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Motivation

Chebel and Makhlouf’s research [3]{
• Kaplansky type construction for WBA,

• classification of WBAs over C of dim ≤ 3�� ��Direct sum construction (suggested by Masuoka)

⇓�� ��Indecomposability of WBAs

⇓
Several questions

• What are properties preserving under direct sum?

• Is any Hopf algebra indecomposable?

• Can it be interpreted by a categorical language?

(suggested by Shimizu)

[3] Z. Chebel and A.Makhlouf, “Kaplansky’s construction type and classification of

weak bialgebras and weak Hopf algebras”, J. Generalized Lie Theory Appl. 9

(2015), no. S1, Art. ID S1-008, 9 pp.
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Throughout this talk,

• k is a field,

• H is an algebra and coalgebra over k with

comultiplication ∆ = ∆H and counit ε = εH .

• we use Sweedler’s notation as ∆(x) = x(1) ⊗ x(2).

• ∆(2) = (∆ ⊗ id) ◦ ∆ = (id ⊗ ∆) ◦ ∆.
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§1. Weak Hopf algebras: Definitions and properties

Definition 1 (Böhm, Nill and Szlachányi [1])

(1) H is called a weak bialgebra (abb. WBA) over k if the

following three conditions are satisfied:

(WH1) ∆(xy) = ∆(x)∆(y) for ∀ x, y ∈ H,

(WH2) ∆(2)(1) = (∆(1)⊗ 1)(1⊗∆(1)) = (1⊗∆(1))(∆(1)⊗ 1),

(WH3) (1) ε(xyz) = ε(xy(1))ε(y(2)z),

(2) ε(xyz) = ε(xy(2))ε(y(1)z) for ∀ x, y ∈ H.

(2) Let S : H −→ H be a k-linear transformation. The pair

(H,S) is called a weak Hopf algebra (abb. WHA) over k if

(WH1),(WH2),(WH3) and the following conditions are satisfied:

(WH4) (1) x(1)S(x(2)) = ε(1(1)x)1(2),

(2) S(x(1))x(2) = 1(1)ε(x1(2)),

(3) S(x(1))x(2)S(x(3)) = S(x) for ∀ x ∈ H.

[1] G.Böhm, F.Nill, K. Szlachányi, “Weak Hopf algebras I. Integral theory and

C∗-structure”, J. Algebra 221 (1999), 385–438.



Definition 1 (continued)

The above S is said to be an antipode of H or (H,S).

Remark.

1. a weak Hopf algebra = a quantum groupoid = a

×R-bialgebra (introduced by Takeuchi [12]) in which R is

separable (Schauenburg [9])

2. a face algebra (introduced by Hayashi [5]) = a weak Hopf

algebra whose counital subalgebras are commutative.

3. a weak bialgebra is a bialgebra iff ∆(1) = 1⊗ 1.

4. Analogously in case of a bialgebra, an antipode for a weak

bialgebra is unique if exists.

[5] T.Hayashi, “Face algebras I. A generalization of quantum group theory”, J.

Math. Soc. Japan 50 (1998), 293–315.

[9] P. Schauenburg, “Weak Hopf algebras and quantum groupoids”, Banach Center

Publ. 61 (2003), 171–188.

[11] M.Takeuchi, “Groups of algebras over A ⊗ Ā”, J. Math. Soc. Japan 29 (1977),

459–492.



Define εt, εs by the RHSs of (WH4.1),(WH4.2):

εt(x) = ε(1(1)x)1(2), (1)

εs(x) = 1(1)ε(x1(2)). (2)

εt and εs are called the target and source counital

maps, respectively.

Lemma 2

εt, εs have the following properties:

(1) ε2t = εt, ε2s = εs.

(2) (i) x(1) ⊗ εt(x(2)) = 1(1)x⊗ 1(2),

(ii) εs(x(1))⊗ x(2) = 1(1) ⊗ x1(2) for ∀ x ∈ H.

In particular,

1(1) ⊗ εt(1(2)) = 1(1) ⊗ 1(2) = εs(1(1))⊗ 1(2).

(3) (i) εt(x) = x ⇔ ∆(x) = 1(1)x⊗ 1(2),

(ii) εs(x) = x ⇔ ∆(x) = 1(1) ⊗ x1(2) for ∀ x ∈ H.

(4) x = εt(x(1))x(2) = x(1)εs(x(2)).



Lemma 3

Set Ht := εt(H), Hs := εs(H), which are called the target and

source subalgebras of H, respectively. Then,

(1) actually, they are subalgebras of H,

(2) any elements in Ht and in Hs are commutative,

(3) ∆(1) ∈ Hs ⊗Ht.

Definition 4

Let H1 and H2 be two bialgebras over k. An algebra and

coalgebra map f : H1 −→ H2 is called a weak bialgebra map.

If H1 and H2 have antipodes S1 and S2, respectively, then a

weak bialgebra map f satisfying f ◦ S1 = S2 ◦ f is called a

weak Hopf algebra map. A bijective weak bialgebra or Hopf

algebra map is called an isomorphism.



