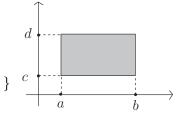
§10. 長方形領域上での重積分

この節以降では、2変数関数の積分、すなわち、重積分について学ぶ。ここでは、長方形領域上で定義された関数に対する重積分の定義を述べ、連続関数に対しては、重積分の値が1変数関数の定積分を2回行うことで求められることを説明する。

● 10-1: 長方形領域とその分割

閉区間 [a,b] と閉区間 [c,d] に対して、 \mathbb{R}^2 の部分集合 $[a,b] \times [c,d]$ を



 $(10-1 \text{ a}) \qquad [a,b] \times [c,d] = \{ \; (x,y) \in \mathbb{R}^2 \; | \; a \leq x \leq b, \; c \leq y \leq d \; \}$ によって定義する。 $[a,b] \times [c,d]$ を**長方形領域**と呼ぶ。

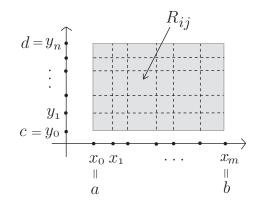
長方形領域 $R = [a,b] \times [c,d]$ の分割 Δ とは、a から始まって b で終わる狭義単調増加な有限数列

$$\Delta^{(1)}: a = x_0 < x_1 < \dots < x_{m-1} < x_m = b$$

と c から始まって d で終わる狭義単調増加な有限数列

$$\Delta^{(2)}: c = y_0 < y_1 < \dots < y_{n-1} < y_n = d$$

との組のことをいう。これは長方形領域 R を座標軸 に平行な直線によって、mn 個の小さな長方形



(10-1 b)
$$R_{ij} = [x_{i-1}, x_i] \times [y_{j-1}, y_j] \qquad (i = 1, 2, \dots, m, \ j = 1, 2, \dots, n)$$

に分割したものを表わしている。

$$|\Delta| = \max\{x_1 - x_0, \dots, x_m - x_{m-1}, y_1 - y_0, \dots, y_n - y_{n-1}\}\$$

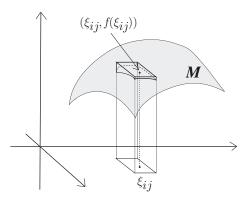
を分割 Δ の細かさと呼ぶ。ここで、 \max は最大なものを表わす記号である。

● 10-2: リーマン和

f(x,y) を長方形領域 $R=[a,b]\times[c,d]$ を定義域に含む関数とする。R の分割

$$\Delta: \begin{cases} a = x_0 < x_1 < \dots < x_{m-1} < x_m = b, \\ c = y_0 < y_1 < \dots < y_{n-1} < y_n = d \end{cases}$$

と、各小長方形領域 $R_{ij} = [x_{i-1}, x_i] \times [y_{j-1}, y_j]$ から任意に一点 ξ_{ij} を取って作った点列 $\xi = \{\xi_{ij}\}_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}$ に対して、実数



(10-2 a)
$$S(f; \Delta, \boldsymbol{\xi}) = \sum_{i=1}^{m} \sum_{j=1}^{n} f(\xi_{ij}) \mu(R_{ij})$$

を分割 Δ とそれにフィットする点列 $\boldsymbol{\epsilon}$ に関する f(x,y) のリーマン和という。ここで、

(10-2 b)
$$\mu(R_{ij}) = (x_i - x_{i-1})(y_j - y_{j-1}) \qquad (R_{ij} \text{ の面積})$$

である (注:教科書では R_{ij} の面積を $|R_{ij}|$ という記号で表わしている)。

● 10-3:分割の細分

長方形領域 $R = [a, b] \times [c, d]$ の分割 Δ は、閉区間 [a, b] の分割

$$\Delta^{(1)}: a = x_0 < x_1 < \dots < x_m = b$$

と閉区間 [c,d] の分割

$$\Delta^{(2)} : c = y_0 < y_1 < \dots < y_n = d$$

から作られているものとする。

分割 $\Delta^{(1)}$ の分点でない $s \in [a,b]$ をとると、 $x_{i-1} < s < x_i$ を満たす i がただ一つ存在するので、[a,b] の新しい分割

$$\Delta^{(1)}[s] : a = x_0 < \dots < x_{i-1} < s < x_i < \dots < x_m = b$$

を作ることができる。 $\Delta^{(1)}[s]$ と $\Delta^{(2)}$ によって与えられる R の分割を Δ の**初等細分**と呼ぶ。 同様に、[c,d] の分割 $\Delta^{(2)}$ の分点でない $t\in[c,d]$ をとると、[c,d] の新しい分割 $\Delta^{(2)}[t]$ が得られる。 $\Delta^{(1)}$ と $\Delta^{(2)}[t]$ によって与えられる R の分割も Δ の**初等細分**と呼ぶ。

