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§11. 三角化と対角化
線形変換は、ある基底に関する行列表示が上三角行列となるとき、三角化可能であると呼ば

れる。線形変換が三角化可能であるための必要十分条件は固有多項式が基礎体 K において一次
式の積に分解することである。ここでは、まず、この事実を証明する。次に、対角化可能性と
固有空間分解について説明する。

● 11 -1 : 三角化
V (̸= {0V }) を K 上の有限次元べクトル空間とし、T : V −→ V を K-線形変換とする。こ

のとき、T の固有多項式 ∆T (x) は K[x] において必ずしも一次式の積に分解できるわけでは
ない。

例 11 -1 -1 T
((x

y

))
=

(
−y
x

)
(x, y ∈ R)

によって定義される R-線形変換 T : R2 −→ R2 を考える。R2 の標準基底 “e1,e2” に関する T

の行列表示は
A =

(
0 −1
1 0

)
であるから、T の固有多項式は

∆T (x) =

∣∣∣∣ x 1
−1 x

∣∣∣∣ = x2 + 1

である。∆T (x) は R[x] においては一次式に分解することはできない。 □

上三角行列とは、対角成分より下側の成分がすべて 0 であるような正方行列、すなわち、

(11 -1 a) A =


a11 a12 · · · a1n

a22 · · · a2n
. . .

...O ann


の形をした正方行列のことをいうのであった。

定理 11 -1 -2
V ( ̸= {0V }) を K 上の有限次元べクトル空間とし、T : V −→ V を K-線形変換とする。こ
のとき、次の２つは同値である。

(i) T の固有多項式 ∆T (x) は K[x] において一次式の積に分解する。
(ii) V のある基底に関する T の行列表示は上三角行列になる。

この同値な条件 (i)または (ii)を満たす K-線形変換 T は三角化可能であると呼ばれる。

上の定理の「行列版」は次の形になる。

系 11 -1 -3
A ∈ Mn(K) とする。このとき、次の２つは同値である。

(i) A の固有多項式 ∆A(x) は K[x] において一次式の積に分解する。
(ii) P−1AP が上三角行列になるような正則行列 P ∈ Mn(K) が存在する。

この同値な条件 (i)または (ii)を満たす n 次正方行列 A は K 上三角化可能であると呼ば
れる。
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(証明)

(ii) =⇒ (i) の証明：P−1AP =


a11 a12 · · · a1n

a22 · · · a2n
. . .

...O ann

 とすると、

∆A(x) = ∆P−1AP (x) =

∣∣∣∣∣∣∣∣∣∣
x− a11 −a12 · · · −a1n

x− a22 · · · −a2n
. . .

...
O x− ann

∣∣∣∣∣∣∣∣∣∣
= (x− a11)(x− a22) · · · (x− ann).

(i) =⇒ (ii) の証明：n に関する帰納法で証明する。
I. n = 1 のときA = (a11) となっているので、(ii)が成り立つ。
II. n > 1とし、(n−1)次正方行列について、「(i) =⇒ (ii)」は正しいと仮定する。A ∈ Mn(K)

について、固有多項式 ∆A(x) が K[x] において一次式の積に分解すると仮定する。すると、
∆A(α1) = 0 を満たす α1 ∈ K が存在する。α1 は A の K 上の固有値であるから、Ap1 = α1p1

となる 0 でないべクトル p1 ∈ Kn が存在する。p1 に Kn のべクトル p2, · · · ,pn を付け加えて
Kn の基底 “p1,p2, · · · ,pn”を作る。このとき、基底 “p1,p2, · · · ,pn”に関する TA : Kn −→ Kn

の行列表示は (
α1 ∗ · · · ∗

0 B

)
の形になる。したがって、P = (p1 p2 · · · pn) とおくと、P は正則で、

P−1AP =

(
α1 ∗ · · · ∗

0 B

)

となる。よって、∆A(x) = ∆P−1AP (x) = (x− α1)∆B(x) となる。∆A(x) は K[x] において一
次式の積に分解するから、∆B(x) もそうである。よって、(n − 1) 次正方行列 B ∈ Mn−1(K)

に対して帰納法の仮定を適用することにより、

Q−1BQ =

α2 ∗
. . .