As the same argument in Hopf algebra theory, one can

define the dual H◦ for a weak bialgebra or Hopf

algebra H:

H◦ := { p ∈ H∗ | dim(k[H]p) < ∞ }, (3)

where H∗ denotes the dual vector space of H, and

k[H] =

{ ∑
x∈H

cxx

∣∣∣∣∣ cx ∈ k, cx = 0 except for
finitely many x ∈ H

}
,

and
( ∑

x∈H

cxx
)
p ∈ H∗ is defined by(( ∑

x∈H

cxx
)
p
)
(h) =

∑
x∈H

cxp(hx) (h ∈ H).

Proposition 5

The antipode SH◦ in the dual weak Hopf algebra H◦ is an

anti-algebra and anti-coalgebra map.



In finite-dimensional case H◦ = H∗, and the structure

maps of the dual weak bialgebra H∗ = (H∗,∆H∗, εH∗)

are given as follows: for all x, y ∈ H and p, q ∈ H∗

• (pq)(x) = p(x(1))q(x(2)),

• 1H∗ = ε (= the counit of H),

• ⟨∆H∗(p), x ⊗ y⟩ = p(xy),

• εH∗(p) = p(1).

If H is a weak Hopf algebra with antipode S, then H∗

also has an antipode SH∗ defined by

• ⟨SH∗(p), x⟩ = ⟨p, S(x)⟩.

The usual k-linear isomorphism ι : H −→ H∗∗ = (H∗)∗

gives a weak Hopf algebra isomorphism.

Corollary 6 (Böhm, Nill and Szlachányi [1])

For any finite-dimensional weak Hopf algebra H = (H,S), the

antipode S is an anti-algebra and anti-coalgebra map.



§2. Indecomposable weak bialgebras

• For two algebras A and B over k, the direct sum

A ⊕ B becomes an algebra with the following

multiplication and identity element 1:

(a1 + b1)(a2 + b2) = a1a2 + b1b2,

1 = 1A + 1B,

where a1, a2 ∈ A, b1, b2 ∈ B, and 1A, 1B are the

identity elements of A and B, respectively.

• For two coalgebras C = (C,∆C, εC) and

D = (D,∆D, εD) over k, the direct sum C ⊕ D

becomes a coalgebra with the following

comultiplication ∆ and counit ε:

∆(c + d) = ∆C(c) + ∆D(d),

ε(c + d) = εC(c) + εD(d) for c ∈ C, d ∈ D.



Theorem 7 (Direct sum construction of WBAs)

Let A = (A,∆A, εA) and B = (B,∆B, εB) be two weak

bialgebras over k, and set H = A⊕B. Then H is also a weak

bialgebra whose algebra and coalgebra structures are given by

direct sums. The target and source counital maps εt and εs are

given by

εt(x) = (εA)t(a) + (εB)t(b),

εs(x) = (εA)s(a) + (εB)s(b),

for x = a+ b ∈ H (a ∈ A, b ∈ B). Here, (εA)t, (εA)s are the

target and source counital maps of A, and (εB)t, (εB)s are that

of B.

If A,B are WHAs with antipodes SA, SB, then H is also a

WHA with antipode S given by

S(a+ b) = SA(a) + SB(b) (a ∈ A, b ∈ B).



A weak bialgebra (resp. WHA) H is called

indecomposable if there are no weak bialgebras (resp.

WHA) A,B such that H ∼= A ⊕ B.

Theorem 8 (Decomposition theorem)

Let H be a finite-dimensional weak bialgebra. Then

(1) there are finitely many indecomposable weak bialgebras

Hi (i = 1, . . . , k) such that H = H1 ⊕ · · · ⊕Hk.

(2) Let Hi (i = 1, . . . , k) and H ′
j (j = 1, . . . , l) be

indecomposable weak bialgebras satisfying

H1 ⊕ · · · ⊕Hk = H = H ′
1 ⊕ · · · ⊕H ′

l .

Then k = l, and H ′
j = Hσ(j) (j = 1, . . . , l) for some

permutation σ ∈ Sl.

This result follows from existence and uniqueness of

decompositions into direct sums of indecomposable

ideals for finite-dimensional algebras.



Let A,B be two finite-dimensional WHAs, and

consider the direct sum H := A ⊕ B. Let

πA : H −→ A, πB : H −→ B be the natural

projections. Then A∗ and B∗ can be regarded as

subcoalgebras of H∗ via the transposed maps
tπA : A∗ −→ H∗, tπB : B∗ −→ H∗. Moreover,

Lemma 9

The dual WHA H∗ is isomorphic to the direct sum of the dual

WHAs A∗ and B∗: H∗ = A∗ ⊕B∗.

By this lemma we have:

Proposition 10

A finite-dimensional weak bialgebra H is indecomposable as a

weak bialgebra if and only if H∗ is so.



Theorem 11

A finite-dimensional bialgebra H is indecomposable as a WBA.

