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Learnability of an Equilibrium with Private Information

Abstract

This paper investigates the learnability of an equilibrium with private information. Our
model consists of di¤erent types of agents where agents of each type have their own private
information about an exogenous variable and conduct adaptive learning with a heterogeneously
misspeci�ed perceived laws of motion (PLM) that includes only this variable. The analyti-
cal result is that the learnability of the equilibrium is weakly increased as PLMs of di¤erent
types become heterogeneous and misspeci�ed by private information. The numerical analysis
shows that in a New Keynesian model with private information about fundamental shocks, the
Taylor principle of monetary policy continues to be a su¢ cient condition for the learnability.
These results are applicable to a broad class of equilibria attainable under heterogeneous and/or
misspeci�ed learning.

JEL classi�cation: C62; D83; E52

Keywords: Adaptive learning; Private information; Heterogeneous misspeci�cation; Learn-
ability; Taylor principle

1



1 Introduction

Rational expectations are based on an unlikely assumption that agents have perfect knowledge

about the structure of the economy. Recent macroeconomic research has incorporated the con-

cept of adaptive learning as an alternative framework in which agents are assumed to formulate

their forecasts by estimating econometric models (i.e., perceived laws of motion, PLMs) through

least-squares techniques (see Bray, 1982; Evans and Honkapohja, 2001, 2008). In this frame-

work, it has been investigated whether an equilibrium attainable under adaptive learning is

stable, that is, learnable. If agents�beliefs and their forecasts converge around the equilibrium,

the equilibrium is considered to be learnable. Learnability has been increasingly emphasized

as a criterion for selecting a stable equilibrium among nonexplosive multiple equilibria (e.g.,

Honkapohja and Mitra, 2004a). The necessary conditions imposed on macroeconomic policies

for learnability have been investigated (e.g., Bullard and Mitra, 2002; Evans and Honkapohja,

2006; Guse, 2008; Anufriev et al., 2013).

Learnability has been analyzed in di¤erent structures of information sets of economic vari-

ables held by agents. Evans and Honkapohja (2001) provide a benchmark framework where

each agent has a full information set to form a correctly speci�ed PLM including all relevant

variables (hereafter, CS learning). Branch (2004), Guse (2008), and Hommes and Zhu (2014)

focus on the restricted perceptions equilibrium (hereafter, RPE) where agents�information sets

are limited so that they are constrained to form underparameterized PLMs excluding unob-

servable variables. Adam et al. (2006) and Berardi (2007) introduce heterogeneity in agents�

information sets, where a fraction of agents have limited information sets while other agents

have full information sets. Honkapohja and Mitra (2004b) and Muto (2011) assume that the

private sector and the central bank have di¤erent information sets.

This paper investigates the learnability of an equilibrium in the presence of private informa-

tion about economic variables. There exist economic variables that are observable by speci�c

agents and unobservable by others. For example, a preference shock possessed by a household

continues to be observable only for this household (see Allen and Gale, 2004). In �nancial mar-
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kets, the pro�tability of a borrower tends to be observable only by this borrower (see Stiglitz

and Weiss, 1981). Then, our model consists of di¤erent types of agents, and agents of each type

have their own private information about an exogenous variable, which makes information sets

held by di¤erent types of agents limited and heterogeneous.1 Under adaptive learning, each

type of agent is constrained to form a heterogeneously misspeci�ed PLM that includes only this

observable variable (hereafter, HM learning). In this framework, there exists a generalization

of the RPE, which we call a heterogeneous misspeci�cation equilibrium (hereafter, HME). By

investigating the learnability of the HME in a general multivariate expectations model, this

paper provides analytical results about whether and how the learnability is a¤ected by the exis-

tence of private information. Next, in a basic New Keynesian (NK) macroeconomic model, this

paper evaluates analytically and numerically the impact of private information on learnability

conditions imposed on monetary policy with a contemporaneous data interest rate rule. In ad-

dition, this paper examines the robustness of the impact when agents include lagged endogenous

variables into their PLMs as public information.

The result of this paper is that the learnability of an equilibrium is weakly increased by

the existence of private information about exogenous variables. Speci�cally, the learnability

is weakly increased as the degree of heterogeneity in PLMs caused by private information is

increased. If exogenous variables have similar stochastic characteristics, the learnability is also

weakly increased as the degree of misspeci�cation in PLMs increases. Honkapohja and Mitra

(2006) show that an equilibrium under several types of heterogeneous learning is largely more

learnable than the equilibrium under CS learning.2 Our results complement their results by

indicating that the heterogeneity in PLMs also leads to strong learnability of an equilibrium.

Second, in the NK model with private information about fundamental shocks, this paper

shows that the Taylor principle� to raise nominal interest rates more than one-for-one in re-

1Branch (2007) provides evidence that information sets are limited and heterogeneous using the Michigan
survey of in�ation expectations. Bovi (2013) uses the survey data of the European Commission to show that
heterogeneous beliefs are persistent in UK citizens.

2Honkapohja and Mitra (2006) consider 1) heterogeneous initial beliefs on parameters in agents�homogeneous
PLMs, 2) heterogeneous learning algorithms (e.g., updating functions or gain parameters), and 3) structural
heterogeneity in which the forecasts of di¤erent agents have di¤erent e¤ects on the dynamics of the economy.
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sponse to an increase in in�ation (see Taylor, 1993)� is a su¢ cient condition to ensure the

learnability of an equilibrium. Bullard and Mitra (2002) obtain the same result under CS learn-

ing. Our result con�rms that their result is robust to the existence of private information about

fundamental shocks.

Finally, the numerical analysis �nds that the impact of private information on learnability

is economically signi�cant. In particular, the impact becomes more signi�cant as the degree

of heterogeneity in PLMs is increased, while the impact is unchanged even if the degree of

misspeci�cation in PLMs is increased. Furthermore, if lagged economic variables are included

in PLMs as public information, the impact of private information is reduced, but remains

signi�cant.

These results are applicable to models under adaptive learning with a variety of agents�

information sets; for example, a full information set considered in the benchmark analysis of CS

learning, and a limited information set of exogenous variables assumed in the analysis of the

RPE. In our model, those information sets can be reproduced by accommodating the degree of

limitation and heterogeneity of information sets of exogenous variables. Hence, the results of

this paper are robust for a broad class of heterogeneous and/or misspeci�ed learning.

This paper is closely related to the literature on adaptive learning in the presence of private

information. Marcet and Sargent (1989a) establish learning schemes for an equilibrium under

private information about economic variables. Branch and McGough (2011) study business

cycle dynamics under adaptive learning and private information. Heinemann (2009) consid-

ers the existence of private noisy signals of economic variables and investigates their e¤ects

on learnability. It has not, however, been investigated whether/how the private information

that continuously makes agents�PLMs heterogeneously underparameterized has an impact on

learnability.

Our analysis is also related to the literature on heterogeneity and misspeci�cation in learning.

Adam et al. (2006) and Berardi (2007, 2009) consider heterogeneous and misspeci�ed learning

where a fraction of agents form underparameterized PLMs, while other agents form correctly
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speci�ed PLMs. Their models can be interpreted as allowing the existence of private information

in the sense that the latter agents have the full information that the former agents do not have,

but their models do not include a plausible case where each type of agent has his/her own

private information and forms a heterogeneously misspeci�ed PLM. Meanwhile, Honkapohja

and Mitra (2004b) and Muto (2011) consider a symmetric case where the private sector and the

central bank have their own private information. However, their models include not only the

heterogeneity in PLMs but also structural heterogeneity, and hence the impact of the former

heterogeneity is not indicated independently.

Furthermore, heterogeneously misspeci�ed PLMs in our paper are considered in the context

of the literature introducing dynamic predictor selection, which was originally established by

Brock and Hommes (1997). Branch and Evans (2006, 2007), for example, analyze an econ-

omy where agents are allowed to choose among a list of heterogeneously misspeci�ed PLMs

(whereas in the present paper, each type of agent is constrained to form a speci�c heteroge-

neously misspeci�ed PLM).3 Their model appears to allow the existence of private information,

but the model premises homogeneity in agents�information sets so that all agents can choose

among the same list of the PLMs. Actually, the existence of private information causes intrinsic

heterogeneity in information sets and constrains each agent to hold a speci�c heterogeneously

misspeci�ed PLM. Thus, our paper focuses on the framework of heterogeneous information sets,

which is di¤erent from that in dynamic predictor selection models.

