn. 8* is the slope of 
the tangent line whereas 8, is the slope of the line through p. 

An examination of (7) suggests that #2  should be close to one under the null 
hypothesis. When 8* is sufficiently greater than 4,the return per unit of risk for 
portfolio p is much lower than the ex post frontier tradeoff, and we will reject the 
hypothesis that portfolio p is ex ante mean-variance efficient. In Figure l a  # is 
just the distance along the ex post frontier up to any given risk level, o, divided 
by the similar distance along the line from the origin through p. 

The reader may wonder why the test is based on the square of the slopes as 
opposed to the actual slopes. The reason is straightforward. Our null hypothesis 
only represents a necessary condition for ex ante efficiency. This condition is 
satisfied even if portfolio p is on the negative sloping portion of the minimum- 
variance frontier for all assets (including the risk-free security). Thus, only the 

The relations are LRT = T In(1 + W) and LMT = TW/(1 + W). Shanken (1985) has discussed 
this result for the case where the riskless asset does not exist. A proof of the result in the case where 
the riskless asset does exist is available upon request to the authors. Berndt and Savin (1977) discuss 
similar relationships among alternative asymptotic tests in a more general setting. 
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Standard Deviation of Excess Return 

l a . )  Geonietric intuition for W.  Note the distance Oc 

is \/;;-ti,and the distance Od is Jz. 

0 8 4 6 8 10 

Standard Devlatlon of Excess Return 

lb . )  	Ex post efficient frontier based on 10 beta-sorted 
portfolios and the CRSP Equal-Weighted Index 
using monthly data,  1931-1965. Point p repre-
sents the CRSP Equal- Weighted Index. 

FIGURE1.-Various plots of ex post mean variance efficient frontiers. 
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lc.) 	Ex post efficient frontier based on 12 industry 
portfolios and the CRSP Value- Weighted Index 
using monthly data ,  1926-1982. Point p repre-
sents the CRSP Value-Weighted Index. 
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Standard Deviation of Exceaa Return 

Id.) 	Ex post efficient frontier based on 10 size-sorted 
portfolios and the CRSP Value-Weighted Index 
using monthly data,  1926-1982. Point p repre-
sents the CRSP Value-Weighted Index. 
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TABLE I1 
SUMMARYSTATISTICS ON BETA-SORTED PORTFOLIOS BASED ON MONTHLY DATA, 1931-65 

(T =420). ALLSIMPLE EXCESS RETURNS ARE NOMINAL AND IN PERCENTAGE FORM, AND THE 

CRSP EQUAL-WEIGHTED INDEXIS PORTFOLIO p. THEFOLLOWING PARAMETER ESTIMATES 

ARE FOR THE REGRESSION MODEL: C t  = + PIpl7pt+ El,, V i = I , .  .. ,10 AND V t = 1, ... ,420, 

WHERE ~f IS THE COEFFICIENT OF DETERMINATIONFOR EQUATION i .  


Portfolio 

Number B j P  ~ ( 4 ~ )  Ap ~ ( 8 , ~ )  R: 


Nort-: For this a m p l e  pcriod 8 and B' are 0.166 and 0.227. respectively. These imply a value for W ,  equal to 
0.023. which has a-11-valuc o f  0.47g. Under the hypothesis that the CRSP Equal-Weighted Index is efficient, 8(@,,) 
ir 0.024 and SD( W,,) is 0 01 1 .  

absolute value of the slope is relevant for our null hypothesis, and our test is then 
based on the squared values. 

Figure l b  is based on a data set that is very similar to the one used by Black, 
Jensen, and Scholes (1972) (hereafter, BJS).7 Using monthly returns on 10 
beta-sorted portfolios from January, 1931 through December, 1965, b* = 0.227 
while the CRSP Equal-Weighted Index, which is portfolio p, has bp= 0.166. To 
judge whether these two slopes are statistically different, we can calculate 
( + 2  - I), which is 0.02333. Based on the results in Section 2, we can use a central 
F distribution with degrees of freedom 10 and 409 to judge the statistical 
significance of this difference in slopes. The resulting F statistic is 0.96, which has 
a p-value of 0.48. Our multivariate test confirms the conclusion reached by BJS 
for their overall time period in that the ex ante efficiency of the CRSP Equal- 
Weighted Index cannot be rejected; equivalently, if this Index is taken as the true 
market portfolio, then the Sharpe-Lintner version of the CAPM cannot be 
rejected. Table I1 provides some summary statistics on the beta-sorted portfolios 
that were used for Figure lb. Table 11, when compared with Table I1 in BJS, 
verifies that our data base is very similar to the one used by BJS. 

BJS provide various scatter plots of average returns versus estimated betas to 
judge the fit of the data to the expected linear relation if the CRSP Equal-Weighted 

While BJS relied on the data from the Center for Research in Security Prices (hereafter, CRSP) at 
the University of Chicago, it is not possible to replicate their data. The CRSP tapes are continually 
revised to reflect data errors, and one would need the same version of the CRSP file to perfectly 
duplicate a data base. For example, we were able to find more firms per year than reported in Table 1 
of BJS because of corrections to the data base. Also we relied on Ibbotson and Sinquefield (1979) for 
the return of US Treasury Bills as the riskless rate. This latter data base was not used by BJS. 
However, we followed the grouping procedure outlined in BJS in forming the 10 portfolios that were 
used in constructing Figure 1 and Table 11. 
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Index is efficient. We view figures like our Figure l b  as complementary to these 
scatter plots, for they summarize the multivariate test in a manner familiar to 
financial economists. The advantage of the scatter plots in BJS is that they may 
provide some information as to which asset or which set of assets is least 
consistent with the hypothesis that the index is efficient; figures llke Figure l b  
really do not provide such information. On the other hand, the scatter plots in 
BJS can be difficult to interpret due to heteroscedasticity across the different 
portfolios as well as contemporaneous cross-sectional dependence. Section 6 will 
suggest some other types of diagnostic information based on the multivariate 
framework. 

To understand further the behavior of our measure of efficiency, #', its small 
sample distribution given in Section 2 is helpful. Since a linear transform of #2 

has a central F distribution with degrees of freedom N and ( T  -N - 1), we can 
use the first two moments of the central F to calculate: 

and 

The first moment for #2 only exists if T > N + 3 while the second moment for #2 

only exists if T > N + 5. These last two equations for the moments can be 
applied to the BJS data set for 1931-1965 where N = 10 and T = 420, so 
b(#' - 1) and the standard deviation of #' are 0.024 and 0.011, respectively. As 
the realized value of #' - 1 is less than its expectation, it is not surprising that 
the ex ante efficiency of the Equal-Weighted Index cannot be rejected for this 
time period. 