(Proof)

Suppose that H = A ⊕ B for some WBAs A and B.

Then EndH(Ht) ∼= EndA(At) ⊕ EndB(Bt) as vector

spaces. Thus,

dimEndH(Ht) = dimEndA(At) + dimEndB(Bt)

≥ 1 + 1 ≥ 2.

This contradicts what dimEndH(Ht) = 1 since

Ht = k1H .

Example 12

For any finite group G, the group Hopf algebra k[G] and its

dual Hopf algebra (k[G])∗ are indecomposable weak bialgebras.



Problem 13

(1)† Is there a finite-dimensional indecomposable WHA such

that it is not a Hopf algebra?

(2) For any finite-dimensional weak bialgebra over k, can ε(1)

be written as n1k for some positive integer n?

Remark. Problem (1) replaced by “bialgebra” instead of

“Hopf algebra” is affirmative solved.

Let us examine some properties of preserving under

the direct sum construction.

Definition 14 ([1])

Let H be a weak bialgebra over k.

(1) Λ ∈ H is a left integral if xΛ = εt(x)Λ for all x ∈ H.

(2) Λ ∈ H is a right integral if Λx = Λεs(x) for all x ∈ H.

†After my presentation, from several experts I received several ideas for solving

this problem. I would like to express gratitude for all.



Definition 14 (continued)

(3) G(H) =

{
g ∈ H

∣∣∣∣ ∆(g) = (g ⊗ g)∆(1) = ∆(1)(g ⊗ g),

g is invertible

}
.

An element in G(H) is called a group-like element.

Remark 15

1. G(H) becomes a group with respect to the product in H.

2. If H has an antipode, then for any g ∈ H satisfying

∆(g) = (g ⊗ g)∆(1) = ∆(1)(g ⊗ g),

εs(g) = εt(g) = 1 ⇐⇒ g is invertible in H.

The concepts of quasitriangular and ribbon structures

for WHAs were introduced by Nikshych, Turaev and

Vainerman [6].

[6] D.Nikshych, V.Turaev and L.Vainerman, “Invariants of knots and 3-manifolds
from finite quantum groupoids”, Top. Appl. 127 (2003), 91–123.



Proposition 16

Let A,B be two finite-dimensional WHAs, and H = A⊕B be

the direct sum of them. Then,

(1) H is (co)semisimple if and only if A,B are (co)semisimple,

(2) between the sets of left integrals I L(A),I L(B),I L(H),

I L(H) = { ΛA + ΛB | ΛA ∈ I L(A), ΛB ∈ I L(B) },
(3) as groups

G(H) ∼= G(A)×G(B),

(4) any universal R-matrix of H is expressed as R = RA +RB

where RA, RB are universal R-matrices of A,B,

respectively. Conversely, for universal R-matrices RA, RB

of A,B, respectively, R := RA +RB is a universal

R-matrix of H.



Example 17

Let us consider two Taft algebras Hm2(ω) and Hn2(λ), where ω

and λ are primitive mth and nth roots of unity in k,

respectively. Then, we have the direct sum

H := Hm2(ω)⊕Hn2(λ).

In particular, we consider the case where m = n = 2, and

ω = λ = −1. H4(−1) is called Sweedler’s 4-dimensional Hopf

algebra, and dimH = 8. As an algebra,

H =

⟨
e1, e2, g, h, x, y

∣∣∣∣∣∣∣∣∣∣
g2 = e1, h2 = e2, x2 = y2 = 0,
xg = −gx, yh = −hy,
e1 + e2 = 1, ab = ba = 0,
ae1 = e1a = a, be2 = e2b = b
(a ∈ {e1, g, x}, b ∈ {e2, h, y})

⟩
.

By Radford, it is shown that if the characteristic of k is not 2,

then the universal R-matrices of H4(−1) are parametrized by

α ∈ k, and they are given by



Example 17 (continued)

Rα = 1
2
(e⊗ e+ g ⊗ e+ e⊗ g − g ⊗ g)

+ α
2
(x⊗ x+ x⊗ gx+ gx⊗ gx− gx⊗ x).

Therefore, the universal R-matrices of H are parametrized by

α, β ∈ k, and are given by

Rα +Rβ = 1
2
(e1 ⊗ e1 + g ⊗ e1 + e1 ⊗ g − g ⊗ g)

+ α
2
(x⊗ x+ x⊗ gx+ gx⊗ gx− gx⊗ x)

+ 1
2
(e2 ⊗ e2 + h⊗ e2 + e2 ⊗ h− h⊗ h)

+
β
2
(y ⊗ y + y ⊗ hy + hy ⊗ hy − hy ⊗ y).



For two qtWHAs (A,RA), (B,RB), we define a

qtWHA by the direct sum

(A,RA) ⊕ (B,RB) := (A ⊕ B,RA + RB).

Theorem 18

Let A,B be two finite-dimensional WHAs, and consider the

direct sum H := A⊕B. Then, the quantum double D(H) is

isomorphic to the direct sum of the quantum doubles D(A) and

D(B): D(H) = D(A)⊕D(B).