The paper is structured as follows. The next section presents our model and provides a

benchmark analysis about learnability without private information, that is, CS learning. Section

3 introduces HM learning with private information and investigates the dynamics of the HME.

Section 4 examines the impact of private information on the learnability of an equilibrium.

Section 5 evaluates numerically the impact in a basic NK model. Finally, we present our

conclusions.

3Dynamic predictor selection is also employed in di¤erent ways by Branch and McGough (2010), Guse (2010),
Berardi (2011), Anufriev et al. (2013), and Pfajfar (2013).
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2 Model

2.1 Setup

We establish the general form of the multivariate linear expectations model. The economy is

represented by two vector equations:

yt = A+BE�t yt+1 + Cwt; (1)

wt = �wt�1 + vt: (2)

The equations represent the dynamics of the endogenous variables and the evolution of the

exogenous variables. The economy has m endogenous variables and n exogenous variables. yt

is an m � 1 vector of endogenous variables at time t. wt = (w1t; : : : ; wnt)
0 is an n � 1 vector

of autoregressive exogenous variables. The standard deviation of wit for each i is de�ned by

�ii > 0, and the correlation matrix of wt is de�ned by � �
�
�ij
�
1�i;j�n, where �ij = �ji and

�ij 2 [0; 1] denotes the correlation between wi and wj for each i; j 2 f1; : : : ; ng. vt is an n � 1

vector of fundamental shocks with means of zero that drive the stochastic process of wt.4 Matrix

A is an m � 1 vector of constant terms. B is an m �m coe¢ cient matrix of E�t yt+1. C is an

m�n coe¢ cient matrix of wt, and � is an n�n matrix of coe¢ cients of wt. E�t is the operator

of the aggregate expectation of yt+1 at time t, which is not necessarily rational under adaptive

learning. The model is purely forward-looking, but it can be applied to the analysis of models

with lagged endogenous variables yt�1.

For ease of calculation, we impose regularity assumptions on these parameters in Appendix

A. In particular, � is assumed to be a diagonal and nonnegative matrix whose diagonal elements

exist in the interval [0; 1): � � diag ('i)1�i�n where 0 � 'i < 1 for each i. In addition, � is

assumed to be a nonnegative matrix, in which 0 � �ij � 1 for each i; j 2 f1; :::; ng. These

assumptions are not crucial for our analysis, as most stationary linear models in the literature

can be transformed to satisfy these conditions.

4Note that exogenous variables with nonzero and heterogeneous means can be transformed to the form (2).
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2.2 CS Learning

Before considering the existence of private information, let us review the benchmark of adaptive

learning with a full information set to make it easier later to highlight the impact of private

information. If agents could formulate rational expectations, the system (1)�(2) has a nonex-

plosive fundamental REE, which takes the form of a minimal state variable (hereafter, MSV)

solution (see McCallum, 2004):

yt = a+ cwt + "t; (3)

where a is an m � 1 vector of constant terms, c is an m � n coe¢ cient matrix for wt, and "t
is an m � 1 vector of error terms that are perceived to be white noise. Using the method of

undetermined coe¢ cients, the solution (�a; �c) is uniquely obtained as

�a = (Im �B)�1A; (4)

�c = B�c� + C; (5)

where Im is an m-dimensional identity matrix. Note that the constant terms vector �a corre-

sponds to the steady state of the fundamental REE.

If agents do not have enough knowledge to develop rational expectations, agents might adopt

adaptive learning using all available data to formulate their forecast E�t yt+1. If all economic

variables up to time t, fys; wsgts=1, are observable for all agents, they can estimate a correctly

speci�ed PLM of the form of the MSV solution (3). Using the estimated parameters (a; c),

agents formulate E�t yt+1 = a + c�wt, which is incorporated into Eq. (1) and yields the actual

law of motion (hereafter, ALM) of the economy, yt = (A+Ba) + (Bc� + C)wt.5 Evans and

Honkapohja (2001, chapter 2) show that the global convergence of (a; c) in real-time learning

through least-squares techniques is governed by the ordinary di¤erential equation (hereafter,

5Forming E�t yt+1 using an information set including current variables is considered by Honkapohja and Mitra
(2006), McCallum (2007), Ellison and Pearlman (2011), and Bullard and Eusepi (2014). Evans and Honkapohja
(2001) indicate that excluding those variables from information sets might provide di¤erent conclusions about
the learnability of an equilibrium, but the analysis of alternative frameworks is omitted here because of limited
space.
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ODE):
d

d�
(a; c) = T (a; c)� (a; c) ; (6)

where T (a; c) � (Ta (a) ; Tc (c)) = (A+Ba;Bc� + C) is the mapping from the PLM (a; c) to

the ALM T (a; c), and � denotes notional time. If the ODE is globally asymptotically stable,

then (a; c) converges to the solution (4)�(5), meaning that the fundamental REE is found to be

learnable under CS learning.

3 HM Learning

In what follows, we consider adaptive learning by agents with private information and �nd the

dynamics of an equilibrium under HM learning.

3.1 Private Information

First, we introduce private information about exogenous variables wt, such that each agent has

access to information on only a subset of those variables (see Marcet and Sargent, 1989a).6

Assumption 1 For any i 2 f1; :::; ng, the evolution of an exogenous variable fwisgts=1 is ob-

servable for the proportion 1
n
of agents (hereafter, type i) and unobservable for agents of other

types.

For analytical tractability, the population of each type is assumed to be the same at 1
n
, but

the distribution of the populations of di¤erent types are not important for our analysis (see

Section 4.3). Assumption 1 implies that agents of type i recognize the stochastic characteristics

of wit and do not recognize the correlations
�
�ij = �ji

	n
j 6=i and the quantity n of exogenous

variables. In this situation, the agent of type i has the set of public and private information

fys; wisgts=1, which is limited and di¤erent from the information sets held by other types in

6Heinemann (2009) establishes another framework of private information in which agents receive di¤erent
private noisy signals about a single economic variable.
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terms of fwitgni=1.7 This type of private information might describe a feature of idiosyncratic

shocks held by individual agents in the economy; for example, a preference shock in an agent�s

utility (see Allen and Gale, 2004).

Under Assumption 1, the number n and the correlations
�
�ij
	n
i;j=1

of exogenous variables may

be treated as the measures of the limitation and heterogeneity in information sets, respectively.

If n = 1, the information set of each agent is reduced to the full information set in Section

2.2. The larger n is, the more limited each information set is relative to the full one. Thus, n

represents not only the quantity of privately observable variables but also the degree of limitation

of each information set. Similarly, if �ij = �ji = 1 for some types i and j (and hence, 'i = 'j

and wit
�ii
=

wjt
�jj
), the information sets of both types are perfectly homogeneous as if both types

observed the same variable. The smaller �ij is, the more heterogeneous are both information

sets. Thus, the correlations represent the degree of heterogeneity in information sets of di¤erent

types.

3.2 Heterogeneous Misspeci�cation Equilibrium

Next, we consider adaptive learning with the limited and heterogeneous information sets (that

is, HM learning). In contrast to agents with the full information set in Section 2.2, the agent

of type i with the information set fys; wisgts=1 is constrained to estimate a heterogeneously

misspeci�ed PLM:

yt = ai + ciwit + "it; (7)

which underparameterizes the MSV solution (3) and di¤ers from the PLMs of other types.

Parameters ai and ci are m � 1 vectors of constant terms and coe¢ cients, and "it is an m � 1

vector of error terms that are perceived to be white noise.8 The agent estimates the parameter

7Note that Marcet and Sargent (1989a) consider the private information of not only exogenous variables but
also endogenous variables. They also consider the existence of hidden state variables that are unobservable by all
agents. Our assumption is designed to focus on clarifying the impact of private information on the learnability
of an equilibrium.

8Agents might include the vector of lagged endogenous variables yt�1 in the PLM as public information. This
case will be analyzed in Sections 4.2.3 and 5.3.2. On the other hand, we do not assume that agents include
sunspot variables in their PLMs, because under the information sets that include current endogenous variables

9



matrix �0i � (ai; ci) using a recursive least-squares (hereafter, RLS) method, but does not

recognize the misspeci�cation in the PLM (7) as wit and "it are orthogonalized. Finally, using

the PLM (7) and the estimated �i, the agent formulates the forecast E
�
ityt+1 as

E�ityt+1 = ai + ci'iwit; (8)

where E�it is the operator of expectations formed by type i at time t.