This measure, #, is a new variant of the geometry developed to examine 
portfolio performance. In past procedures the efficient frontier has been taken as 
given, and a distance such as mb in Figure l a  has been used as a measure of p's 
performance. Note that mb is simply the return differential of the ex post 
optimal portfolio over p, computed at the sample standard deviation of the ex 
post optimal portfolio. Another suggestion has been to use the difference in their 
slopes 8* - JP as a measure of p's relative performance. How the true ex ante 
frontier is to be known is unclear, and if the ex post frontier is used, then we face 
the statistical problem of this paper. 

4. THE POWER OF THE MULTIVARIATE TEST FOR EFFICIENCY 

The empirical illustration in the previous section fails to reject the ex ante 
efficiency of the Equal-Weighted Index when using 10 beta-sorted portfolios as in 
BJS.' Such a result may occur because the null hypothesis is in fact true, or it 

We have also examined our data base using the same subperiods as in BJS. When we aggregate 
the results of the multivariate test across these four subperiods, we can reject ex ante efficiency at 
usual levels of significance. This confirms the conclusions reached by BJS. 
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may be due to the use of a test which is not powerful enough to detect 
economically important deviations from efficiency of the Index. Questions of 
power for various types of test statistics have been a long standing concern 
among financial economists (e.g., see Roll (1977), among others). This section will 
focus on the power of the multivariate test. 

From Section 2 we know that under both the null and alternate hypotheses a 
simple transform of W, or \C,2, has an F distribution with degrees of freedom N 
and T -N - 1. The F distribution is noncentral with the noncentrality parameter 
given by equation (6); under the null hypothesis the noncentrality parameter is 
zero. It deserves emphasis that the F distribution under the alternative is 
conditional on the returns of portfolio p since the noncentrality parameter 
depends on 8;. Thus, we will be studying the power function conditional on a 
value for 8;, not the unconditional power function. 

The probability of rejecting a false null hypothesis increases as the noncentral- 
ity parameter increases, holding constant the numerator and denominator de- 
grees of freedom (Johnson and Kotz (1970, page 193)). Studying the factors that 
affect the noncentrality parameter, A, will give some guidance about the power of 
the multivariate test. From equation (6) we can see that A is a weighted sum of 
squared deviations about the point a, = 0. The weighting matrix is the inverse 
of the covariance matrix of the ordinary least squares estimators for a,. Thus, 
estimated departures from the null are weighted according to the variability of 
the estimator and the cross-sectional dependence among the estimators. 

The noncentrality parameter can also be given an intuitive economic interpre- 
tation. The derivation of equation (23) in the Appendix would hold for the 
population counterparts of the sample estimates, so it is also true that cu;Z-'cu, = 

0*2- 6;. It follows directly that 

A = 8;)] ( B * ~9;).[ ~ / ( l +  -

Not surprisingly, the power of the test will increase as the ex ante inefficiency of 
portfolio p increases as measured in terms of the slope of the relevant opportu- 
nity sets. If 8; increases, the precision of the estimator for a, declines, so the 
power of the test decreases. 

Figure 2 summarizes how the power of the test is affected by 0* and 6,. When 
the proportion of potential efficiency (i.e., 8,/8*) is equal to one, the null 
hypothesis is true. As this proportion approaches zero, the given portfolio is 
becoming less efficient. Figure 2 is based on values for the significance level, N ,  
and T that are common for existing empirical work on asset pricing models; we 
have used N = 10 or 20 and T = 60 or 120 and a five percent significance level. 
Empirical work on the CRSP Indexes reports estimates of 19, between 0 and 0.4. 
We have used this range to guide our selection :f a grid for 19, and O*. In 
addition, Figure 2 is based on the assumption that 8, = 0, to eliminate one of the 
parameters that affect A; this assumption suggests that our calculations of power 
are for situations where the sample is representative of the underlying population. 

Even within the range of parameters that we consider, the probability of 
rejecting the null hypothesis ranges from five percent to nearly 100 percent 
depending on the difference between the two relevant measures of slope. For 
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2a.) N = 10 and 'r = 60. 

2b. )  N = 20 and 'I' = 60. 

FIGURE2.-Sensitivity of the power of the test to the choice of the index. Each figure is based on a 
different combination of the number of assets ( N )  and the number of time series observations (T). In 
all cases a critical level of five percent is used. 

example, if 8, equals .2 (which is high relative to the average from 1926-1982) 
and if N = 20 and T = 60, then the probability of rejecting a false null hypothesis 
ranges from ten percent (for 8* = .3) to 98 percent (for 8* = 1.0). 

Given the data bases that are available, an empiricist is always faced with the 
question of the appropriate sizes for N and T. For example, with the CRSP 
monthly file we have a data base which extends back to 1926 for every firm on 
the New York Stock Exchange. This would permit the empiricist to use around 
700 time series observations (i.e., T )  and well over 2000 firms (i.e., N ) .  However, 
the actual N used may be restricted by T to keep estimates of covariance 
matrices nonsingular, and the actual T used is constrained by concerns over 
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2c.)  N = 10 arid 'I' = 120. 

2d.) N = 20 and T = 120. 

FIGURE2.-Continued. 

stationarity. It is not uncommon to see published work where T is around 60 
monthly observations and N is between 10 and 20. While these numbers for N 
and T are common, we are not aware of any formal attempts to study the 
appropriate values to select. We will now examine this issue in the context of the 
specific hypothesis of ex ante efficiency. While the analysis is focused on an 
admittedly special case, our hope is that it may shed some light on other cases as 
well. 

To get more intuition about the impact of N on equation (6), consider a case in 
which 2 has a constant value down the diagonal and a constant (but' different) 
value for all off-diagonal elements. Since 2 represents the contemporaneous 
covariances across assets after the "market effect" has been removed, such a 
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structure includes the Sharpe (1963) diagonal model as a special case when the 
off-diagonal terms are zero. The more general case where the off-diagonal terms 
are constant but are nonzero is motivated by the work of Elton and Gruber 
(1973) and Elton, Gruber, and Urich (1978).9 Under this structure we can 
parameterize 2 as: 

(10) 2 = (1 - p ) w 2 ~ N+ pw2iNik, 

where p = the correlation between E,! and E,,; w2 = the variance of El!; IN = an 
identity matrix of dimension N; and i', = a 1x N vector of 1's. The inverse1' of 
this patterned matrix is (Graybill (1983)): 

Substituting the above equation for 2-' in equation (6) gives: 

where p1 = (i',ap)/N and p2  = (a;a,)/N. One could view p1 as a measure of the 
"average" misspecification across assets while p2  indicates the noncentral disper- 
sion of the departures from the null hypothesis across assets. 