Proposition 19

Let (A,RA), (B,RB) be two qtWHAs of finite dimension, and

(H,R) be their direct sum. Then the map

Rib(A,RA)× Rib(B,RB) −→ Rib(H,R)
(vA, vB) 7−→ vA + vB

is bijective, where Rib(H,R) is the set of ribbon elements of

(H,R).



§3. A Kaplansky type construction for WBAs

Due to Chebel and Makhlouf [3], we call the following

construction a Kaplansky type construction for WBAs.

Theorem 20 (Chebel and Makhlouf)

Let A = (A,∆A, εA) be a bialgebra over k, and introduce a new

element 1 ̸∈ A. As a vector space we set H := A⊕ k1, and

extend the multiplication in A to that in H as follows:

1 · a = a = a · 1, 1 · 1 = 1 (a ∈ A).

Furthermore, define two k-linear maps ∆ : H −→ H ⊗H,

ε : H −→ k by for all a ∈ A

∆(a) = ∆A(a), ε(a) = εA(a),

∆(1) = (1− e)⊗ (1− e) + e⊗ e, ε(1) = 2.

Then H is a weak bialgebra. If A is a Hopf algebra with

antipode SA, then H becomes a WHA with antipode S, which

is defined by S(a) = SA(a) (a ∈ A) and S(1) = 1.



Example 21 (Taft’s weak Hopf algebra [3])

Let n ≥ 2 be an integer, and k be a field which contains a

primitive nth root of unity λ ∈ k. Let Hn2(λ) be the

n2-dimensional Taft algebra, that is,

Hn2(λ) = ⟨ g, x | gn = e, xn = 0, xg = λgx ⟩,
where e is the identity element. Applying Theorem 20 we have

(n2 + 1)-dimensional weak Hopf algebra H ′
n2(λ). Its structure

maps are given as follows with identity element 1:

∆(1) = (1− e)⊗ (1− e) + e⊗ e, ∆(e) = e⊗ e,

∆(g) = g ⊗ g, ∆(x) = g ⊗ x+ x⊗ e,

ε(1) = 2, ε(e) = 1,

ε(g) = 1, ε(x) = 0,

S(1) = 1, S(e) = e,

S(g) = g−1, S(x) = −g−1x.



The Kaplansky type construction in Theorem 20 can

be regarded as a special direct sum construction for

weak bialgebras.

Theorem 22

Let A be a bialgebra over k with identity element e, and

H = A⊕ k1 be the weak bialgebra obtained by the Kaplansky

type construction from A. Then, k(1− e) is a two-sided ideal

and a subcoalgebra of H, and H = A⊕ k(1− e) as weak

bialgebras.

(Proof)

This can be verified by direct computation.



§4. Structures of 2 and 3-dimensional WBAs

Chebel and Makhlouf [3] classified two and three

dimensional weak bialgebras over C up to isomorphism.

Proposition 23 (Chebel and Makhlouf [3; Prop. 4.3])

In the 2-dimensional weak bialgebras over C, there are exactly

three isomorphism classes, and their representatives are given

by H = Ce1 + Ce2 with multiplication m, comultiplication ∆

and counit ε defined below:

m(e1, e1) = e1, m(e1, e2) = m(e2, e1) = m(e2, e2) = e2,

(#1) ∆(e1) = e1 ⊗ e1, ∆(e2) = e2 ⊗ e2,

ε(e1) = ε(e2) = 1.

(#2) ∆(e1) = e1 ⊗ e1, ∆(e2) = (e1 − e2)⊗ (e1 − e2) + e2 ⊗ e2,

ε(e1) = ε(e2) = 1.

(#3) ∆(e1) = (e1 − e2)⊗ (e1 − e2) + e2 ⊗ e2, ∆(e2) = e2 ⊗ e2,

ε(e1) = 2, ε(e2) = 1.



(#1) ∆(e1) = e1 ⊗ e1, ∆(e2) = e2 ⊗ e2,

ε(e1) = ε(e2) = 1.

(#2) ∆(e1) = e1 ⊗ e1, ∆(e2) = (e1 − e2)⊗ (e1 − e2) + e2 ⊗ e2,

ε(e1) = ε(e2) = 1.

(#3) ∆(e1) = (e1 − e2)⊗ (e1 − e2) + e2 ⊗ e2, ∆(e2) = e2 ⊗ e2,

ε(e1) = 2, ε(e2) = 1.

Remark.

1. The weak bialgebras (#2) and (#3) are WHAs since one

can find antipodes S defined by S(e1) = e1, S(e2) = e2 [3;

Proposition 4.4]. The weak bialgebra (#3) is one and only

such that it is not a bialgebra.

2. The weak bialgebra (#2) is isomorphic to the group Hopf

algebra C[G] of G = Z/2Z.
3. The weak bialgebras (#1) and (#2) are indecomposable.