O αn


となる (n− 1) 次正則行列 Q ∈ Mn−1(K) が存在することがわかる。R ∈ Mn(K) を

R =

(
1 0 · · · 0

0 Q

)

によって定義すると、R ∈ Mn(K) は正則、したがって、PR も正則であり、

(PR)−1A(PR) = R−1(P−1AP )R

=

(
1 0 · · · 0

0 Q−1

)(
α1 ∗ · · · ∗

0 B

)(
1 0 · · · 0

0 Q

)

=

(
α1 ∗ · · · ∗

0 Q−1BQ

)
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=


α1 ∗ · · · ∗

0

α2 ∗
. . .

O αn


となる。これで、n 次正方行列についても「(i) =⇒ (ii)」が正しいことが示された。 □

注意 11 -1 -4 K = C (複素数体)のときには、代数学の基本定理から、定数でない任意の複
素係数の多項式は１次式の積に分解する。したがって、任意の n 次複素正方行列 A は C 上三
角化可能である。

● 11 -2 : 対角化
V ( ̸= {0V }) を K 上の有限次元べクトル空間とし、T : V −→ V を K-線形変換とする。T

が 対角化可能であるとは、T の行列表示が対角行列になるような V の基底が存在するときを
いう。これの「行列版」は、「n 次正方行列 A ∈ Mn(K) が K 上対角化可能であるとは、

(11 -2 a) P−1AP =


α1 Oα2

. . .

O αn


となる正則行列 P ∈ Mn(K) が存在するときをいう」である。
線形変換あるいは正方行列がいつでも対角化可能であるとは限らない ([例 11 -1 -1])。

● 11 -3 : 固有空間分解と対角化可能性

補題 11 -3 -1
V (̸= {0V }) を K 上の有限次元べクトル空間とし、T : V −→ V を K-線形変換とする。T

の相異なる固有値 α1, · · · , αk ∈ K に対して固有空間 W (α1), · · · ,W (αk) は V の中で直和
である。
(証明)

k に関する数学的帰納法で示す。W (α1) はそれ自身で直和と考えられる。
2 ≤ l ≤ k とし、W (α1), · · · ,W (αl−1) は V の中で直和であると仮定する。
wi ∈ W (αi) (i = 1, · · · , l) は

(11 -3 a) w1 + · · ·+ wl = 0

を満たしているとする。この両辺に T を作用させると、
(11 -3 b) α1w1 + · · ·+ αlwl = 0

が成り立つ。(11 -3 a)の両辺を αl 倍して、(11 -3 b)との差をとると、
(αl − α1)w1 + · · ·+ (αl − αl−1)wl−1 = 0

を得る。帰納法の仮定により、W (α1), · · · ,W (αl−1) は V の中で直和であるから、上式から
(αl − αi)wi = 0 (i = 1, · · · , l − 1)

を得る。αl −αi ̸= 0 であるから、wi = 0 となる。これを (11 -3 a)に代入すると、wl = 0 を得
る。よって、w1 = · · · = wl−1 = wl = 0 が示された。故に、W (α1), · · · ,W (αl−1),W (αl) は V

の中で直和である。帰納法により、補題は証明された。 □
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定理 11 -3 -2
V (̸= {0V }) を K 上の有限次元べクトル空間とし、T : V −→ V を三角化可能な K-線形変
換とする。α1, · · · , αk ∈ K を T の相異なる固有値全体とするとき、次の３つは同値である。

1⃝ T は対角化可能である。
2⃝ V = W (α1)⊕ · · · ⊕W (αk).

3⃝
k∑

i=1
dimW (αi) = dimV .

(証明)

1⃝ =⇒ 2⃝ の証明：T が対角化可能であるとすると、T の固有ベクトルからなる V の基底
“v1, · · · , vn” が存在する。vi (i = 1, · · · , n) が属する固有値は α1, · · · , αk のいずれかであるか
ら、vi ∈ W (αji) となる ji ∈ {1, · · · , k} が存在する。よって、v1, · · · , vn ∈

k∑
i=1

W (αi) である。

よって、V = Span{v1, · · · , vn} ⊂
k∑

i=1
W (αi) が示された。逆向きの包含関係は自明に成立する

から、V =
k∑

i=1
W (αi) を得る。

2⃝ =⇒ 1⃝ の証明：各 i = 1, · · · , k に対して、W (αi) の基底 Bi をとり、V の基底 B =

B1 ⊔ · · · ⊔ Bk を作ると、この基底に関して T は対角行列により表わされる。
2⃝ =⇒ 3⃝ は直和の次元の公式から直ちにしたがう。
3⃝ =⇒ 2⃝ の証明：[補題 11 -3 -1]より、W (α1)⊕ · · · ⊕W (αk) ⊂ V であることはわかって