When N is relatively large and p is not equal to zero, equation (11) implies: 

where VAR (a,) denotes the cross-sectional variance of the elements of a,. Thus, 
X is approximately proportional to N and T." Alternatively, if either p = 0 or 
p1 = 0, then X is exactly proportional to N and T.12 Unfortunately, this is still 
not adequate to determine the impact of changing N and T, for these two 
parameters affect not only the noncentrality parameter but also the degrees of 
freedom. 

We have evaluated the power of the multivariate test for various combinations 
of A, N, and T.13 These numerical results provide some guidance on the proper 

Strictly speaking, the Sharpe diagonal model allows for heteroscedasticity in the disturbances of 
the market model equations; our formulation assumes homoscedasticity. Also, the constant correla- 
tion model of Elton and Gruber is usually applied to the correlation matrix for total returns; we are 
assuming constant correlation after the market effect has been removed. 

10 Necessary and sufficient conditions for this inverse to exist are that p # 1 and p # (1 - N)-'; 
see Graybill (1983, page 190-191). In addition, the matrix should be positive definite; this would 
require that p - 1/(N - 1). 

l1 In general, since p < 1, A/N is less than or equal to the right side of (12) when p r 0. 
l2  If the Equal-Weighted Index is portfolio p ,  then we would expect pl to approach zero as N 

becomes large. 
l 3  These numerical calculations require evaluation of a noncentral F distribution and an inverse of 

a central F distribution. The latter calculation relied on the MDFI subroutine provided by IMSL. The 
former calculations are based on a subroutine written by J. M. Bremner (1978), and a driver program 
written by R. Bohrer and T. Yancey of the University of Illinois at Champaign-Urbana. Each 
subroutine was checked by verifying its output with the published tables reported in Tang (1938) and 
Titu (1967). 
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Ratio of N Divided by T 
3a.) T = 60. 

w 0.6 
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3b. )  T = 120. 

FIGURE3.-Sensitivity of the power of the test to the choice of the number of assets ( N )  gives a 
fixed number of time series observations (T). 

choice of N and T. We assumed that X is proportional to NT, and Figure 3 
provides various values for the constant of proportionality.14 We selected this 
constant of proportiona!ity based on equation (11) when p = 0. In this case, the 
constant is p2/[u2(1 + O;)] .  We then replaced p2 and u2 with the cross-sectional 
averages of d;p and 3:, respectively, from an actual data set. We also know that 
8p is 0.166 for the CRSP Equal-Weighted Index (1931-1965) and 0.109 for the 

l4 MacKinlay (1987) studies the power of the test using alternative parameterizations of the 
noncentrality parameter. 
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3c.) T = 240. 

CRSP Value-Weighted Index (1926-1982). This provides a rough guide to typical 
values for the constant of proportionality. The constant is 0.004 using the 
beta-sorted portfolios, and it is 0.002 using a set of industry portfolios. For 
size-sorted portfolios the constant is 0.004 using all months and 0.763 for 
monthly data only using January. (The details on how the industry portfolios and 
size-sorted portfolios were created will be provided later in this paper.) 

In Figure 3, we look at cases where the constant is 0.00002 and 0.002, which 
are small relative to the above calculations. For purposes of comparison, Figure 3 
also includes a case where X is not affected by N; instead we set X = .IT. This 
represents a situation where an investigator has one asset that violates the null 
hypothesis, and all the remaining assets that are added are consistent with the 
efficiency of some given portfolio p. While Figure 3 is based on specific values for 
the constant of proportionality, the general pattern that is observed is consistent 
with a wide range of choices that we tried but did not report here.15 

For a fixed number of time series observations, Figure 3 demonstrates that 
there may be an important decision to be made by the empiricist. Even though 
the noncentraiity parameter increases as N increases, it is not necessarily appro- 
priate to choose the maximum N possible. Given our particular parameterization 
of the problem, it appears that N should be roughly a third to one half of T, or 
when five years of monthly data are used, 20 to 30 assets may be appropriate. 
When the constant is very low, the power is so small for all possible values of N 

l5 We were not able to evaluate the noncentral F for very high values of A ,  so we have little 
knowledge about the shape of the power function when the constant of proportionality is high. If the 
constant is large enough, it is conceivable that a comer solution of setting N = T - 2 may be 
appropriate. 
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that it is not an important decision. Alternatively, if the noncentrality parameter 
is proportional to T and not affected by N, clearly setting N = 1is the preferred 
strategy. In this case adding securities does not provide more information about 
departures from the null hypothesis; however, additional securities increase the 
number of unknown parameters to be estimated. It deserves emphasis that these 
conclusions about the proper choice of N may not be appropriate for all possible 
situations and models. 

The choices of N and T are not the only decisions facing the empiricist in 
designing the econometric analysis. Since N must always be less than T (unless 
highly structured covariance matrices are entertained), the empiricist must also 
decide how to select the assets to maximize the power of the test. Given N and T 
we wish to maximize the quadratic form ol;2-'olp, or equivalently O * ;  however, 
these parameters are unobservable. A common approach is to use beta-sorted 
portfolios. While dispersion in betas is useful in decreasing the asymptotic 
standard error in estimates of the expected return on the zero-beta asset (Gib- 
bons (1980) and Shanken (1982)), such sorting need not maximize departures 
from the null hypothesis as measured by X.16 

Empirical examples presented below illustrate the effect that different asset sets 
can have on the outcome of the test. First, we consider a set of 12 industry 
portfolio^.'^ An industry grouping seems reasonable on economic grounds and 
also captures some of the important correlations among stocks. To measure the 
return from a "buy-and-hold" investment strategy, the relative market values of 
the securities are used to weight the returns. Almost every monthly return on the 
CRSP tape from 1926 through 1982 is included, which should minimize problems 
with survivorship bias.18 Table I11 provides some summary statistics on the 
industry portfolios. 

The multivariate F statistic rejects the hypothesis of ex ante efficiency at about 
the one percent significance level. The relevant F statistic is 2.13 with degrees of 
freedom 12 and 671; its p-value is 0.013.19 To complement these numerical 
results, Figure lc, which is similar to Figures l a  and lb,  provides a geometrical 
summary. 