In this framework, the misspeci�cation and heterogeneity in the PLMs are characterized as

follows:

Lemma 1 Given Assumption 1 and the PLMs of the form (7) for all i 2 f1; : : : ; ng,

1. the PLMs become more misspeci�ed as the degree of limitation of each information set, n,

increases;

2. the PLMs become more heterogeneous as the degree of heterogeneity of information sets,

�ij for any i; j, decreases.

Later, the impacts of private information will be found by examining the e¤ects of n and�
�ij
	n
i;j=1

on the learnability conditions.9

The aggregate PLM and the aggregate forecast E�t yt+1 in Eq. (1) are determined by Eqs. (7)

and (8) of all types. For simplicity, let us assume that forecasts of di¤erent types fE�ityt+1g
n
i=1

have equal contributions to the dynamics of the economy.10 Then, the aggregate PLM is de�ned

as the average of the PLMs of all types in the same form as the MSV solution (3):

yt = a+ cwt +
1

n

nX
i=1

"it; (9)

yt, sunspot equilibria cannot be learnable (see Evans and Honkapohja, 2001, section 10.5.1). Although Evans
and McGough (2005) �nd a speci�c situation in which sunspot equilibria are learnable under those information
sets, such a situation is treated as a special case and will not be discussed in our paper.

9The literature measures the degree of heterogeneity in PLMs by the proportions of di¤erent agents who
specify di¤erent forms of PLMs (e.g., Branch and Evans, 2006; Berardi, 2007), but their heterogeneity can be
reproduced in our model by accommodating n and

�
�ij
	n
i;j=1

(see Section 4.3).
10Note that the proportions of contributions of the di¤erent forecasts do not a¤ect our results (see Section

4.3).
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where a � 1
n

Pn
i=1 ai is the average of the constant term vectors for all types, and c � 1

n
(c1; :::; cn)

is an m � n matrix that combines the coe¢ cients fcigni=1 of the PLMs of the form (7) for all

types and multiplies them by 1
n
. With the aggregate PLM (9), the aggregate forecast E�t yt+1 is

formulated by

E�t yt+1 = a+ c�wt; (10)

where E�t is the operator of the average of heterogeneous forecasts.

The ALM of the economy depends upon E�t yt+1 in Eq. (10). Substituting Eq. (10) into the

system (1)�(2), the ALM is determined by

yt = (A+Ba) + (Bc� + C)wt: (11)

The stability of the equilibrium attainable under HM learning is subject to whether the

aggregate parameters �0 � (a; c) converge to bounded values; the dynamics of � is established

by the real-time learning processes of agents of all types for f�ig
n
i=1. If the PLM (7) were

correctly speci�ed, the E-stability principle of Evans and Honkapohja (2001, chapter 2) would

hold; that is, the convergence of parameters in real-time learning would be characterized by

the ODE that could be made by a mapping from the PLM (9) to the ALM (11). Under

HM learning, where the PLMs are underparameterized, the principle does not necessarily hold,

and the convergence of f�ig
n
i=1 is inferred from the stochastic recursive algorithms of f�ig

n
i=1

formulated by the PLMs of the form (7) for all i and the ALM (11). As a result, we �nd that

the global convergence of f�ig
n
i=1 is governed by the following associated ODE for aggregate

parameters (a; c):
d

d�
(a; c) = (Ta (a) ; Tc (c))� (a; c) ; (12)

where � denotes notional time and

Ta (a) � A+Ba;

Tc (c) � (Bc� + C)

�
1

n
	

�
;

	 � diag (�ii)1�i�n � � � diag (�ii)
�1
1�i�n :
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The derivation of the ODE is in Appendix B. The mapping (Ta (a) ; Tc (c)) provides the coe¢ -

cients of the forecasts of yt updated by agents of all types using their limited and heterogeneous

information sets. The ODE of a in Eq. (12) is equivalent to each ODE of faigni=1 as a is an

arithmetic average of faigni=1 which have the same form of ODEs. The ODE of c in Eq. (12) is

a combination of the ODEs of fcigni=1
The e¤ects of misspeci�cation n and heterogeneity

�
�ij
	n
i;j=1

on the convergence of the

aggregate parameters (a; c) are realized through 1
n
	 in Tc (c). Thus, the ODE (12) includes the

benchmark ODE (6) under CS learning as follows:

Proposition 1 The ODE (12) under HM learning is equivalent to the ODE (6) under CS

learning

1. if n = 1 (no limitation) or

2. if �ij = 1 for all i; j 2 f1; :::; ng (no heterogeneity).

The �rst part is trivial, and the second part is proved by the fact that if �ij = 1 for all i; j

(and hence 'i = 'j and
wit
�ii
=

wjt
�jj

for all i; j), then
�
1
n
	
�
wt = wt, which makes the mapping

Tc (c) under HM learning equivalent to the mapping for c under CS learning in Eq. (6). The

second part means that if privately observable variables are perfectly correlated, the existence

of private information has no impact on the dynamics of the economy under adaptive learning

although the PLMs of the form (7) remain misspeci�ed at an individual level. This is intuitive

because in this situation, all information sets of di¤erent types are perfectly homogeneous as if

there exists no private information.

An equilibrium under HM learning is attained if the ODE are globally asymptotically stable

such that parameter estimates (a; c) converge to the �xed point (�a; �c) of the ODE:

�a = (Im �B)�1A; (13)

�c = (B�c� + C)

�
1

n
	

�
; (14)

12



where the �xed point �a corresponds to the steady state of the equilibrium. Let us call the equi-

librium with the �xed point (13)�(14) the heterogeneous misspeci�cation equilibrium (HME):

De�nition 1 The HME is a stationary stochastic process for fytg1t=0 following the system (1)�

(2) given that fE�t yt+1g
1
t=0 is formed by the aggregation of the PLMs of the form (7) for all i

with the parameters f�0i = (ai; ci)g
n
i=1 determined at the �xed point (13)�(14) of the ODE (12).

It is trivial that Eqs. (13)�(14) have a unique solution:

Proposition 2 There exists a unique HME.

3.3 Observable Steady State

We also provide the ODE when the steady state �a of the HME is observable for all agents. An

observable steady state is a popular assumption in recent macroeconomic studies. In particular,

a nonlinear macroeconomic model tends to be log-linearized around a steady state (or a point

close to the steady state) by assuming the steady state to be observable (e.g., Bullard and Mitra,

2002; Mitra et al., 2013). If the steady state �a is observable for agents of all types, agents of

type i can estimate a PLM with ai �xed at �a:

yt = �a+ ciwit + "it; (15)

which is equivalent to the PLM excluding the constant term: ~yt = ciwit + "it where ~yt � yt � �a

(see Slobodyan and Wouters, 2012).11

In this situation, the global convergence of f�0i = (�a; ci)g
n
i=1 of all types is subject to only

the c part of the ODE (12). If the ODE is globally asymptotically stable, matrix c converges

to the �xed point given by Eq. (14). Regardless of whether the steady state �a is observable or

not, the HME (13)�(14) is a unique equilibrium under HM learning.

11Note that if the means of fwitgni=1 are nonzero and/or heterogeneous, the �xed points of the constant terms
of the PLMs of all types should be di¤erent from the steady state of yt and/or heterogeneous. However, this
case never violates our analytical results about the learnability.
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4 Learnability of HME

By examining the learnability of the HME, we investigate the impact of private information on

the learnability of an equilibrium. First, we provide the learnability conditions of the HME.

Next, we examine the impact of heterogeneity and misspeci�cation of the PLMs on the learn-

ability, separately. Finally, we discuss the connections between the informational structures of

our model and the related literature. For simplicity of exposition, we introduce the notation

� [X] as the largest value of the real parts of the eigenvalues of the matrix X.

4.1 Learnability Conditions

If the steady state �a is unobservable, the learnability of the HME is ensured by the stability of

the ODE (12). According to Evans and Honkapohja (2001, section 6.6), the ODE is globally

asymptotically stable if and only if their Jacobians,

D (Ta (a)� a) = B � Im; (16)

D (Tc (c)� c) =

�
�

�
1

n
	

��0

B � Imn; (17)

have all negative real parts of eigenvalues; that is, � [B] < 1 and �
h�
�
�
1
n
	
��0 
Bi < 1,

respectively.12 If the steady state �a is observable, the stability is governed solely by the c�s ODE

of (12), which is globally asymptotically stable if and only if Eq. (17) has all negative real parts

of eigenvalues; that is, �
h�
�
�
1
n
	
��0 
Bi < 1.