いる。 3⃝が成り立つならば、dim(W (α1) ⊕ · · · ⊕W (αk)) =
k∑

i=1
dimW (αi) = dimV であるか

ら、W (α1)⊕ · · · ⊕W (αk) = V が成り立つ。 □

注意. V の基底 B を任意に 1 つとり、この基底に関する T の行列表示を A とおく。B に関
する座標系 Φ : V −→ Kn とすると、各 i に対して、

Φ
(
W (αi)

)
= W (αi, TA) = { x ∈ Kn | (αiEn −A)x = 0 }

が成り立つから、dimW (αi) は次の公式により計算することができる：
(11 -3 c) dimW (αi) = n− rank(αiEn −A).

例 11 -3 -3 4 次正方行列 A =


4 3 2 1
0 4 3 2
0 0 4 3
0 0 0 0

 に対して

∆A(x) =

∣∣∣∣∣∣∣∣
x− 4 −3 −2 −1
0 x− 4 −3 −2
0 0 x− 4 −3
0 0 0 x

∣∣∣∣∣∣∣∣ = (x− 4)3x

であるから、A の固有値は 4 と 0 である。TA : C4 −→ C4 とする。このとき、
dimW (4, TA) = 4− rank (4E4 −A) = 4− 3 = 1,

dimW (0, TA) = 4− rank (0E4 −A) = 4− 3 = 1

であるから、dimW (4, TA) + dimW (0, TA) = 2 < 4 となる。[定理 11 - 3 - 2]より、A は C 上
対角化可能ではない。 □
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No.11 2025年 12月 8日
線形代数４事前練習用演習問題

pre11-1. 0 でない複素数 α を１つ固定し、2 次複素正方行列A =

(
1 α

α−1 1

)
を考える。C-線

形変換 T : M2(C) −→ M2(C) を

T (X) = AX +XA (X ∈ M2(C))

によって定義する。
(1) M2(C) の部分空間 W = { X ∈ M2(C) | T (X) = 2X } の次元を求めよ。
(2) T は対角化可能かどうかを調べよ。

ヒントと略解（最初は見ずに解答してください）1

pre11-1. (1) W = W (2, T ) と表わされる。M2(C) において、

B = “E11 =

(
1 0
0 0

)
, E12 =

(
0 1
0 0

)
, E21 =

(
0 0
1 0

)
, E22 =

(
0 0
0 1

)
”

は基底をなす。

T (E11) = 2E11 + αE12 + α−1E21,

T (E12) = α−1E11 + 2E12 + α−1E22,

T (E21) = αE11 + 2E21 + αE22,

T (E22) = αE12 + α−1E21 + 2E22

より、基底 B に関する T の行列表示は

A =


2 α−1 α 0

α 2 0 α

α−1 0 2 α−1

0 α−1 α 2


である。基底 B に関する M2(C) の座標系を Φ とおくと、Φ(W ) = Φ(W (2, T )) = W (2, TA)

となる。したがって、dimW = dimW (2, TA) = 4− rank (2E4 −A) が成り立つ。

2E4 −A =


0 −α−1 −α 0

−α 0 0 −α

−α−1 0 0 −α−1

0 −α−1 −α 0

 1⃝ ↔ 2⃝−−−−−→


−α 0 0 −α

0 −α−1 −α 0

−α−1 0 0 −α−1

0 −α−1 −α 0


1⃝×(−α−2)+ 3⃝−−−−−−−−−→

2⃝×1+ 4⃝


−α 0 0 −α

0 −α−1 −α 0

0 0 0 0

0 0 0 0


となる。α ̸= 0 であるから rank(2E4 −A) = 2 である。よって、dimW = 4− 2 = 2 である。

1申し訳ありません。略解がひどく間違っていました。主な修正箇所をグレーで示しましたが、ほぼ全面的に書き換えています
(12 月 8 日 19 時)。
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(2) T の固有多項式は
∆T (x) = ∆A(x) = |xE4 −A|