16 In fact, for a given set of N securities, the multivariate test is invariant to how we group these 
assets into N portfolios; we could form N portfolios so that they have very little dispersion in their 
beta values with no impact on the power. This follows from the well-known result in the multivariate 
statistics literature that our test is invariant to linear transformations of the data (Anderson (1984, 
pages 321-323)). Of course, the selection of the original subset of assets to be analyzed is important 
even though the way they are aggregated into portfolios is not (given that the number of portfolios is 
the same as the number of original assets). 

17 For the details of the data base, see Breeden, Gibbons, and Litzenberger (1987), who developed 
these data for tests of the consumption-based asset pricing model. The industry grouping closely 
follows a classification used by Sharpe (1982). 

18 However, all firms with a SIC number of 39 (i.e., miscellaneous manufacturing industries) are 
excluded to avoid any possible problems with a singular covariance matrix when the CRSP 
Value-Weighted Index is used as portfolio p. 

l9 While not reported here, we also analyzed this data set across various subperiods. Based on five 
year subperiods, the p-value for the F statistic is less than five percent in 7 out of 11 cases, is less than 
10 percent in 9 out of 11 cases, and rejects when aggregated across the subperiods. Thus, the rejection 
of the overall period is confirmed by the subperiods as well. 
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To understand this low p-value, consider the fact that for this time period 
8, = 0.109 while the slope of the opportunity set using the ex post optimal 
portfolio, 8*,  is more than double with a value of 0.224. With these numbers we 
can calculate J/2 as 1.038. For N = 12 and T = 684, &(J2) is 1.018 with S D ( ~ )  
of 0.007. Thus, the realized value of J/2 is nearly three standard deviations from 
its expected value if the CRSP Value-Weighted Index is truly ex ante efficient. 

Perhaps of greater interest is the fact that the multivariate test rejects the null 
hypothesis at the one percent level even though all 12 univariate t statistics fail to 
reject at even the five percent level. The next section builds on such contrasting 
results by analyzing why univariate test may be difficult to summarize across 
different assets. 

5. THE PROBLEM WITH UNIVARIATE TESTS 

Table I1 suggests that high beta portfolios earn too little and low beta 
portfolios too much if the Equal-Weighted Index is presumed to be efficient; 
similar evidence was used by BJS to garner support for the zero-beta version of 
the CAPM. Yet, this pattern is difficult to interpret. The upper triangular portion 
of Table IV provides the sample correlation matrix of the market model residuals 
based on the regressions that are summarized in Table 11. A very distinctive 
pattern emerges in that the residuals of portfolios with similar betas are positively 
correlated while those of portfolios with very different betas are negatively 
correlated. Based on the variance-covariance matrix for 8, in equation (4), it is 
clear that the estimators for a,, will have the same pattern of cor~elation. Thus, it 
is difficult to infer whether the observed pattern in estimated values of a , , '~is 

TABLE I11 
SUMMARYSTATISTICS ON INDUSTRY-SORTED PORTFOLIOS BASED ON MONTHLY DATA, 
1926-82 ( T= 684). ALL SIMPLE EXCESS RETURNS ARE NOMINAL AND IN PERCENTAGE FORM, 
AND THE CRSP VALUE-WEIGHTED IS PORTFOLIO PARAMETERINDEX p.  THEFOLLOWING 
ESTIMATES ARE FOR THE REGRESSION MODEL: 8, = + /3 ,p&t  + E,, t/i = 1,... ,12 AND 
~t = 1, .. . ,684, WHERE R: IS THE COEFFICIENT OF DETERMINATION FOR EQUATION i .  

Industry Portfolio erD ~ ( 6 , ~ )  A s (P , , )  R? 

Petroleum 0.17 0.14 0.93 0.02 0.69 
Financial -0.05 0.09 1.19 0.02 0.89 
Consumer Durables 0.03 0.09 1.29 0.02 0.90 
Basic Industries 0.00 0.00 1.09 0.01 0.94 
Food and Tobacco 0.12 0.07 0.76 0.01 0.83 
Construction -0.17 0.12 1.20 0.02 0.85 
Capital Goods 0.10 0.08 1.08 0.01 0.91 
Transportation -0.17 0.14 1.20 0.02 0.78 
Utilities 0.05 0.09 0.74 0.02 0.76 
Trade and Textiles 0.00 0.00 0.94 0.02 0.77 
Services 0.43 0.37 0.80 0.06 0.19 
Recreation -0.03 0.13 1.22 0.02 0.78 

NOTE:For this sample period 6 and 8* are 0.109 and 0224, respectively. These imply a value for W, equal to 
0.038, which has a-p-value of 0.015 Under the hypothesis that the CRSP Value-Weighted Index is efficient, I ( @ " )  
is 0.018 and SD( W,) is 0.007 
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TABLE IV 
SAMPLECORRELATION MATRIX OF RESIDUALS FROM MARKET MODEL REGRESSIONS USING 
EXCESS RETURNS. 

THEUPPER TRIANGULAR PORTION OF THE TABLE IS BASED ON 10 BETA-SORTED PORTFOLIOS 
FOR THE DEPENDENT VARIABLES AND THE CRSP EQUAL-WEIGHTED INDEXFOR PORTFOLIO 
p. ALL MONTHLY DATA FROM 1931-65 ( T = 420) ARE USED. TABLEI1 SUMMARIZES THE 
OTHER PARAMETER ESTIMATES FOR THIS REGRESSION MODEL. THE LOWER TRIANGULAR 
PORTION OF THE TABLE IS BASED ON 10 SIZE-SORTED PORTFOLIOS FOR THE DEPENDENT 
VARIABLES AND THE CRSP VALUE-WEIGHTED INDEX FOR PORTFOLIO p.  ALL MONTHLY 
DATA FROM 1926-82 ( T =684) ARE USED. TABLEV SUMMARIZES THE OTHER PARAMETER 
ESTIMATES FOR THIS REGRESSION MODEL. 

Portfolio Number: 

1 2 3 4 5 6 7 8 9 10 


NOTE. For the upper tnangular portion of the table, portfolio 1 consists of firms with the highest values for 
historical estimates of beta while portfolio 10 contans the firms with the lowest values For the lower triangular 
portion of the table, portfolio 1 is a value-weighted portfolio of firms whose market capitalization is in the lowest 
declle of the NYSE while portfolio 10 contains firms in the highest decile 

due to correlation in the estimation error or to the actual pattern in the true 
parameters. 