Matrix �
�
1
n
	
�
in the stability conditions has the following characteristics:

Lemma 2 For any n � 1 and i; j 2 f1; � � � ; ng,

1. all eigenvalues of �
�
1
n
	
�
are real and exist in the interval [0; 1);

2.
d�[�( 1n	)]

d�ij
� 0;

12Actually, the ODE can also be asymptotically stable if they have one or more zero real parts of eigenvalues,
which are ruled out in this paper as nongeneric cases.
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3.
d�[�( 1n	)]

d'i
� 0.

The proof of Lemma 2 is in Appendix C. Lemma 2.1 means 0 � �
�
�
�
1
n
	
��
< 1 so that if

� [B] < 1, then �
h�
�
�
1
n
	
��0 
Bi < 1.

Therefore, the learnability conditions of the HME are summarized as follows:

Proposition 3 When the steady state �a is unobservable (respectively, observable), the HME is

learnable if and only if � [B] < 1
�
�
h�
�
�
1
n
	
��0 
Bi < 1�.

4.2 Impact of HM Learning

Next, we clarify the impact of HM learning on the learnability. The degree of HM learning is

represented by heterogeneity
�
�ij
	n
i;j=1

and misspeci�cation n in the PLMs (Lemma 1). We

show the impacts of heterogeneity and misspeci�cation in HM learning, separately. Proposition

3 indicates that if � [B] � 0, the HME is always learnable regardless of the observability of �a.

Hereafter, we restrict our discussions to the case of � [B] > 0 when we provide the learnability

conditions.

4.2.1 Impact of Heterogeneity

Proposition 3 means that when the steady state �a is unobservable, the learnability of the HME

is independent of
�
�ij
	n
i;j=1

. When �a is observable and � [B] > 0, the learnability is reduced

as �
h�
�
�
1
n
	
��0 
Bi increases. According to Lemma 2.2, � �� � 1

n
	
��
is weakly increased as�

�ij
	n
i;j=1

increase. Thus:

Proposition 4 For any n � 1, when the steady state �a is unobservable (respectively, observ-

able), the learnability condition of the HME is independent of (weakly strengthened by) an in-

crease in the correlations
�
�ij
	n
i;j=1

of exogenous variables.
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That is, the existence of heterogeneity in the PLMs never makes an equilibrium less learnable.

Furthermore, an increase in the degree of heterogeneity in the PLMs weakly increases the

learnability.

The strong learnability of an equilibrium under heterogeneous learning results from the

sluggish updating of the aggregate forecast E�t yt+1. Under CS learning, if an exogenous variable

wit evolves, all agents update their forecasts fE�ityt+1g
n
i=1 equivalently so that E

�
t yt+1 is updated

to the same degree. Under heterogeneous learning, in contrast, E�t yt+1 is not updated to the same

degree as under CS learning, because only the agent of type i updates his/her forecast E�ityt+1,

while the other types of agents do not to the same degree. If PLMs are highly heterogeneous

by low correlations of fwitgni=1, an evolution of wit is not synchronized with the evolutions of

fwjtgnj 6=i to similar degrees, and hence the forecasts of the other types
�
E�jtyt+1

	n
j 6=i are not

updated compared with the forecast of type i, E�ityt+1. This sluggishness of the updating of the

aggregate forecast E�t yt+1 leads to the strong learnability of an equilibrium.
13 Note that when

the steady state is unobservable, such sluggishness under heterogeneous learning disappears

because forecasts of all agents are always updated through the estimation of the constant terms

faigni=1.

This result provides an important result on the impact of HM learning caused by private

information as a whole. Although the proposition shows the impact of only heterogeneity in

the PLMs on the learnability, this feature holds for any degree of misspeci�cation (n � 1).

In addition, the HME is the least learnable if the heterogeneity vanishes under the perfect

correlations
�
�ij = 1

	n
i;j=1

, where HM learning is equivalent to CS learning in terms of the

dynamics of the economy (Proposition 1).14 Therefore:

Proposition 5 When the steady state �a is unobservable (respectively, observable), an equilib-

13In a di¤erent framework of heterogeneous learning, Berardi (2007) �nds numerically that heterogeneity in
PLMs makes an equilibrium more learnable.
14Proposition 3 provides the learnability of an equilibrium under CS learning as follows: when the steady

state �a is unobservable (respectively, observable), an equilibrium under CS learning is globally asymptotically
stable if and only if � [B] < 1 (� [�0n 
B] < 1). Note that if �ij = 1 (and hence 'i = 'j) for all i; j, then
�
�
�n
�
1
n	n

��
= � [�n]. This condition corresponds to Proposition 10.3 in Evans and Honkapohja (2001).
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rium under HM learning is as learnable as (not less learnable than) an equilibrium under CS

learning.

That is, HM learning (that is, the existence of private information) never makes an equilibrium

less learnable.

4.2.2 Impact of Misspeci�cation

The impact of the existence of misspeci�cation in the PLMs is automatically found by Propo-

sition 5:

Corollary 1 The existence of misspeci�cation in the PLMs never makes an equilibrium less

learnable.

On the other hand, the degree of misspeci�cation does not have a monotonic relationship

with the learnability as the degree of heterogeneity has in Proposition 4. Proposition 3 in-

dicates that if �a is observable, the learnability is nonmonotonically related with n through

�
h�
�
�
1
n
	
��0 
Bi.

However, a monotonic relationship between the degree of misspeci�cation and the learnabil-

ity is found in a plausible case where exogenous variables have similar stochastic characteristics:

�ii = � > 0, �ij = � 2 [0; 1), and 'i = ' 2 [0; 1) for any i; j. These characteristics are

typical of, for example, idiosyncratic shocks held by similar economic agents. In this case,

�
�
�
�
1
n
	
��
= '

n
(1 + (n� 1) �), and d�[�( 1n	)]

dn
� 0 with the equality i¤ ' = 0. Thus:

Proposition 6 Given exogenous variables with the stochastic characteristics of �ii = � >

0, �ij = � 2 [0; 1), and 'i = ' 2 [0; 1) for any i; j 2 f1; � � � ; ng, if the steady state �a is

unobservable (respectively, observable), the learnability condition of the HME is independent of

(weakly weakened by) an increase in the quantity n of exogenous variables.
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That is, in a situation where exogenous variables have similar stochastic characteristics, the

learnability of the HME is weakly increased by an increase in the degree of misspeci�cation in

the PLMs.

The strong learnability of an equilibrium under misspeci�ed PLMs also results from the

sluggish updating of the aggregate forecast E�t yt+1, as is found in the mechanism under hetero-

geneous PLMs. Under CS learning, agents update their forecasts in response to the evolution of

any variable. Under misspeci�ed learning, agents update their forecasts only if their observable

variables evolve. This sluggishness of the updating of individual forecasts leads to the strong

learnability of the HME.15

4.2.3 Implications

Our results are summarized as follows. The existence of private information weakly increases

the learnability of an equilibrium. Private information causes the heterogeneity and misspec-

i�cation in agents�PLMs, the degrees of which depend upon the stochastic characteristics of

privately observable exogenous variables. The learnability is weakly increased as the degree

of heterogeneity in the PLMs is increased, and if exogenous variables have similar stochastic

characteristics, the learnability is also weakly increased as the degree of misspeci�cation in the

PLMs increases.

Regarding the policy implications, the results of the paper suggest that the existence of pri-

vate information imposes no additional constraint on ensuring the learnability of an equilibrium.

In the real economy, there exists a large amount of private information that tends to make an

equilibrium more learnable. If a government aims to ensure the learnability of an equilibrium

with private information, the government should follow stabilization policies under CS learning

as if there exists no private information.