=

∣∣∣∣∣∣∣∣∣
x− 2 −α−1 −α 0

0 x− 2 0 −α

0 0 x− 2 −α−1

−(x− 2) −α−1 −α x− 2

∣∣∣∣∣∣∣∣∣ ( 4□×(−1)+ 1□)

= (x− 2)

∣∣∣∣∣∣∣
x− 2 0 −α

0 x− 2 −α−1

−2α−1 −2α x− 2

∣∣∣∣∣∣∣
 x− 2 をくくり出してから

1⃝× 1 + 4⃝ を行なったのち
第 1 列に関して余因子展開


= · · · · · · = (x− 2)2x(x− 4)

となるから、T の固有値は 0, 2, 4 である。
固有値 λ = 0, 2, 4 に属する T の固有空間を W (λ) とおくと、(1)より dimW (2) = 2 で

ある。そこで、W (2) の一組の基底を “X1, X2”をとり、W (0),W (4) のそれぞれから 0 でない
ベクトル（つまり、0 に属する固有ベクトルと 4 に属する固有ベクトル）X3, X4 をとると、
“X1, X2, X3, X4” は W (2)⊕W (0)⊕W (4) の基底である。W (2)⊕W (0)⊕W (4) ⊂ M2(C) で
あり、dimM2(C) = 4 であるから、M2(C) = W (2) ⊕W (0) ⊕W (4) が成り立っていることが
わかる。よって、T は対角化可能である。
注意：対角化可能か否かは、重複度が 2 以上の固有値 λ について、dimW (λ) が λ の重複度に
一致するかどうかにより、判定することができる。この事実は線形代数２の [定理 14 - 3 - 2]で与
えられているが、厳密な証明はまだであった。この定理の厳密な証明は第 13節において与える
予定である。
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線形代数４・第 11回 (2025年 12月 8日)演習問題事前練習シート
※このシートを A4片面１枚に印刷して、授業前までに事前練習用演習問題の解答をここに書
いてください。略解を参照して答え合わせをしたものを授業に持参してください。但し、この
シートは提出せず、各自で保管してください。



線形代数４・第 11回学習内容チェックシート 2025年 12月 8日

学 籍 番 号 氏 名

Q1. 上三角行列および対角行列はそれぞれどのような形をした行列か。

[上三角行列]： [対角行列]：

Q2. (1) V (̸= {0V }) を K 上の有限次元ベクトル空間とし、T を V 上の K-線形変換とする。
T が三角化可能であるとは、どのような条件が満たされるときをいうか。固有多項式に関する
条件 (i)と、それに同値な行列表示に関する条件 (ii) の 2 つの条件を書け。

(i)

(ii)

(2) A ∈ Mn(K) とする。A が K 上三角化可能であるとは、どのような条件が満たされると
きをいうか。固有多項式に関する条件 (i)と、それに同値な行列表示に関する条件 (ii) の 2 つ
の条件を書け。

(i)

(ii)

Q3. (1) V (̸= {0V }) を K 上の有限次元ベクトル空間とし、T を V 上の K-線形変換とする。
T が対角化可能であるとは、どのような条件が満たされるときをいうか。その条件を書け。

(2) A ∈ Mn(K) とする。A が K 上対角化可能であるとは、どのような条件が満たされると
きをいうか。その条件を書け。

Q4. V (̸= {0V }) を K 上の有限次元ベクトル空間とし、T を V 上の三角化可能な K-線形変換
とする。α1, · · · , αk を T の相異なる固有値の全体とする。T が対角化可能であるための必要
十分条件のうち、T の固有値 αi に属する固有空間 W (α1), · · · ,W (αk) を用いたものを 2 つ挙
げよ。

(i)

(ii)

Q5. V (̸= {0V }) を K 上の n 次元ベクトル空間とし、T を V 上の K-線形変換とする。B を
V の基底とし、B に関する T の行列表示を A とおく。このとき、T の各固有値 α に属する
固有空間 W (α) の次元は、αEn −A の階数を用いてどのように求めることができるか。

dimW (α) =

Q6. 第 11回の授業で学んだ事柄について、わかりにくかったことや考えたことなどがあれば、
書いてください。