初等細分を有限回繰り返して得られる分割を △ の細分という。

● 10-4: 長方形領域での積分

f(x,y) を定義域の中に長方形領域 $R=[a,b]\times[c,d]$ を含む関数とする。R の分割 Δ とそれにフィットする点列 ξ をとり、リーマン和 $S(f;\Delta,\xi)$ を考える。 $N\to +\infty$ のとき $|\Delta_N|\to 0$ となるように Δ を細分していって R の分割の列 $\Delta=\Delta_0,\Delta_1,\Delta_2,\dots$ を作り、各 Δ_N に対してそれにフィットする点列 ξ_N を選ぶとき、リーマン和 $S(f;\Delta_N,\xi_N)$ が

- ① Δ の細分の列 $\Delta = \Delta_0, \Delta_1, \Delta_2, \cdots$ の取り方
- ② 各細分 Δ_N にフィットする点列 ξ_N の選び方
- ③ 最初の分割 Δ とそれにフィットする点列 ξ の取り方

によらずにある値 γ に限りなく近づいていく場合、関数 f(x,y) は R 上で (リーマン) 積分可能であるという。この値 γ を R における f(x,y) の重積分といい、

によって表わす: $\gamma = \int_{R} f(x,y) dx dy$.

注意 10-4-1 教科書では、(10-4 a) を

(10-4 b)
$$\iint_{R} f(x,y) dx dy$$

と記している。どちらの記号を用いてもよい。

例 10-4-2 $\alpha \in \mathbb{R}$ への定数関数 $f(x,y) = \alpha$ を考える。この場合、 $R = [a,b] \times [c,d]$ の分割 Δ とそれにフィットする点列 $\boldsymbol{\xi} = \{\xi_{ij}\}_{i,j}$ に関する f(x,y) のリーマン和は、

$$S(f; \Delta, \boldsymbol{\xi}) = \sum_{i,j} f(\xi_{ij}) \mu(R_{ij}) = \sum_{i,j}^{n} \alpha \mu(R_{ij}) = \alpha(b-a)(d-c)$$

となり、 Δ , ξ の選び方によらない。したがって、定数関数 $f(x,y)=\alpha$ $((x,y)\in\mathbb{R}^2)$ は、任意の長方形領域 R 上で積分可能あり、値は $\int_R f(x,y) dx dy = \alpha \mu(R)$ である。但し、 $\mu(R)$ は R の面積を表わす。

● 10-5: 重積分可能性

1変数の場合と同様に次が成立する。

定理 10-5-1

 $R = [a,b] \times [c,d]$ 上で連続な関数は積分可能である。R 上で連続でなくても、不連続な点が有限個であれば、やはり、積分可能である。

定理の証明は、煩雑になるので、ここでは省略する。証明は微積分学に関する本格的な教科書(例えば、米田薫・谷口和夫・木坂正史『じっくり学べる微分・積分』p.185) などを参照。

● 10-6: 累次積分による計算

長方形領域で積分可能な関数の重積分は、1変数関数の定積分を2度計算することによって、 求めることができる。

定理 10-6-1

f(x,y) を定義域の中に長方形領域 $R=[a,b]\times[c,d]$ を含む連続関数とする。このとき、次式が成立する。

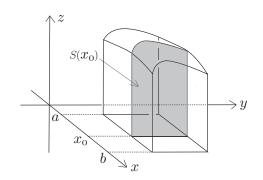
(10-6 a)
$$\int_{R} f(x,y)dxdy = \int_{a}^{b} \left(\int_{c}^{d} f(x,y)dy \right) dx = \int_{c}^{d} \left(\int_{a}^{b} f(x,y)dx \right) dy$$

この定理の証明はここでは省略するが、定理の意味を簡単に説明しておこう。

f(x,y) はそのグラフが右図で与えられる連続関数としておこう (必要ならば十分大きな定数を加えて、R上で f(x,y)>0 となるようにしておく)。 重積分

$$\int_{R} f(x,y) dx dy$$

は、その定義から、幾何学的には、(x,y,z)-空間において方程式 z=f(x,y) によって定まる曲面と直方体 $[a,b] \times [c,d] \times [0,K]$ (但し、K は十分大き