One might think that the impact of private information should disappear if agents include

15Note that even if there exist an in�nitely large number of exogenous variables, individual forecasts continue
to be updated as long as exogenous variables are correlated and remain informative about the evolution of
unobservable variables.
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the lagged endogenous variable yt�1 in their PLMs as public information. Agents of all types

have the information fysgt�1s=1, which re�ects past evolutions of unobservable exogenous variables,

and hence including yt�1 into PLMs seems to cover the disadvantage of updating in the presence

of private information. However, the evolutions of unobservable exogenous variables cannot be

perfectly identi�ed as long as the number of unobservable exogenous variables for each agent is

greater than that of observable endogenous variables (n� 1 > m). Hence, the impact of private

information is likely to remain even if yt�1 is included in the PLMs. In Section 5.3.2, this case

will be illustrated in a basic NK model.

4.3 Connections to Other Frameworks

Finally, our analytical results hold true in a variety of informational structures that are lim-

ited and/or heterogeneous in terms of fwitgni=1, because Assumption 1 is able to reproduce

those structures by accommodating the characteristics of fwitgni=1; that is, n,
�
�ij
	n
i;j=1

, and

f'i; �iig
n
i=1.

As an example, let us reproduce a limited and homogeneous information set considered in

the RPE where there exists an exogenous variable unobservable by any agent (e.g., Evans and

Honkapohja, 2001, section 13.1.1). In our model, suppose that there are a large number of

exogenous variables (n ' 1) such that the population of each type is in�nitesimal ( 1
n
' 0), and

such that an exogenous variable w1t is imperfectly correlated with the other variables fwitgni=2
(f�1i = �i1 < 1g

n
i=2), while the other variables are perfectly correlated (

�
�ij = 1

	n
i;j=2

). The

HME in this structure is asymptotically equivalent to an RPE where in the presence of two

exogenous variables fwitg2i=1, all agents have information on only w2t and form a misspeci�ed

PLM: yt = a+ c2w2t.16 See Appendix D for other examples: 1) asymmetric information sets of

a full information set and a limited information set; 2) information sets partly overlapped with

each other; and 3) di¤erent populations of di¤erent types of agents, instead of the symmetric

16The learnability condition of the above RPE with the observable steady state is obtained using Proposition 3

as limn!1 �
h�
�
�
1
n	
��0 
Bi = '2� [B] < 1, which corresponds to Evans and Honkapohja (2001, section 13.1.1)

if the observable steady state and AR(1) exogenous variables are assumed in their model.
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distribution at 1
n
assumed here.17

Hence, the results of this paper suggest that the equilibria with limited and heterogeneous

information sets in terms of exogenous variables are not less learnable than the equilibrium

under CS learning.

This applicability of our model makes it possible to compare learnability conditions of equi-

libria with di¤erent informational structures. Let us compare the learnability of 1) the equilib-

rium with private information (HME), 2) the equilibrium with a limited information set (above

RPE), and 3) the equilibrium with a full information set (benchmark). The learnability of an

equilibrium is weakly increased as
�
�ij
	n
i;j=1

decrease (Proposition 4). Given n ' 1, the above

RPE is reproduced by the smallest number of imperfect correlations, and the equilibrium under

CS learning is reproduced by perfect correlations. Thus, the learnability order of these equilibria

is described as

HME � RPE � Benchmark;

that is, the RPE is not more learnable than the HME and not less learnable than the benchmark

equilibrium.

On the other hand, it is also found that there exist common features of learnability that are

independent of the informational structure in terms of fwitgni=1. Proposition 3 provides:

Corollary 2 The learnability condition of the HME is more stringent when the steady state �a

is unobservable than observable.

Corollary 3 When the steady state �a is unobservable (respectively, observable), the learnability

condition of the HME is independent of (weakly strengthened by) an increase in the autocorre-

lations f'ig
n
i=1 of exogenous variables.

17Note that information sets that are limited and/or heterogeneous in terms of endogenous variables yt cannot
be reproduced in our model. See Berardi (2007) to consider heterogeneous PLMs in terms of endogenous
variables.
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The former corollary is trivial because of the fact that if � [B] < 1, then �
h�
�
�
1
n
	
��0 
Bi < 1

(but not vice versa), and the latter is obtained from Lemma 2.3. Corollary 2 is consistent

with Bullard and Mitra (2002)�s �nding that if constant terms are excluded from the PLMs,

the learnability conditions under CS learning are relaxed. Similar to Corollary 3, Marcet and

Sargent (1989a) and Bullard and Mitra (2002) �nd that when constant terms are excluded from

the PLMs, an increase in the autocorrelation of exogenous variable f'ig
n
i=1 for any i reduces

the learnability of an equilibrium under CS learning.

5 Numerical Example

In this section, we examine the learnability of the HME in a basic NK macroeconomic model.18

The NK model is a benchmark macroeconomic framework for establishing DSGE models and

analyzing optimal monetary policy.19 We obtain the constraints that must be imposed on

monetary policy rules to ensure the learnability of the HME. Next, we demonstrate numerically

the impact of private information on learnability and the e¤ect of including yt�1 in the PLMs.

5.1 NK Model

We consider a basic NK model with an aggregate demand shock gt:

xt = �� (it � E�t �t+1) + E�t xt+1 + gt; (18)

�t = �xt + �E
�
t �t+1: (19)

The model has three endogenous variables: output gap xt, in�ation rate �t, and nominal interest

rate it. Eq. (18) is a log-linearized intertemporal Euler equation that is derived from the

households�optimal choice of consumption. Eq. (19) is a forward-looking Phillips curve that

18Learnability in this section means the local stability under adaptive learning, because a NK model is a
log-linearization of a nonlinear model.
19See Bullard and Mitra (2002), Evans and Honkapohja (2003a,b, 2006), Honkapohja and Mitra (2004a, 2005),

Adam (2005), Berardi (2009), Branch and McGough (2009), and Airaudo and Zanna (2010) for an analysis of
optimal monetary policy that ensures the learnability of an equilibrium.
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is derived from the optimizing behavior of monopolistically competitive �rms with Calvo price

setting. � > 0, � > 0, and 0 � � < 1 are assumed. The central bank adopts a Taylor-type

contemporaneous data interest rate rule:

it = ���t + �xxt; (20)

where �� and �x are the policy parameters controlled by the central bank, and they are assumed

to be nonnegative.

To consider the impact of private information in the NK model, we assume that gt is the

aggregation of idiosyncratic demand shocks: gt �
Pn

i=1 git, which might be obtained from, for

example, households�utility functions with idiosyncratic preference shocks. The shock git for

each i follows an AR(1) process: git = 'igi;t�1+ vit, where 0 � 'i < 1 and the disturbance term

vit has a zero mean. The correlation of git and gjt is �ij � 0 for each i; j. Under CS learning,

git for all i is observable for all agents, whereas under HM learning, the shock is observable for

1=n of agents and unobservable for other agents. The aggregate forecasts (E�t xt+1; E
�
t �t+1) are

the averages of the forecasts of all types f(E�itxt+1; E�it�t+1)g
n
i=1.

20

5.2 Learnability Conditions

Let us obtain learnability conditions imposed on monetary policy parameters (��; �x) in the

interest rate rule (20). The learnability conditions of equilibria under CS and HM learning are

provided in Table 1, the derivation of which is shown in Appendix E. The conditions under

the unobservable and observable steady states are given for each type of learning, respectively.

For ease of comparison, Figure 1 illustrates the domains of (��; �x) that satisfy the learnability

conditions given in Table 1.

The table shows that if the steady state is unobservable, the learnability condition under

HM learning is exactly the same as the condition under CS learning:

� (�� � 1) + �x (1� �) > 0; (21)
20To focus on investigating the properties of the HME, we follow the assumptions given by Branch and

McGough (2009) for incorporating heterogeneous forecasts at an individual level within the NK model. The
original form of the NK model (18)�(19) is obtained by aggregating individual forecasts.
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which is the Taylor principle provided by Bullard and Mitra (2002). The �gure demonstrates

that if the steady state is observable, the learnability conditions of equilibria under CS and HM

learning are not more stringent than the Taylor principle. In addition, the learnability condition

under HM learning is not more stringent than the condition under CS learning.

Proposition 7 In the NK model (18)�(19) with a Taylor-type nominal interest rate rule (20),

the Taylor principle (21) is the su¢ cient condition for the learnability of an equilibrium un-

der adaptive learning, regardless of the existence of private information and regardless of the

observability of the steady state.

The proposition reinforces the importance of the Taylor principle in monetary policy. Bullard

and Mitra (2002) and Honkapohja and Mitra (2004a) �nd that with the contemporaneous data

rule (20), the Taylor principle is a su¢ cient condition for the learnability of the REE under CS

learning. Guse (2008) con�rms that their result is robust even if agents�learning is misspeci�ed.