Other examples from empirical work in financial economics could also be cited 
where univariate tests are difficult to interpret. Since the work of Banz (1981) and 
Reinganum (1981), the "size effect" has received a great deal of attention. (For 
more information about this research see Schwert (1983), who summarizes the 
existing evidence and also provides a useful bibliography.) While most of the 
research in this area now focuses on returns in January, we begin by looking at 
the original evidence which did not distinguish between January and non-January 
returns. 

We have created a data base of monthly stock returns using the CRSP file. 
Firms were sorted into 10 portfolios based on the relative market value of their 
total equity outstanding. In other words, we ranked firms by their market values 
in December, 1925 (say), and we then formed 10 portfolios where the first 
portfolio contains all those firms in the lowest decile of firm size and the tenth 
portfolio consists of companies in the highest decile of firm size on the New York 
Stock Exchange. Each of the ten portfolios is value-weighted, and the firms are 
not resorted by their market values for five years. Thus, the returns on these 10 
portfolios from January, 1926 through December, 1930 represent the returns 
from a buy-and-hold strategy without any rebalancing for five years; thls portfo- 
lio formation was adopted to represent a low transaction cost investment strat- 
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TABLE V 
SUMMARYSTATISTICS ON SIZE-SORTED PORTFOLIOS BASED ON MONTHLY DATA, 1926-82 
( T=6 8 4 ) .  ALLSIMPLE EXCESS RETURNS ARE NOMINAL A N D  I N  PERCENTAGE FORM, A N D  THE 
CRSP VALUE-WEIGHTED INDEXIS PORTFOLIO p .  THEFOLLOWING PARAMETER ESTIMATES 
ARE FOR THE REGRESSION MODEL: c, =a,p+ j3,pG, + Z,, V i = 1 , .  .. , 1 0  AND V t = 1 , .  . . , 6 8 4 ,  
WHERE R: IS THE COEFFICIENT OF DETERMINATION FOR EQUATION i. 

Portfolio 
Number B j p  ~ ( 4 , )  8,, s ( b j p )  ~f 

NOTE:Portfolio 1 is a value-weighted portfolio of firms whose market capitalization is in the lowest decile o f  the 
NYSE while portfolio 10 contains firms in the highest decile. For this sample period # and 8' are 0.109 and 0.172, 
respectively. These imply a value for W, equa! to 0.017, which has a-p-value of 0.301. bnder the hypothesis that the 
CRSP Value-Weighted Index is efficient, 8(W,) is 0.015 and SD( W , )  is 0.007. 

egy. The resorting and rebalancing occurred in December of 1925, 1930,. . . ,1980. 
Table V summarizes the behavior of the returns on these portfolios for the entire 
time period. 

Given the existing evidence on the size effect, some readers may find it 
somewhat surprising that, in the overall period from 1926 through 1982, the 
multivariate test fails to reject efficiency of the CRSP Value-Weighted Index at 
the usual levels of significance. The first row of Table VI reports the statistic and 
its corresponding p-value; Figure Id  provides a geometrical interpretation for 
this overall period.20 

The correlation matrix of the market model residuals of the size portfolios 
exhibits a distinctive pattern. The lower triangular portion of Table IV provides 
this information based on the overall period. However, the pattern is identical 
across every ten year subperiod reported in Table VI, and a similar pattern is also 
described by Brown, Kleidon, and Marsh (1983, page 47) and Huberman and 
Kandel (1985b). The correlation is positive and high among the low decile firms. 
The correlation declines as one compares portfolios from very different deciles. 
Even more striking is the fact that the highest decile portfolio has negative 
sample correlation with all other decile portfolios. (In some of the subperiods, 
this negative correlation occurred for the ninth decile as well.) Thus, if we 
observe that the lowest decile performs well (i.e., estimated alphas that are 
positive), we would then expect that the highest decile would do poorly (and vice 
versa). This is the case, for example, in the period 1946-1955, where five out of 

20 The subperiod results in Table VI are consistent with the conclusions of Brown, Kleidon. and 
Marsh ( 1 9 8 3 )  who find the size effect is not constant across all subperiods. 
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TABLE VI 
TESTING INDEXTHE EX ANTE EFFICIENCY OF THE CRSP VALUE-WEIGHTED (I.E., PORTFOLIO 
p) RELATIVE TO 10 SIZE-SORTED PORTFOLIOS. ALL SIMPLE EXCESS RETURNS ARE NOMINAL 

AND IN PERCENTAGE FORM. OVERALLPERIOD IS BASED ON ALL MONTHLY DATA FROM 
1926-82. THE FOLLOWING MODEL IS EST1,MATED AND TESTED: el = cY,p + P,pG, 4- E,, 
V i = l ,  ..., l O A N D v t = l ,  ...,T. Ho: a , p = O v i = l,..., 10. 

Time 

Period WV Number of 


(TI J~ 8, (P-Value) I I(&,,) 1 r 1.96 


NOTE:f is the ratio of the sample average excess return on the CRSP Value-Weighted Index divided by its 
sample st&dard deviation, and 6* is the maximum value possible of the ratio of the sample average excess return 
divided by the sample standard deviation. W E(6'' -&')/(I + 6;), and it is distributed as a transform of a central 
F distribution with degrees of freedom 10 and T- 11 &der the null hypothesis. W should converge to zero as T 
approaches infinity if the CRSP Value-Weighted Index is ex ante etficient. By converting the p-values for the Wu 
statistics to an implied realization for a standardized normal random variable, the results across the 6 subperiods 
can be summarized by summing up the 6 independent and standardized normals and dividing by the square root of 
6 as suggested in Shanken (1985).This quantity is 2.87 which implies a rejection across the subperiods at the usual 
levels of significance. 

ten portfolios have significant alphas (at the five percent level), but the multivari- 
ate test cannot reject the efficiency of the Value-Weighted Index. 

Even though summarizing the results of univariate tests can be difficult, 
applied empirical work continues to report such statistics. T h s  is only natural, 
for univariate tests are more intuitive (perhaps because they are used more) and 
seem to give more diagnostic information about the nature of the departure from 
the null hypothesis when it is rejected. Part of the goal of this paper is to provide 
some intuition behind multivariate tests. Section 3 has already done this to some 
extent by demonstrating that the multivariate test can be viewed as a particular 
measurement in mean-standard deviation space of portfolio theory. The next 
section shows that the multivariate test is equivalent to a " t  test" on the intercept 
in a particular regression which should be intuitive. A way to generate diagnostic 
information about the nature of the departures from the null hypothesis is also 
provided. 