な正の定数) とで囲まれる "下側の"部分の立体 V の体積を表わしていると考えられる。

一方、各 $x_0 \in [a,b]$ に対して、積分

は V を方程式 $x=x_0$ によって表わされる平面 H で切断したときの断面積 $S(x_0)$ を表わしていると考えられる。したがって、積分

$$\int_a^b \Bigl(\int_c^d f(x,y) dy\Bigr) dx = \int_a^b S(x) dx$$

は立体 V の体積に等しいはずである。これは等式

(10-6 c)
$$\int_{R} f(x,y)dxdy = \int_{a}^{b} \left(\int_{c}^{d} f(x,y)dy \right) dx$$

が成立することを示唆している。等式

(10-6 d)
$$\int_{R} f(x,y)dxdy = \int_{c}^{d} \left(\int_{a}^{b} f(x,y)dx \right) dy$$

も同様にして理解することができる。

● 10-7: 重積分の性質

次の定理は重積分の定義からすぐにわかる。

定理 10-7-1

f(x,y),g(x,y) を定義域の中に長方形領域 R=[a,b] imes[c,d] を含む連続関数とする。このとき、

(1) (線形性)

(i)
$$\int_{R} (f(x,y) + g(x,y)) dxdy = \int_{R} f(x,y) dxdy + \int_{R} g(x,y) dxdy.$$

(ii) 任意の
$$\alpha \in \mathbb{R}$$
 に対して、 $\int_{\mathbb{R}} \alpha f(x,y) dx dy = \alpha \int_{\mathbb{R}} f(x,y) dx dy$.

(2) (単調性) 任意の $(x,y) \in R$ に対して $f(x,y) \leq g(x,y)$ ならば、

(10 - 7 a)
$$\int_{R} f(x, y) dx dy \leq \int_{R} g(x, y) dx dy.$$

(3) (加法性) R に含まれる長方形領域 R_1, R_2 が

•
$$R_1 = [a, s] \times [c, d], R_2 = [s, b] \times [c, d]$$
 (但し $a < s < b$)、あるいは、

•
$$R_1 = [a, b] \times [c, t], R_2 = [a, b] \times [t, d]$$
 (但し $c < t < d$)

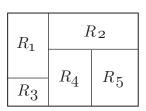
によって与えられているとき、

(10-7 b)
$$\int_{R} f(x,y) dx dy = \int_{R_{1}} f(x,y) dx dy + \int_{R_{2}} f(x,y) dx dy.$$

重積分の加法性公式 (10-7 b) を繰り返し用いると、例えば、R を右図のように小長方形領域 R_i $(i=1,\cdots,5)$ に分割したとき、

$$\int_{R} f(x,y)dxdy = \sum_{i=1}^{5} \int_{R_{i}} f(x,y)dxdy$$

となることがわかる。



数学を学ぶ(関数と微分積分の基礎 2)第 10 回・学習内容チェックシート

学籍番号 氏名
Q1. 次の に適当な言葉や数式を入れなさい。
\bullet $f(x,y)$ を長方形領域 $R=[a,b] imes[c,d]$ を定義域に含む関数とするとき、 R の分割
$\Delta: \begin{cases} a = x_0 < x_1 < \dots < x_{m-1} < x_m = b, \\ c = y_0 < y_1 < \dots < y_{n-1} < y_n = d \end{cases}$
と、それにフィットする点列 $\pmb{\xi}=\{\xi_{ij}\}_{\substack{1\leq i\leq m\\1\leq j\leq n}}$ に関する $f(x,y)$ のリーマン和 $S(f;\Delta,\pmb{\xi})$
は
$S(f; \Delta, \boldsymbol{\xi}) =$.
● 長方形領域 R 上で な関数は重積分可能である。このとき、重積分
$\int_R f(x,y) dx dy$ は R の分割を細かくしていったときの $oxedown$ の極限として定義される。
● 重積分は線形性、単調性、加法性という3つの性質を持つ。線形性は次の2つの等式からなる。
公司机 1 1 1 1 元年八 0 元 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
単調性とは、重積分の下で大小関係が保たれることを表わす、次の性質のことをいう。
$f(x,y) \leq g(x,y) \ ((x,y) \in R)$ のとき
加法性とは、次の性質のことをいう: R を R_1 R_2 のように2つの長方形
領域 R_1,R_2 に分けたとき
Q2. 次の表を完成させなさい。
解決方法・方針 長方形領域 $R=[a,b] imes[c,d]$ 上
で定義された連続関数 $f(x,y)$ の重積分を計算するには?

Q3. 第 10 回の授業で学んだ事柄について、わかりにくかったことや考えたことなどがあれば、書いてください。