On the other hand, (#3) can be decomposed as

C(e1 − e2)⊕ Ce2 ∼= C⊕ C as a weak bialgebra.



Proposition 24 (Chebel and Makhlouf [3; Prop. 4.5])

In the 3-dimensional weak bialgebras over C, there are exactly

20 isomorphism classes (#1),. . .,(#20). The isomorphism types

of them as algebras are the following∗:

C× C× C, C[t]/(t2)× C, T2(C) =
{(

a b
0 c

) ∣∣∣∣ a, b, c ∈ C
}
.

(1) On C× C× C there are exactly 11 WBA structures.

(2) On C[t]/(t2)× C there are exactly 4 WBA structures.

(3) On T2(C) there are exactly 5 WBA structures.

Among them, the number of WHAs is 3, and all such WHAs

are contained in the class (1). The number of WBAs which are

not bialgebras is 5.

∗thanks to helpful comments from Noriyuki Suwa at H-ACT 2019,
Tsukuba University



Remark 25

1. Among the 3-dimensional WBAs except for (#8), (#9),

(#10) are indecomposable as weak bialgebras.

The WBAs (#8), (#9) and (#10) can be decomposed into

direct sums of indecomposable weak bialgebras as follows:

(#8) = C⊕ (Prop.23(#1))†, (#9) = C⊕ C[Z/2Z]†,
(#10) = C⊕ C⊕ C.

2. the weak bialgebra (#1), that is a group Hopf algebra of

G = Z/3Z, is a unique 3-dimensional WHA which is

indecomposable.

3. The weak bialgebras (#1), (#2), (#5), (#8), (#9), (#10),

(#15) are self dual, and

(#3)∗ = (#7), (#4)∗ = (#13), (#5)∗ = (#20),

(#6)∗ = (#18), (#11)∗ = (#16), (#12)∗ = (#19),

(#14)∗ = (#17).
†corrected on January 16, 2020.



List of G(H), I l(H),I r(H) for WBAs H of dim ≤ 3.

In the following list e1 stands for the identity element.

H G(H) I l(H) I r(H)

Prop.23 #1 {e1} Ce2 Ce2
Prop.23 #2 {e1,−e1 + 2e2} Ce2 Ce2
Prop.23 #3 {e1} H H

Prop.24 #1 (∗1) Ce3 Ce3
Prop.24 #2 {e1} Ce3 Ce3
Prop.24 #3 {e1} C(e2 − e3) C(e2 − e3)
Prop.24 #4 {e1} Ce3 Ce3
Prop.24 #5 {e1} C(e2 − e3) C(e2 − e3)
Prop.24 #6 {e1} Ce3 Ce3
Prop.24 #7 {e1,−e1 + 2e2} Ce3 Ce3

where (∗1) = { e1, ωe1 − (1 + 2ω)e2 + (2 + ω)e3,

ω2e1 + (1 + 2ω)e2 + (1 − ω)e3 } ∼= Z/3Z, and ω is a

primitive 3rd of unity.



H G(H) I l(H) I r(H)

Prop.24 #8 {e1} (∗2) (∗2)
Prop.24 #9 {e1, e1 − 2e3} (∗3) (∗3)
Prop.24 #10 {e1} H H
Prop.24 #11 (∗4) Ce2 + Ce3 Ce2 + Ce3
Prop.24 #12 {e1} C(e1 − e2) C(e1 − e2)
Prop.24 #13 {e1} C(e1 − e2) C(e1 − e2)
Prop.24 #14 {e1} C(e1 − e2) C(e1 − e2)
Prop.24 #15 {e1} C(e1 − e2) C(e1 − e2)

where (∗2) = C(e1 − e2) + Ce3,
(∗3) = C(e1 − e2) + C(e1 − e3),

(∗4) = { ae1 + (1 − a)e2 | a ∈ C − {0} }.
In (∗4) since

(ae1 + (1 − a)e2)(be1 + (1 − b)e2) = abe1 + (1 − ab)e2
for a, b ∈ C − {0}, G(H) is isomorphic to the

multiplicative group of C − {0}.



H G(H) I l(H) I r(H)

Prop.24 #16 {e1} C(e1 − e2 + e3) C(e2 + e3)
Prop.24 #17 {e1} {0} (∗5)
Prop.24 #18 {e1} {0} (∗5)
Prop.24 #19 {e1} Ce2 + Ce3 {0}†
Prop.24 #20 {e1} Ce2 + Ce3 {0}†

where (∗5) = C(e1 − e2) + Ce3.

Proposition 26 (QT structures of low dim. WHAs,

Zhang, Zhao and Wang [13])

(1) The 2-dimensional WHA (#3) and the 3-dimensional

WHA (#10) have a unique universal R-matrix, which is

given by ∆(e1).

(2) The 3-dimensional WHA (#9) has exactly two universal

R-matrices, which are given by ∆(e1), ∆(e1)− 2e3 ⊗ e3.