Proposition 7 emphasizes that the su¢ ciency of the Taylor principle remains true even if agents�

learning is heterogeneously misspeci�ed because of private information.

5.3 Calibrations

Next, we numerically evaluate the impact of private information on the learnability of an equi-

librium. Furthermore, we examine whether the strong learnability of the HME is robust if

agents include the lagged endogenous variable yt�1 in the PLMs.

5.3.1 Impact of HM Learning

We calibrate the parameter domains of (��; �x) satisfying the learnability conditions under

di¤erent degrees of heterogeneity and misspeci�cation in the PLMs, separately. We focus on the

HME with the observable steady state, which ensures the impact of HM learning, and exogenous

variables with the same stochastic characteristics: �ij = � 2 [0; 1), and 'i = ' 2 [0; 1) for all

23



i; j. For robustness, we consider two cases of structural parameters: (a) � = 1, � = 0:3, and

� = 0:99 (Clarida et al., 2000); (b) � = 1=0:157, � = 0:024, and � = 0:99 (Woodford, 1999).

We set the autocorrelations ' of the shocks to be equal to 0:9 (Milani, 2008).

First, we calibrate the impact of heterogeneity in the PLMs. Figure 2 shows the parameter

domains satisfying the learnability conditions under HM learning under di¤erent correlations of

the exogenous variables. The domain under � = 1:0 represents the learnability condition under

CS learning. We consider the existence of 10 idiosyncratic shocks (n = 10). In both examples of

the structural parameters, the learnability domains under HM learning are signi�cantly enlarged

as the correlation � decreases. When � = 0:7, the domains cover almost all positive values of

(��; �x).
21

Next, we examine the impact of misspeci�cation in the PLMs in Figure 3. In each panel, the

boundary of the domain ensuring the learnability under CS learning is shown for comparison.

We focus on four cases of n 2 f10; 100; 1000; 10000g and set � = 0:9 to detect the impact of mis-

speci�cation in the positive region of (��; �x). In both examples, the learnability domains are

enlarged under HM learning. Thus, the impact of misspeci�cation in the PLMs is economically

signi�cant as well as the impact of heterogeneity. On the other hand, the impact of misspeci�-

cation is largely una¤ected even if the number of exogenous variables increases. This is because

we have assumed the same correlations for exogenous variables
�
�ij = �

	n
i6=j, under which the

evolutions of all unobservable variables continue to be correlated to the same degree, regardless

of the number of exogenous variables. Thus, the updating of individual forecasts (that is, the

learnability) is not signi�cantly a¤ected by the degree of misspeci�cation.

The above results suggest that the impact of private information on the learnability is

economically signi�cant. In particular, if privately observable variables are weakly correlated

(that is, information sets are highly heterogeneous), the learnability is likely to be ensured

under a wide range of policy parameters. In such a situation, the central bank does not need to

consider the learnability constraints. On the other hand, the impact on the learnability is not

21Fidrmuc and Korhonen (2003, Table 2) �nd the correlations of demand shocks between euro countries in
the 1990s to be 0:65 at the highest. Those values might be seen as the proxies for the average of the correlations
of idiosyncratic shocks at an individual level.
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signi�cantly changed by the number of privately observable variables (that is, the limitation of

each information set).

5.3.2 Existence of Public Information yt�1

Variations in yt�1 re�ect past evolutions of not only observable but also unobservable exogenous

variables. If agents have the information fysgt�1s=1, they may utilize yt�1 as public information

for updating their forecasts.22 We consider a type i agent�s PLM that includes yt�1 into the

PLM (15):

yt = �a+ biyt�1 + ciwit + "it; (22)

where coe¢ cient bi is them�m matrix of coe¢ cients on yt�1. Under HM learning with Eq. (22)

for all i, the learnability of the HME might become similar to the learnability of the equilibrium

under CS learning.

Figure 4 shows parameter domains satisfying the learnability condition of the HME with

the observable steady state.23 Compared with the results in Figure 2, the introduction of yt�1

into the PLMs reduces the learnability domains of the HME because yt�1 contributes to the

updating of the parameters. However, the domain of the HME continues to be larger than the

domain of the equilibrium under CS learning; that is, the updating of E�t yt+1 under HM learning

remains sluggish. This is because as long as n � 1 > m (that is, the number of unobservable

exogenous variables for each agent is greater than that of observable endogenous variables),

22For example, Grossman and Stiglitz (1980) assume that agents infer from market prices the unobservable
information of other agents. Marcet and Sargent (1989a) consider that �rms in di¤erent industries, each of
which has private information about its own capital stock, include the prices of outputs of all industries into
their PLMs as public information in order to forecast the future prices of their outputs.
23Here, projection facilities are employed in the real-time learning process to keep agents�forecasts bounded.

First, we assume that the eigenvalues of fbigni=1 are strictly inside the unit circle so that agents� forecasts
fEityt+sg1s=1 for all i are asymptotically stationary (see Evans and Honkapohja, 2001, chapter 10). Second, we
also assume that the diagonal elements of fbigni=1 are strictly inside the range (�1; 1) (see Mitra et al., 2013).
When projection facilities are applied in this paper, parameter estimates are reset to their previous estimates (see
Marcet and Sargent, 1989a). We �nd that there exists a unique equilibrium, that is, a unique set of parameters
satisfying these constraints.
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agents cannot perfectly identify the evolution of the unobservable variables by observing yt�1.

Thus, the strong learnability of the HME remains even if agents utilize the public information.

This result implies additionally that an equilibrium with a VAR(1) PLM, yt = �a+ byt�1+"t,

which excludes all exogenous variables, is not less learnable than the equilibrium under CS

learning. The VAR(1) PLM has been considered in the literature as a possible PLM when

agents have only data for the endogenous variables (e.g., Marcet and Sargent, 1989a; Slobodyan

and Wouters, 2012). In our model, the VAR(1) PLM can be reproduced by n ' 1 and�
�ij = 0

	n
i;j=1

, where the PLM (22) for each i is asymptotically equivalent to the VAR(1) PLM

because the evolution of each exogenous variable makes a negligible contribution to forecasting

the dynamics of the economy and the parameters fcigni=1 are estimated to be zero asymptotically.

Hence, the equilibrium under adaptive learning with the VAR(1) PLM is likely to have the same

strong learnability as the HME.

6 Conclusions

This paper has investigated the learnability of an equilibrium with private information, which

makes agents� information sets limited and heterogeneous. In the real economy, there might

exist economic variables observable by some agents and unobservable by other agents. In such

a situation, agents are constrained to form heterogeneously misspeci�ed PLMs, and there exists

a heterogeneous misspeci�cation equilibrium (HME).

The paper �nds that the learnability condition of the HME is not more stringent than

the condition of the equilibrium under CS learning. The learnability of the HME is weakly

increased as the degree of heterogeneity in PLMs caused by private information is increased,

and if privately observable variables have similar stochastic characteristics, the learnability is

also weakly increased as the degree of misspeci�cation in the PLMs is increased. In a basic NK

model, the paper �nds that the central bank should follow the Taylor principle for learnability

regardless of whether or not there exists private information. The numerical analysis indicates

that the impact of private information on learnability is economically signi�cant, and the strong
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learnability of the HME is found to be robust to including lagged endogenous variables into the

PLMs as public information. These results are applicable to other frameworks of adaptive

learning with misspeci�ed and/or heterogeneous PLMs.

Potential issues remain for future research. Heterogeneous misspeci�cation in adaptive learn-

ing may be investigated as a possible ingredient of the persistence of economic �uctuations.

Adam (2005), Milani (2008), and Slobodyan and Wouters (2012) �nd that adaptive learning

prolongs the response of an economy to fundamental shocks in NK DSGE models. This paper

�nds that heterogeneous misspeci�cation in learning makes an aggregate forecast sluggish to

exogenous variables. Thus, the responses of the HME to fundamental shocks are expected to

be more persistent than the responses of an equilibrium under CS learning.

In addition, heterogeneous misspeci�cation in learning may be applied to the analysis of

the e¤ect of �nancial frictions on the macroeconomy. Assenza and Berardi (2009) consider the

impact of bankruptcy in a credit economy where borrowers and lenders form heterogeneous

expectations. While their heterogeneity stems from di¤erent gain parameters in learning al-

gorithms, this paper considers the other type of heterogeneity in terms of di¤erent forecasting

models, which might be prevailing in �nancial markets where private information exists. Thus,

HM learning might well describe the dynamics of a credit economy in the framework of adaptive

learning.