6. ANOTHER INTERPRETATION OF THE TEST STATISTIC, W 

The hypothesis that sip =0 Vz is violated if and only if some linear combina- 
tion of the a 's  is zero; i.e., if and only if some portfolio of the N assets has a 
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nonzero intercept when its excess returns are regressed on those of portfolio p. 
With this in mind, it is interesting to consider the portfolio which, in a given 
sample, maximizes the square of the usual t statistic for the intercept. It is well 
known in the literature on multivariate statistics that this maximum value is 
Hotelling's T~ statistic, our TW,. In this section we focus on the composition of 
the maximizing portfolio, a, and its economic interpretation. 

Thus, let YRt = afF2,, where Y2, is an N x 1 vector with typical element 5, 
V i  = 1,.. . , N. Let & be the N X 1vector of regression intercept estimates. Then 
&, = a'&, and 

P 
VAR(&, )= (I + B;)af2a/~ by (4) above.21 Therefore, 

Since we can multiply a by any scalar without changing the value of t i ,  we shall 
adopt the normalization that a'&, = c, where c is any constant different from 
zero. With this normalization, ~ ( a ' & , ) ~  in (13) are fixed given the and (1 + 4;) 
sample. Hence, maximizing t i  is equivalent to the following minimization prob- 
lem: 

min : a f 2 a  
u 


subject to: a'&, = c. 

Since the above problem is similar to the standard portfolio problem, the form of 
the solution is: 

Substituting this solution for a into equation (13), t: becomes: 

Combining this equation with (5) establishes that t i  = TW,. Not surprisingly, the 
distribution of t ,  is not Student t ,  for portfolio a was formed after examining 
the data. 

The derivation of t i  suggests some additional information to summarize 
empirical work on ex ante efficiency. Given the actual value of a based on the 
sample, one will know the particular linear combination which led to the 
rejection of the null hypothesis. If the null hypothesis is rejected, then a may give 
us some constructive information about how to create a better model. 

Portfolio a has an economic basis as well. When this portfolio is combined 
properly with portfolio p, the combination turns out to be ex post efficient. In 

Since we are working with returns in excess of the riskless rate, &',a need not equal 1, for the 
riskless asset will be held (long or short) so that all wealth is invested. 
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other words, for some value of k, 

where &* is the return on this ex post efficient portfolio. For convenience, we set 
c so that the sample means of Fp,, Fa,, and &* are all equal. The equivalence of 
these three means requires that: 

7,:in that equation to mUsing equation (22) in the Appendix and setting 

For the remainder of the paper, we will refer to portfolio a as the "active" 
portfolio. In many applications of our methodology, portfolio p will be a 
"passive" portfolio, i.e., a buy-and-hold investment strategy. While our methods 
are applicable to situations where portfolio p is not passive, certainly in its 
application to tests of the CAPM, portfolio p will be passive. In such a setting 
portfolio a is naturally interpreted as an active portfolio, for it represents a way 
to improve the efficiency of portfolio p. The terminology of "active" and 
"passive" has been used by Treynor and Black (1973), among others. 

To establish t h s  relation between the ex post efficient portfolio and portfolios 
a and p, we first recall the equation for the weights of an efficient portfolio, w*. 

?can be parameterized as: 

Using the formula for the inverse of a partitioned matrix (see equation (24) in the 
Appendix) on the last expression and substituting this into equation (15) for ?-I, 

equation (14) can be derived after some tedious, but straightforward, algebra. 
The previous paragraphs have established that the square of the usual t 

statistic for the estimated intercept, B,, equals the T 2  test statistic, TW,. A 
similar result can be established as well for the ex post efficient portfolio with the 
same sample mean as portfolio p, i.e., the estimated intercept, B*, from regress- 
ing t*on %,has a squared t statistic, t*2, whch is identical to t:. Since we will 
not use this result in what follows, we only note the fact here without proof.22 

To illustrate the usefulness of the active portfolio interpretation, we return to 
the example of Section 5 where the size effect (across all months) is examined. 
The second column of Table V is roughly consistent with the findings of Brown, 

** The two key facts used in the proof are that a* = k a ,  and SD(6:)  = kSD(6,,),  where E: is the 
disturbance in the regression of 3;* on G,; these equaJEties hold for the estimates as well as the 
parameters. Since t* is essentially a ratio of &* and SD( i : ) ,  k cancels. The two key facts can be 
established by working with the moments of 3;* based on equation (14). 
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TABLE V I I  

DESCRIPTIVE STATISTICS ARE BASEDINFORMATION ABOUT THE ACTIVE PORTFOLIO, a. THESE 
ON SIZE-SORTED PORTFOLIOS USING MONTHLY RETURNS, 1926-82 ( T = 684). ALL SIMPLE 
EXCESS RETURNS ARE NOMINAL AND IN PERCENTAGE FORM, AND THE CRSP 
VALUE-WEIGHTED INDEX IS PORTFOLIO p .  

Monthly Returns Monthly Returns Monthly Returns 
in all Months in only January Excluding January 

( T =684) ( T =57) ( T = 627) 

NOTE:Portfolio 1 is a value-weighted portfolio of firms whose market capitalization is in the lowest decile of the 
NYSE while portfolio 10 contains firms in the highest declle. The portion of wealth Invested in the risklers asset is 
denoted by u ~ ~ . 

Kleidon, and Marsh in that the estimated alphas are approximately monotonic in 
the decile size rankings. However, such a result does not imply that an optimal 
portfolio should give large weight to small firms. As Dybvig and Ross (1985) 
point out, alphas only indicate the direction of investment for marginal improve- 
ments in a portfolio. The portfolio that is globally optimal may have a very 
different weighting scheme than is suggested by the alphas. A comparison of 
Tables V and VII verifies this. 

For example, the portion of the active portfolio invested in the portfolio of the 
smallest firms (i.e., a,) has a sign which is opposite that of its estimated alpha. 
Furthermore, the active portfolio suggests spreading one's investment fairly 
evenly across the portfolios in the bottom 9 deciles and then investing a rather 
large proportion in the portfolio of large firms, not small firms. Table VII also 
reports B,, t:, and k for the overall period. Note that as k is much greater than 
one (k  = 7.56), the ex post efficient portfolio has a huge short position in the 
value-weighted index. Since this index is dominated by the largest firms, the net 
large firm position in the efficient portfolio is therefore actually negative. It is 
interesting that ex post efficiency is achieved by avoiding (i.e., shorting) large 
firms rather than aggressively investing in small firms. 