[13] X. Zhang, X. Zhao and S.Wang, “Sovereign and ribbon weak Hopf algebras”,

Kodai Math. J. 38 (2015), 451–469.

†corrected after my presentation



(Proof)

It follows from Proposition 16(4) and Remark 25.1.

Since C[G] of the cyclic group G = Z/mZ has exactly m

universal R-matrices, we see that:

Corollary 27

(1) Isomorphism classes of the 2-dimensional WHAs over C are

determined by the number of universal R-matrices.

(2) The same statement hold for the 3-dimensional WHAs over

C.

Proposition 28 (Structures of the duals and the

quantum doubles of 3-dimensional WHAs)

(1) In the case of H = (#9), H∗ is isomorphic to H, and D(H)

is a 5-dimensional WHA that is commutative and

cocommutative. In particular, it is not isomorphic to the

5-dimensional Taft’s weak algebra.



Proposition 28 (Structures of the duals and the

quantum doubles of 3-dimensional WHAs (continued))

(2) In the case of H = (#10), both of H∗ and D(H) are

isomorphic to H.

(Proof)

(1) (#9)∗ ∼= C∗ ⊕ (Prop.23(#2))∗

∼= C ⊕ (Prop.23(#2)) = (#9),

D(#9) ∼= D(C) ⊕ D(Prop.23(#2))

∼= D(C) ⊕ D(C[Z/2Z]) = C ⊕ C[Z/2Z × Z/2Z]

(2) It follows from (#10) = C ⊕ C ⊕ C.

Remark. Part (1) has shown by Zhang, Zhao and Wang [13].

In their paper, the ribbon elements of (D(H),R) are

determined. This result can be confirmed by Proposition 19.



Unit objects in module categories over WBAs

The module category HM over a WBA H has a

structure of k-linear monoidal category [5]. The tensor

product of two left H-modules V and W are defined by

V ⊛ W := ∆(1) · (V ⊗ W ),

where · indicates the diagonal action on V ⊗ W .

The unit object in HM is the target subalgebra Ht

together with the action

x · z = εt(xz) (x ∈ H, z ∈ Ht). (4)

This module is called the trivial left H-module.



Structures of the trivial module

Lemma 29

Let H be a WBA over k. Then, (Hs)
∗ ∼= Ht as left H-modules,

where the left H-action on (Hs)
∗ is given by

(x · p)(y) := p
(
εs(yx)

)
(x ∈ H, p ∈ (Hs)

∗, y ∈ Hs).

Let Z(H) denote the center of H, and set

Zt := Ht ∩ Z(H), Zs := Hs ∩ Z(H).

Proposition 30 (Böhm, Nill and Szlachányi [1; Prop.

2.15])

Let H be a WBA over k. Denoted by Dε : H −→ End(Vε) is

the representation corresponding to the action of Vε := (Hs)
∗

given in Lemma 29. Then

EndH(Vε) = Dε(Zt) = Dε(Zs).

Remark. From the above proposition the indecomposable

components of the trivial H-module are multiplicity free [1].



List of decompositions of the trivial H-modules into

indecomposable components for H of dim ≤ 3.

By computing the primitive idempotents of the algebra

EndH(Ht) thanks to Proposition 30, we have the

following table:

H decomp. of Ht into indec. comps.

Prop.23 #1 Ce1
Prop.23 #2 Ce1
Prop.23 #3 H = Ce2 ⊕ C(e1 − e2)

Prop.24 #1 Ce1
Prop.24 #2 Ce1
Prop.24 #3 Ce1
Prop.24 #4 Ce1
Prop.24 #5 Ce1
Prop.24 #6 Ce1
Prop.24 #7 Ce1
Prop.24 #8 C(e1 − e2) ⊕ Ce2



H decomp. of Ht into indec. comps.

Prop.24 #9 C(e1 − e2) ⊕ Ce2
Prop.24 #10 H = C(e1 − e2) ⊕ C(e2 − e3) ⊕ Ce3
Prop.24 #11 C(e1 − e2 + e3) ⊕ C(e2 − e3)
Prop.24 #12 Ce1
Prop.24 #13 Ce1
Prop.24 #14 Ce1
Prop.24 #15 Ce1
Prop.24 #16 C(e1 − e2) ⊕ Ce2
Prop.24 #17 Ce1
Prop.24 #18 Ce1
Prop.24 #19 Ce1
Prop.24 #20 Ce1

Among the 2 and 3-dimensional weak bialgebras H, the

trivial H-module is decomposable if and only if H is

not a bialgebra. So, we state the following problem:



Problem 31

Is it true that the trivial H-module is decomposable for a weak

bialgebra H that is not a bialgebra?

Remark 32

Since the WBA (#16) is indeconposable as an algebra, it is also

indecompposable as a weak bialgbra. Nevertheless, it is

remarkable that the trivial module is decomposable.



§5. A categorical interpretation of indecomposability

Notation. For a WBA H,

HM := (the monoidal category of left H-modules

and H-linear maps),

HM := (the full subcategory of HM

whose objects are finite-dimensional).