Appendix

A Regularity Assumptions

Assumption 2

1. det (Im �B) 6= 0 and det (Imn � �
B) 6= 0.

2. � is a diagonal and nonnegative matrix whose diagonal elements exist in the interval [0; 1).

3. � is a nonnegative matrix, in which 0 � �ij � 1 for each i; j 2 f1; :::; ng.
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Assumption 2.1 avoids the possibility that a nonexplosive fundamental REE could be inde-
terminate (see Honkapohja and Mitra, 2006, Proposition 1).
The diagonal representation of � in Assumption 2.2 simpli�es the analysis by equating

the eigenvalues of � with its diagonal elements existing in the interval [0; 1). Note that this
assumption is not crucial for our analysis, because even if � were originally nondiagonal, Eq.
(2) could be transformed to an equation that includes a diagonal autoregressive matrix by
premultiplying Eq. (2) by the n � n matrix formed from the eigenvectors of �. The diagonal
elements in the interval [0; 1) ensure the stationarity of wt.
Neither is Assumption 2.3 crucial for our analysis because any linear model can be trans-

formed to the system with � � 0n�n. For example, if any �ij is negative in an original model,
this negative correlation can be transformed to be positive by changing the sign of wi (or wj)
and rede�ning the correlation between �wi and wj as �ij � 0. Applying this transformation to
any negative correlation, the original model is transformed to the system with � � 0n�n.

B Derivations of ODE under HM Learning

Agent i for each i 2 f1; : : : ; ng forms E�ityt+1 by using real-time learning with the PLM (7) and
the information set fys; wisgts=1. We assume the t-dating of expectations considered by Evans
and Honkapohja (2001, chapter 10): coe¢ cient parameters �it at time t are estimated with past
data until time t, fyis; wisgt�1s=1, and E

�
ityt+1 is formed with �it and the current data fyt; witg. The

estimates of the coe¢ cient parameters �0it = (ait; cit) are given by the least-squares projection
of yt�1 on z0i;t�1 = (1; wi;t�1): Ezi;t�1 (yt�1 � �0itzi;t�1)

0
= 02�m. Then, the updating rule of �it is

shown by the RLS representation:

�it = �i;t�1 + t
�1R�1it zi;t�1

�
yt�1 � �0i;t�1zi;t�1

�0
; (B.1)

Rit = Ri;t�1 + t
�1 �zi;t�1z0i;t�1 �Ri;t�1� ; (B.2)

where Rit = t�1
Pt

s=1 zi;s�1z
0
i;s�1, which is the updating of the matrix of the second moment

of zit. See Evans and Honkapohja (2001, section 10.3) for details regarding obtaining RLS
equations to satisfy the orthogonality condition.
The stochastic recursive algorithm (SRA) for �it for each i is obtained by substituting the

ALM (11) into Eq. (B.1):

�it = �i;t�1+t
�1R�1it zi;t�1

�
1 w1;t�1 � � � wn;t�1

� ��
D0;t�1 D1;t�1 � � � Dn;t�1

�
�
�
ai;t�1 c+i;t�1

��0
;

where we denote D0t � A + Bat, at � 1
n

Pn
i=1 ait as the constant term of the aggregate PLM

(9), Dit � 1
n
Bcit'i + Ci for each i 2 f1; :::; ng, Ci as the i-th column of matrix C in Eq. (1),
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and c+it �
�
0m�(i�1); cit; 0m�(n�i)

�
as an m� n matrix in which the columns, except cit, are zero

vectors.
To obtain the ODEs for �i associated with the SRA, we have to calculate the unconditional

expectations of the updating terms in the SRA. The convergence of the SRA is analyzed by
Marcet and Sargent (1989b) in the stochastic approximation approach, which is also introduced
by Evans and Honkapohja (2001, chapter 6). Denote the operator E as the expectation of
variables for �i �xed, taken over the invariant distributions of wt. Then, by letting Eziz

0
j =

limt!1Ezitz
0
jt for any i; j 2 f1; :::; ng, the unconditional expectation of the updating term in

Eq. (B.1) is transformed to

ER�1i zi;t�1
�
1 w1;t�1 � � � wn;t�1

� ��
D0 D1 � � � Dn

�
�
�
ai c+i

��0
= R�1i

 �
Ezi;t�1z

0
i;t�1

� ��
D0 Di

�
�
�
ai ci

��0
+ E

�
1

wi;t�1

� nX
j=1

wj;t�1D
0
j � wi;t�1D0

i

!!

= R�1i

0@ �
Ezi;t�1z

0
i;t�1

� ��
D0 Di

�
�
�
ai ci

��0
+

�
01�mPn

j=1 (Ewi;t�1wj;t�1)D
0
j � (Ewi;t�1wi;t�1)D0

i

� 1A
= R�1i

�
Ezi;t�1z

0
i;t�1

�0@ ��
D0 Di

�
�
�
ai ci

��0
+

�
01�mPn

j=1 (Ewi;t�1wi;t�1)
�1 (Ewi;t�1wj;t�1)D

0
j �D0

i

� 1A :
In addition, the expectation of the updating term in Eq. (B.2) is given by

Eziz
0
i �Ri:

Hence, the ODEs for �i and Ri associated with the SRA are obtained as

d�i
d�

= R�1i (Eziz
0
i) (Ti (ai; ci)� �0i)

0
; (B.3)

dRi
d�

= Eziz
0
i �Ri; (B.4)

where
Ti (ai; ci) �

�
D0

Pn
j=1Dj!ij!

�1
ii

�
:

A scalar !ij denotes the covariance of wi and wj; !ij � �ii�ij�jj for each i; j 2 f1; :::; ng.
Furthermore, because Ri and Eziz0i in Eq. (B.4) are asymptotically equal, R

�1
i (Eziz

0
i) in Eq.

(B.3) globally converges to unity. Hence, the stability of the ODE for �0i = (ai; ci) in Eq. (B.3)
is determined by smaller di¤erential equations:

dai
d�

= D0 � ai; (B.5)

dci
d�

=
nX
j=1

Dj!ij!
�1
ii � ci: (B.6)
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In the same manner, smaller ODEs for the parameters
�
�j
	n
j 6=i are obtained.

The ODEs (B.5)�(B.6) for all i are represented by the ODEs for the aggregate parameters
(a; c) in Eq. (9). First, the ODEs for all ais have the same form, and a is an arithmetic average
of all ais. Then, the convergence property of a is equivalent to that of ai for each i; the ODEs
for all ais are represented by a single ODE for a that has the same form as that for ai:

da

d�
= Ta (a)� a;

where
Ta (a) � D0 = A+Ba:

Next, the ODEs for all cis are represented by a single ODE for the aggregate parameter c. If
the ODEs (B.6) for all i are multiplied by 1

n
and combined in a single m� n matrix, the single

ODE for c is obtained by:
dc

d�
= Tc (c)� c;

where

Tc (c) �
�

1
n

Pn
j=1Dj!1j!

�1
11 � � � 1

n

Pn
j=1Dj!nj!

�1
nn

�
= (Bc� + C)

�
1

n
	

�
;

and

	 �

0BBB@
1 !12!

�1
22 � � � !1n!

�1
nn

!21!
�1
11 1 � � � !2n!

�1
nn

...
...

. . .
...

!n1!
�1
11 !n2!

�1
22 � � � 1

1CCCA
= diag (�ii)1�i�n � � � diag (�ii)

�1
1�i�n :

The derivation is complete.

C Proof of Lemma 2

C.1 Proof of Lemma 2.1

To �nd that the eigenvalues of �
�
1
n
	
�
are real and exist in the interval [0; 1), we use Trenkler

(1995)�s lemma.
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Lemma 3 If X and Y are nonnegative de�nite matrices of the same dimension, then eigenval-
ues of XY are real and nonnegative, and they are zero if and only if XY = 0.

Proof. If X is nonnegative de�nite, it may be written as X = PP 0 for some matrix P . Then,
the eigenvalues ofXY = PP 0Y are those of P 0Y P (plus possibly some zeros). P 0Y P is obviously
a nonnegative de�nite matrix. It follows that all eigenvalues of XY are nonnegative, and that
they are zero i¤XY = 0. The proof is complete.