The reader should keep in mind that Tables IV through VI and the second 
column of Table VII have examined the size effect across all months. Based on 
just these results, the size effect seems to be less important than perhaps 
originally thought. However, if the data are sorted by January returns versus 
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TABLE VIII 


SUMMARY RETURNS, 1926-82 
STATISTICS ON SIZE-SORTED PORTFOLIOS BASED ON JANUARY 

( T = 57). ALL SIMPLE EXCESS RETURNS ARE NOMINAL AND IN PERCENTAGE FORM, AND THE 


CRSP VALUE-WEIGHTED IS PORTFOLIO p. THE FOLLOWING PARAMETER ESTIMATES
INDEX 

ARE FOR THE REGRESSION MODEL:c1= + PrpGl+ Z,I V i  = I , .  . . , lo ,  WHERE ~f IS THE 

COEFFICIENT OF DETERMINATION FOR EQUATION 1. 


Portfolio 
Number &Zo s(&,,) b,, S C ~ , , )  ~f 

NOTE:Portfolio 1 is a value-weighted portfolio of firms whose market capitalization is in the lowest decile of the 
NYSE while portfolio 10 contains firms in the hghest decile. For this sample period 8,, and 8* are 0.259 and 1.197, 
respectively. These imply a value for W, equa! to 1.256, which has a-p-value of  O.M)O. Under the hypothesis that the 
CRSP Value-Weighted Index is efficient. B( W,)  is 0.219 and SD( W,)  is 0 111. 

non-January returns, the multivariate approach confirms the importance of the 
size effect-at least for the month of January. Table VIII summarizes the sample 
characteristics of our 10 size-sorted portfolios when using only returns in January 
from 1926 through 1982. A comparison of Tables V and VIII reveals that the size 
effect is much more pronounced in January than in other months; this is 
consistent with the work by Keim (1983). This impression from the univariate 
statistics is confirmed by the multivariate test of ex ante efficiency, for the F test 
is 5.99 with a p-value of zero to three decimal places. In contrast, the F test 
based on all months excluding January is 1.09 with a p-value of 0.36. The 
weights of the active portfolio, a, are presented in the last two columns of Table 
VII for January versus non-January months. As in the first column of Table VII, 
the active portfolio is not dominated by small firms. For the month of January, 
one's investment should be evenly spread (roughly speaking) across the eight 
portfolios in the bottom deciles (or smaller firms); however, firms in the top two 
deciles (or larger firms) should be shorted.23 Results for non-January months are 
similar to those based on all monthly data. 

The evidence in Table VII suggests that the optimal active portfolio is not 
dominated by small firms even in the month of January-at least based on the ex 
post sample moments. Nevertheless, in the marketplace we see the development 
of mutual funds which specialize in holding the equities of just small firms.24 

23 The active portfolio for the month of January involves a rather large position in the riskless asset 
( a , ,  equals 1.25). This investment in the riskless security is necessary to maintain a sample mean 
return on the active portfolio equal to that of the CRSP Value-Weighted Index. 

"Examples of such funds include The Small Company Portfolio of Dimensional Fund Advisors 
and the Extended Market Fund of Wells Fargo Investment Advisors. 
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Such funds suggest that efficient portfolios may be achieved by combining 
indexes like the S&P 500 (or the CRSP Value-Weighted Index) with a portfolio 
of small firms. We now turn to an examination of the ex ante efficiency of such a 
linear combination in the next section. A multivariate statistical test of such an 
investment strategy turns out to be a simple extension of the test developed in 
Section 2. 

7. TESTING THE EFFICIENCY OF A PORTFOLIO OF L ASSETS 

If a portfolio of L other portfolios is efficient, then there exist parameter 
restrictions on the joint distribution of excess returns similar to those considered 
earlier. Specifically, if F,,, = C,klxJ<, (where C,klxJ = 1) and if F,,, is efficient, 
then 

where the 6,,'s are the coefficients in the following regression: 

(We will assume that the stochastic characteristics of i,,are the same as those of 
Elf in equation (I).) Conversely, (16) implies that some portfolio of the given L 
portfolios is on the minimum variance frontier (Jobson and Korkie (1982)). Thus, 
a necessary condition for the efficiency of a linear combination (Fit, F2,,...,FLr) 
with respect to the total set of N + L risky assets is: 

The above null hypothesis follows when the parameter restriction given by (16) is 
imposed on (17). 

In this case, [T/N][(T- N - L)/(T -L - 1)](1+ 7;8-'$)-' has8~2-'8~ a 
noncentral F distribution with degrees of freedom N and (T  -N - L), where 
is a vector of sample means for c,= (TI,, F2,, . . . ,FL,) ,  52 is the sample variance- 
covariance matrix for 5,:So has a typical element Sio, and J0 is the least squares 
estimator for So based on the N regression equations in (17) above. Further, the 
noncentrality parameter is given by [T/(1 + 7;8-'~)] 842-I 6,. Under the null 
hypothesis (18), the noncentrality parameter is 0. 

For an application of the methodology developed in ths  section, we return to 
the results based on the size-sorted portfolios using returns only during the 
month of January. In the previous section, we found that we could reject the ex 
ante efficiency of the CRSP Value-Weighted Index. It could be that there exists a 
linear combination of the lowest decile portfolio and the Value-Weighted Index 
which is efficient. To consider such a case, we set L = 2 and N = 9. (Since 
portfolio 1has become a regressor in a system like (17), we can no longer use it 
as a dependent variable.) The F statistic to test hypothesis (18) is 1.09 with a 
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p-value of 0.39, so we cannot reject efficiency of this combination at the usual 
levels of significance. Of course, this inference ignores the obvious pre-test bias. 