Lemma 33

Let A and B be two WBAs over k, and consider the direct sum

WBA H = A⊕B. Then, any left H-module X is decomposed

as X = (1A ·X)⊕ (1B ·X). This decomposition gives rise to

identical equivalences HM ≃ AM× BM and HM ≃ AM× BM as

k-linear monoidal categories.

A k-linear monoidal category C is called

indecomposable if C can not be decomposed to a direct

sum C1 × C2 for some k-linear monoidal categories

C1,C2. If not, then C is called decomposable.



By Lemma 33 we have:

Corollary 34

Let H be a decomposable WBA over k. Then the k-linear

monoidal categories HM and HM are decomposable.

The “converse” is true.

Theorem 35 (A categorical characterization of

indecomposable WBAs)

Let H be a finite-dimensional WBA over k. Then, H is

indecomposable as a WBA if and only if the k-linear monoidal

category HM is indecomposable.

Notation. For a coalgebra C,

MC := (the k-linear abelian category of

right C-comodules and C-colinear maps).



Let H be a WBA over k. Any right H-comodule V has

an (Hs,Hs)-bimodule structure defined as follows: for

y ∈ Hs and v ∈ V ,

y · v = v(0)ε(yv(1)), (5)

v · y = v(0)ε(v(1)y). (6)

V can be regarded as a right H-comodule in the

monoidal category HsMHs since the coaction of V is

(Hs,Hs)-linear map.

Consider the subcategory HsM
H
Hs

of HsMHs, whose

objects are right H-comodules and morphisms are

(Hs,Hs)-linear maps preserving H-comodule

structures. Then, we have an equivalence

Ξ : MH −→ HsM
H
Hs

of k-linear abelian categories since a right H-comodule

map f : M −→ N is always (Hs,Hs)-linear map.



We have the composition

ÛH : MH Ξ−−−→ HsM
H
Hs

forgetful−−−−−→ HsMHs.

ÛH is also said to be a forgetful functor.

Lemma 36 ([7; Lemma 4.2])

Let H be a WBA over k. Then MH has a structure of k-linear

monoidal category such that ÛH is a k-linear monoidal functor.

Moreover, the equivalence Ξ : MH −→ HsM
H
Hs

becomes an

equivalence of k-linear monoidal category.

Remark. Lemma 36 is extended to a more general setting by

Szlachányi [10; Theorem 2.2].

[7] F.Nill, “Axioms for weak bialgebras”, arXiv:math.9805104v1, 1998.

[10] K. Szlachányi, “Adjointable monoidal functors and quantum groupoids”, In:

“Hopf algebras in noncommutative geometry and physics”, Lecture Notes in Pure

and Appl. Math. 239, 291–307, Dekker, New York, 2005.



Let (C ,⊗, I), (D,⊗′, I′) be two monoidal categories. A

triad (F, ϕ̄F , ω̄F ) consisting of

• a covariant functor F : C −→ D,

• a natural transformation

ϕ̄F = {ϕ̄F
X,Y : F (X ⊗ Y ) −→ F (X) ⊗′ F (Y )}X,Y ∈C ,

• a morphism ω̄F : F (I) −→ I′

is said to be comonoidal if they satisfy some

compatibility conditions [2; Subsections 1.5–1.6].

A comonoidal functor (F, ϕ̄F , ω̄F ) is called strong if ϕ̄F

is a natural equivalence and ω̄F is an isomorphism. A

strong comonoidal functor can be regarded as a strong

monoidal functor.

[2] A.Bruguieres and A.Virelizier, “Hopf monads”, Adv. Math. 215 (2007),

679–733.



Lemma 37

Let H,K be two WBAs over k, and φ : H −→ K be a weak

bialgebra map. Then,

(1) For a right H-comodule (M,ρM )

Mφ(M,ρM ) := (M, (idM ⊗ φ) ◦ ρM )

is a right K-comodule, and for a right H-comodule map

f : (M,ρM ) −→ (N, ρN )

Mφ(f) := f : Mφ(M,ρM ) −→ Mφ(N, ρN )

is a right K-comodule map. In this way, a covariant functor

Mφ : MH −→ MK is obtained.

(2) The functor Mφ becomes a k-linear comonoidal. If

φs := φ|Hs : Hs −→ Ks is bijective, then Mφ is strong.

(3) The algebra map φs induces a k-linear monoidal functor

φsMφs : KsMKs −→ HsMHs , and if φs is bijective, then

ÛK ◦Mφ = φ−1
s
Mφ−1

s
◦ ÛH as monoidal functors.



Notation.

Vectf.d.k = (the k-linear category consisting of

finite-dimensional vector spaces and

k-linear maps between them)

For a coalgebra C

MC = (the full subcategory MC, whose objects are

finite-dimensional right C-comodules),

and UC : MC −→ Vectf.d.k denotes the forgetful functor.

The following theorem is fundamental on Tannakian

reconstruction theory.