As � and 1
n
	 are nonnegative de�nite matrices by Assumptions 2.2 and 2.3, Lemma 3 yields

eigenvalues of �
�
1
n
	
�
that are real and nonnegative. Notice that the diagonal elements of �	

are equal to the diagonal elements of �; then, tr
�
�
�
1
n
	
��
< 1. Therefore, all eigenvalues of

�
�
1
n
	
�
are real and exist in the interval [0; 1). The proof is complete.

C.2 Proof of Lemmas 2.2 & 2.3

According to the Perron�Frobenius Theorem (see Berman, A. and R. Plemmons, Nonnegative
Matrices in the Mathematical Sciences, Academic Press, 1979, p.27), Kolotilina (Kolotilina, L.
Y., �Bounds for the Perron root, Singularity/Nonsingularity Conditions, and Eigenvalue Inclu-
sion Sets," Numerical Algorithms, Vol. 42, No. 3�4, 2006, pp. 247�280) shows the monotonicity
property of the Perron root (Theorem 2.1): �Let A and B be nonnegative matrices of order

n � 1 and let A � B. Then, � [A] � � [B]." In our paper, d(�(
1
n
	))

d�ij
� 0 and d(�( 1n	))

d'i
� 0 for

any i; j; thus
d�[�( 1n	)]

d�ij
� 0 and d�[�( 1n	)]

d'i
� 0 for any i; j. The proof is complete.

D Reproductions of Di¤erent Informational Structures

D.1 Asymmetric Information Sets

The asymmetric information sets of a full information set and a limited information set are
reproduced in Assumption 1. Suppose that there exist two exogenous variables fw1t; w2tg with
�12 = 0 and �22

�11
' 0. In this case, the evolution of yt is governed only by the evolution of

w1t, and because Et (w2tyt) ' 0, agents of type 2 are unable to forecast the evolution of yt by
observing the evolution of w2t. This structure is equivalent to the case where the agent of type
1 has full information on the economy and the agent of type 2 has a limited information set.
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D.2 Overlapping Information Sets

The information sets that partly overlap with each other in terms of fwitgni=1 are equivalent to
the case of the existence of highly correlated exogenous variables in Assumption 1.

D.3 Di¤erent Populations of Di¤erent Types of Agents

For example, the existence of two types of agents who have populations 2
3
and 1

3
, respectively,

are reproduced in Assumption 1. Suppose the existence of three exogenous variables fwitg3i=1,
each of which is privately observable for 1

3
of agents, and the perfect correlation of two of three

variables (e.g., w1 and w2). Then, the population of agents detecting the evolutions of w1 and
w2 is 2

3
, and the population of agents observing the evolution of w3 is 1

3
. This environment is

equivalent to the existence of two types of agents with the populations of 2
3
and 1

3
, respectively.

E Derivations of Learnability Conditions

Before proceeding, we provide a lemma that will be used to obtain the learnability conditions
of equilibria under di¤erent learning rules. A simpler derivation under CS learning is shown in
Bullard and Mitra (2002).

Lemma 4 De�ne an n � n matrix X whose eigenvalues are all real and exist in the interval

[0; 1). Given � � 0, � � 0, 0 � � < 1, �� � 0, �x � 0, and B =
�
1 + ��x ���
�� 1

��1�
1 �
0 �

�
,

then the real parts of eigenvalues of X 
B � I2n are all negative if and only if:

� (�� � � [X]) + �x (1� �� [X]) > �
(1� � [X]) (1� �� [X])

�
: (E.1)

Proof. De�ne the eigenvalues of X as 0 � �i < 1 for each i 2 f1; :::; ng and the eigenvalues
of B as �j for each j 2 f1; 2g. Then, 0 � � [X] < 1, and the eigenvalues of X 
 B are
given by �i�j for each i; j. First, we show � [B] � 0 by calculating the characteristic equation
of B: q (x) = x2 + p1x + p0, where p0 =

�
1+����+��x

> 0 and p1 = �1+�+��+���x
1+����+��x

< 0.
According to the Routh Theorem (see Alpha C. Chiang, Fundamental Methods of Mathematical
Economics: Second Edition, McGraw-Hill, 1974), the eigenvalues of B have all negative real

parts; that is, � [B] < 0, if and only if jp1j and
���� p1 0
1 p0

���� are all positive, that is, p1 > 0 and
p1p0 > 0. The above q (x) violates these conditions; therefore, � [B] � 0. Here, let us prove
Lemma 4. Because � [B] � 0 and � [X] � 0, � [X 
B] = � [X]� [B] = � [� [X]B], and hence
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� [X 
B � I2n] = � [� [X]B � I2]. Thus, the real parts of the eigenvalues of X 
 B � I2n are
all negative if and only if the eigenvalues of � [X]B � I2 have all negative real parts. The
characteristic equation of � [X]B � I2 is q (x) = x2 + p1x+ p0, where:

p0 =
(1� � [X]) (1� �� [X]) + � (� (�� � � [X]) + �x (1� �� [X]))

1 + ���� + ��x
;

p1 =
(1� � [X]) + (1� �� [X]) + �� (2�� � � [X]) + ��x (2� �� [X])

1 + ���� + ��x
:

Note that p1 = p0 +
(1���[X])+�(���+�x)

1+����+��x
; then p1 > p0. The eigenvalues of � [X]B � I2 have all

negative real parts if and only if p1 > 0 and p1p0 > 0. As p1 > p0, the necessary and su¢ cient
condition is given solely by p0 > 0, that is, Eq. (E.1). The proof is complete.

Substituting Eq. (20) into Eqs. (18)�(19), the NK model is transformed into the form of the

system (1)�(2) with yt = (xt; �t)
0, wt = (g1t; :::; gnt)

0, and B =
�
1 + ��x ���
�� 1

��1�
1 �
0 �

�
.

Under the unobservable steady state �a, the HME (13)�(14) is globally asymptotically stable
if and only if the Jacobian (16) has the negative real parts of eigenvalues. In the NK model of
the above form, m = 2, the eigenvalues of the Jacobian are equal to those of In
B� I2n. This
case corresponds to X = In in Lemma 4. As � [X] = 1, the su¢ cient and necessary condition
for the stability of the equilibrium is obtained by � (�� � 1) + �x (1� �) > 0, which is also the
learnability condition under CS learning.
In the same manner, under the observable steady state, the HME is stable if and only if

the Jacobian (17) has the negative real parts of eigenvalues. This case corresponds to X =�
�
�
1
n
	
��0

in Lemma 4. If we de�ne �h � �
�
�
�
1
n
	
��
, the stability condition is provided by

�
�
�� � �h

�
+ �x

�
1� ��h

�
> �(1��

h)(1���h)
�

. Under CS learning, X = �0. Then, by de�ning
�c � � [�], the stability condition is obtained by � (�� � �c) + �x (1� ��c) > � (1��c)(1���c)

�
.

Note that 0 � �h � �c < 1.
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Table 1: Learnability Conditions under CS and HM Learning

Unobservable SS Observable SS
CS � (�� � 1) + �x (1� �) > 0 � (�� � �c) + �x (1� ��c) > �

(1��c)(1���c)
�

HM � (�� � 1) + �x (1� �) > 0 �
�
�� � �h

�
+ �x

�
1� ��h

�
> �(1��

h)(1���h)
�

Note: The derivations of the learnability conditions are summarized in Appendix E. �c � � [�n],
�h � �

�
�n
�
1
n	n

��
, and 0 � �h � �c < 1.
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Figure 1   Parameter Domains of Learnability Conditions
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(a)   n 
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Figure 2   Heterogeneity and Learnability Conditions
 (with the observable steady state)

Note: Solid lines in each panel represent the boundaries of parameter domains
satisfying the learnability condition under HM learning.
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Figure 3   Misspecification and Learnability Conditions
 (with the observable steady state)

(a)   

(b)   

Note: Solid and dotted lines in each panel represent the boundaries of
parameter domains satisfying the learnability conditions under HM and CS
learning, respectively.
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Figure 4   Heterogeneity and Learnability Conditions
 (with the observable steady state and the PLMs with y t -1)

(a)   n 

(b)   n 

Note: Solid and dotted lines in each panel represent the boundaries of
parameter domains satisfying the learnability conditions under HM and CS
learning, respectively.
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