Throughout this paper we have assumed that there is an observable riskless 
rate of return, in which case the efficient frontier is simply a line in mean-stan- 
dard deviation space. Suppose, now, that we wish to determine whether a set of 
L + 1 portfolios ( L  2 1) spans the minimum-variance frontier determined by 
these portfolios and the N other assets. The N + L + 1asset returns are assumed 
to be linearly independent. If we observe the return on the "zero-beta" portfolio 
(which in practice we do not), this spanning hypothesis (with L = 1) naturally 
arises in the context of the zero-beta version of the CAPM due to Black (1972).~' 

To formulate the test for spanning for any L 2 1, consider the system of 
regression equations, 

where k,,  denotes total returns, not excess returns. Huberman and Kandel 
(1985a) observe that the spanning hypothesis is equivalent to the following 
restrictions: 

and 

Imposing (21) on the parameters in (19) and letting F;, denote returns in excess 
of the returns on portfolio L + 1, we derive (17). Thus, the problem of testing 
(20) in the context of (17) is identical to that of testing (18) in the riskless case 
above. All we have learned about testing the riskless asset case is equally relevant 
to the spanning problem, provided that "excess returns" are interpreted appro- 
priately. Perhaps most importantly, the exact distribution of our test statistic is 
known under both the null and alternative hypotheses, permitting evaluation of 
the power of the test. Note that this test of spanning imposes (21) and then 
assesses whether the intercepts in the resulting regression model are equal to 
zero.26 In contrast, Huberman and Kandel(1985a) propose a joint F test of (20) 

25 More generally, suppose the L + 1st portfolio is uncorrelated with each of the first L portfolios 
and has minimum variance among all such orthogonal portfolios. A simple generabation of the 
argument in Fama (1976, page 373) establishes that a,,,, = 1-Cf=l a,, for all r .  It then follows 
(details are available on request) from the results of Huberman and Kandel (1985a) that the L + 1 
portfolios span the minimum-variance frontier if and only if some combination of the first L 
portfolios is on the frontier. Thus, a test of the latter hypothesis can be conducted as in this section 
provided that the minimum-variance orthogonal portfolio is observable. 

26 An intermediate approach would be to first test (21) directly and then, provided the null is not 
rejected, proceed to test (20).Once again, the test of (21) is an F test, and the exact distribution under 
the alternative may be determined along the lines of our earlier analysis. Of course, this test statistic 
does require that we observe the return on the L + 1spanning portfolios. 



1148 MICHAEL R. GIBBONS, STEPHEN A. ROSS, AND JAY SHANKEN 

and (21) against an unrestricted alternative; however, the distribution of this 
statistic has not been studied under the alternative. 

8. SUMMARY AND FUTURE RESEARCH 

While this paper focuses on a particular hypothesis from modern finance, this 
apparently narrow view is adopted to gain better insight about a broad class of 
financial models which have a very similar structure to the one that we examine. 
The null hypothesis of this paper is a central hypothesis common to all risk-based 
asset pricing the~ries .~ '  The nature of financial data and theories suggests the use 
of multivariate statistical methods which are not necessarily intuitive. We have 
attempted to provide some insight into how such tests function and to explain 
why they may provide different answers relative to univariate tests that are 
applied in an informal manner. In addition, we have studied the power of our 
suggested statistic and have isolated factors which will change the power of the 
test. There are at least two natural extensions of this work, and we now discuss 
each in turn. 

First, the multivariate test considered here requires that the number of assets 
under study always be less than the number of time series observations. This 
restriction is imposed so that the sample variance-covariance matrix remains 
nonsingular. A test statistic which could handle situations with a large number of 
assets would be in t e re~ t ing .~~  

Second, we have not been very careful to specify the information set on which 
the various moments are conditioned. Gibbons and Ferson (1985), Grossman and 
Shiller (1982), and Hansen and Singleton (1982, 1983) have emphasized the 
importance of this issue for empirical work on positive models of asset pricing. 
Our methods provide a test of the ex ante unconditional efficiency of some 
portfolio-that is, when the opportunity set is constructed from the uncondi- 
tional moments, not the conditional moments. When the riskless rate is changing 
(as it is in all of our data sets), then our methods provide a test of the conditional 
efficiency of some portfolio given the riskless rate. Of course, such an interpreta- 
tion presumes that our implicit model for conditional moments given the riskless 
rate is correct. Ferson, Kandel, and Stambaugh (1987) and Shanken (1987a) 
provide more detailed analysis of testing conditional mean-variance ef f i~ iency.~~ 

27 If there is no riskless asset, then the null hypothesis becomes nonlinear in the parameters, for the 
intercept term is proportional to (1 - /3,,). Gibbons (1982) has explored this hypothesis using 
statistics which only have asymptotic justification. These statistics have been given an elegant 
geometric interpretation by Kandel (1984). While we still do not have a complete characterization of 
the small sample theory, Shanken (1985, 1986) has provided some useful bounds for the finite sample 
behavior of these tests. 

'%ee Affleck-Graves and McDonald (1988) for some preliminary work on this problem. 
2 9 A ~Hansen and Richard (1987) emphasize, efficiency relative to a given information set need not 

imply efficiency relative to a subset. This implication does hold given some additional (and admittedly 
restrictive) assumptions, however. Let the information set, I ,  include the riskless rate, and let p be 
efficient, given I. Assume betas conditional on I are constant and 8(5 ,  lr,,, I )  is linear in 5,.It 
follows that 8((,lrp,, I )  = ,Bi,r,,, and by iterated expectations I ( ? ,  lr,,, R,,) = /3,,rpr, where R,, is 
the riskless rate. Thus, p is on the minimum-variance frontier, given R,,, and the methods of thls 
paper are applicable. 
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APPENDIX 

DERIVATION OF EQUATION (7) 

To understand the derivation of (7),first consider the basic portfolio problem: 

min: w'fibv 

subject to w'F = m ,  a mean constraint, where w = the vector of N + 1 portfolio weights; f i=  the 
variance-covariance matrix of N + 1 assets; and F = the vector of N + 1 sample mean excess returns. 
Without loss of generality, we assume that p itself is the first component of our excess return vector. 
Thus, F' = ( F  , F ' )  where F2 is a column vector of mean excess returns on the original N assets. The 

p ?
first-order conditions for this problem are: 

and 
m 


Y = m '  


where p, is the Lagrange multiplier. Hence, 

mean


[ standard deviation l2= & 


-- I? 

,8*2, 

Finally, to arrive at (7)we need to establish that: 

where in contrast to the rest of the paper ,f is-now the maximum likelihood estimator. The iast 
equality follows from rewriting the elements of /3,, s j ,in terms of V and 2 and then finding V-' 
using the formula for a partitioned inverse. These steps lead to: 

Then straightforward algebra yields: 
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Since &, = 7, - p  ̂ 7 and since the first term on the left-hand side of the above equation is 8*2 and the 
p . p

first term on the nght-hand side is 8,2,we can rewrite the last equation as: 

8 * 2  = 8 , 2 + & 1 2 - 1 &  

P P 


Thus, 

and the equality given in (7) has been justified. 
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