Theorem 38 (Reconstruction of a coalgebra map)

Let C,D be two coalgebras over k, and F : MC −→ MD be a

k-linear functor. If UD ◦ F = UC , then there is a unique

coalgebra map φ : C −→ D such that F = Mφ, where Mφ is the

k-linear functor induced from φ.



(Proof referred from Franco [4])

Let (M,ρM) be a finite-dimensional right C-comodule.

Since UD ◦ F = UC, we have F (M,ρM) = (M,ρF
M).

Let P be a finite-dimensional subcoalgebra of C and we

regard it a right C-comodule by

ρP : P
∆P−−−−→ P ⊗ P

id⊗ιP−−−−−−→ P ⊗ C,

where ιP is an inclusion. Then we have

F (P, ρP ) = (P, ρF
P ) ∈ MD. Consider the composition

φP : P
ρF
P−−−−→ P ⊗ D

εP⊗id−−−−−→ k ⊗ D ∼= D.

We see that φP : P −→ D is a coalgebra map. By the

fundamental theorem of coalgebras, C is a sum of

finite-dimensional subcoalgebras. From this fact, we

obtain a coalgebra map φ : C −→ D by pasting all φP .

It can be shown that φ satisfies a unique coalgebra map

such that F = Mφ.
[4] I.L. Franco, “Topics in category theory: Hopf algebras”, a lecture note, noted by
D.Mehrle, at Cambridge University, 2015.



Theorem 39 (Reconstruction of a WBA map)

Let A,B be two WBAs over k, and F : MA −→ MB be a strong

k-linear comonoidal functor. If UB ◦ F = UA as k-linear

monoidal functors, then there is a unique WBA map

φ : A −→ B such that F = Mφ as k-linear comonoidal functors,

and ω̄F = φ|As : As −→ Bs is an isomorphism of algebras.

Furthermore, the equation ÛB ◦ F = φ−1
s
Mφ−1

s
◦ ÛA holds.

(Proof)

By Theorem 38 there is a unique coalgebra map

φ : A −→ B such that F = Mφ as k-linear functors.

Since UB ◦ F = UA as k-linear monoidal functors, we

see that

ϕ̄F
M,N : F (M ⊗As N) −→ F (M) ⊗Bs F (N)

is induced from idM⊗N for all M,N ∈ MA.



It can be shown that

(1) φ is an algebra map,

(2) ω̄F = φ|As : As −→ Bs is an isomorphism of

algebras,

(3) F = Mφ as k-linear comonoidal functors.

Finally, by Lemma 37, ÛB ◦ F =
φ

−1
s

M
φ

−1
s

◦ ÛA.

The following is a classical result known as a bialgebra

version of Tannakian reconstruction theorem.

Theorem 40 (Ulbrich[12], Schauenburg[8; Theorem 5.4])

Let C be a k-linear monoidal category, and ω : C −→ Vectf.d.k

be a faithful and exact k-linear monoidal functor. Then there

are a bialgebra B and a monoidal category equivalence

F : C −→ MB such that UB ◦ F = ω.

[8] P. Schauenburg, “Hopf bigalois extensions”, Comm. Algebra 24 (1996),

3797–3825.

[12] K.-H.Ulbrich, “On Hopf algebras and rigid monoidal categories”, Israel J.

Math. 72 (1990), 252–256.



By using Theorems 39 and 40 one can show

Theorem 35 (A categorical characterization of

indecomposable WBAs).

(Proof of Theorem 35)

“Only if” part follows from Corollary 34.

“If” part can be shown as follows. Assume that H is

indecomposable as a WBA, but HM is not. Then there

are two k-linear monoidal categories C1,C2 such that

HM ≃ C1 × C2. Let F : C1 × C2 −→ HM be a k-linear

monoidal category equivalence. Since k-linear monoidal

functors

ω1 : C1
∼= C1 × 0

F−−−→ HM HU−−−−−→ Vectf.d.k ,

ω2 : C2
∼= 0 × C2

F−−−→ HM HU−−−−−→ Vectf.d.k

are faithful and exact,



by Theorem 40 there are bialgebras A,B such that

G1 : C1 ≃ MA, G2 : C2 ≃ MB and

UA ◦ G1 = ω1, UB ◦ G2 = ω2. Thus we have a k-linear

monoidal equivalence

G : MH∗
= HM ≃ C1 × C2 ≃ MA × MB ∼= MA⊕B

satisfying UA⊕B ◦ G = UH∗
. By Theorem 39 there is a

WBA isomorphism φ : A ⊕ B −→ H∗ such that

G = Mφ. Therefore,

H ∼= H∗∗ ∼= (A ⊕ B)∗ ∼= A∗ ⊕ B∗

as WBAs. This is a contradiction.

Let us recall Theorem 18: D(H) = D(A) ⊕ D(B) for

the direct sum H = A ⊕ B of two finite-dimensional

WHAs A and B.

Problem 41

Is it true that Z(C1 × C2) ≃ Z(C1)×Z(C2) for k-linear

monoidal categories C1 and C2?
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