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§12. Frobeniusの定理とCayley-Hamiltonの定理
Frobeniusの定理は線形変換 T の固有値や固有ベクトルがわかっているとき、T の多項式で

与えられる線形変換の固有値や固有ベクトルを求めるために使われる。Cayley-Hamilton の定
理は、線形変換 T の固有多項式 ∆T (x) の不定元 x に x = T を代入して得られる T に関する
多項式が線形変換として常に 0 になるということを主張する定理である。この節では、これら
の定理を証明し、その使い方を学ぶ。以下、K を体とする。

● 12 -1 : 線形変換の多項式
V を K 上のべクトル空間とし、T : V −→ V を K-線形変換とする。このとき、整数 k ≥ 0

に対して V 上の線形変換 T k : V −→ V を

(12 -1 a) T k =


idV (k = 0)

k 個︷ ︸︸ ︷
T ◦ · · · ◦ T (k ≥ 1)

によって定義する。t ∈ K と K-線形変換 T : V −→ V に対して、K-線形変換 tT : V −→ V が
(12 -1 b) (tT )(v) = tT (v) (v ∈ V )

によって定義され、２つの K-線形変換 S, T : V −→ V に対して、K-線形変換 S+T : V −→ V

が
(12 -1 c) (S + T )(v) = S(v) + T (v) (v ∈ V )

によって定義される。すると、x を不定元とする K-係数の多項式
f(x) = a0 + a1x+ · · ·+ amxm (n ≥ 0, a0, a1, · · · , am ∈ K)

と K-線形変換 T : V −→ V に対して V 上の線形変換 f(T ) : V −→ V が
(12 -1 d) f(T ) = a0idV + a1T + · · ·+ amTm

によって定義される。２つの K-係数の多項式
f(x) = a0 + a1x+ · · ·+ amxm

g(x) = b0 + b1x+ · · ·+ blx
l

に対して、h(x) = f(x)g(x) とおく：
h(x) = a0b0 + (a0b1 + a1b0)x+ · · ·+ amblx

m+l.

このとき、
(12 -1 e) h(T ) = f(T ) ◦ g(T )

が成り立つ。
上では線形変換を多項式に代入することを考えたが、同様にして、正方行列を多項式に代入

することができる。つまり、n 次正方行列 A ∈ Mn(K) と x を不定元とする K-係数の多項式
f(x) = a0 + a1x+ · · ·+ amxm

に対して、f(A) を
(12 -1 f) f(A) = a0En + a1A+ · · ·+ amAm

と定める。２つの K-係数の多項式 f(x), g(x) に対して h(x) = f(x)g(x) とおくと、
(12 -1 g) h(A) = f(A)g(A)
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が成り立つ。

例 12 -1 -1 A =

(
1 −2
4 5

)
と多項式 f(x) = x2 − 3x+ 7 に対して、

f(A) = A2 − 3A+ 7E2 =

(
−7 −12
24 17

)
− 3

(
1 −2
4 5

)
+ 7

(
1 0
0 1

)
=

(
−3 −6
12 9

)
.

● 12 -2 : Frobeniusの定理
A の固有値がわかれば、A の多項式で与えられれる行列の固有値も次の定理によりわかる。

定理 12 -2 -1 (Frobeniusの定理)

V ( ̸= {0V }) を K 上の有限次元べクトル空間とし、T : V −→ V を K-線形変換とする。ま
た、f(x) ∈ K[x] とする。このとき、T が三角化可能ならば f(T ) も三角化可能であって、
α1, · · · , αn を T の固有値の全体とするとき、f(T ) の固有値の全体は f(α1), · · · , f(αn) で
与えられる。
(証明)

T は三角化可能なので、V の基底 B を適当に選ぶと、B に関する T の行列表示は

A =


α1 ∗ · · · ∗

α2 · · · ∗
. . .

...O αn


の形となる。ここで、

∆T (x) = |xEn −A| = (x− α1)(x− α2) · · · (x− αn)

であるから、α1, α2, · · · , αn は T の固有値の全体となる。
f(x) = a0 + a1x + · · · + amxm (a0, a1, · · · , am ∈ K) とおくと、同じ基底 B に関する

f(T ) = a0idV + a1T + · · ·+ amTm の行列表示は f(A) = a0En+ a1A+ · · ·+ amAm となるが、
i = 1, · · · ,m に対して

Ai =


αi
1 ∗ · · · ∗

αi
2 · · · ∗

. . .
...O αi
n


となるから、

f(A) =


f(α1) ∗ · · · ∗

f(α2) · · · ∗
. . .

...O f(αn)


となる。よって、

∆f(T )(x) = |xEn − f(A)| = (x− f(α1))(x− f(α2)) · · · (x− f(αn))

となり、f(T ) は三角化可能である。また、f(T ) のすべての固有値は f(α1), f(α2), · · · , f(αn)

によって与えられる。 □

上の定理の「行列版」は次のようになる。
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系 12 -2 -2 (Frobeniusの定理)

n 次正方行列 A ∈ Mn(K) が K 上三角化可能ならば、任意の多項式 f(x) ∈ K[x] に対して
f(A) もまた K 上三角化可能であり、α1, · · · , αn が A の固有値の全体のとき、f(A) の固有
値の全体は f(α1), · · · , f(αn) で与えられる。 □

例 12 -2 -3 3 次正方行列A =

 1 −1 −1
−1 1 −1
−1 −1 −1

 の固有多項式は
∆A(x) =

∣∣∣∣∣∣
x− 1 1 1

1 x− 1 1
1 1 x+ 1

∣∣∣∣∣∣ = (x− 1)(x+ 2)(x− 2)

である。よって、A は R 上三角化可能であり、その固有値は 1, 2,−2 である。Frobeniusの定
理より、実係数多項式 f(x) = x2 + 4 に対して、

f(A) =

 1 −1 −1
−1 1 −1
−1 −1 −1

2

+ 4

 1 0 0
0 1 0
0 0 1

 =

 7 −1 1
−1 7 1
1 1 7


の固有値は f(1) = 5, f(2) = 8, f(−2) = 8 で与えられる。 □

● 12 -3 : Cayley-Hamiltonの定理
Cayley-Hamiltonの定理は固有値の理論における最も基本的な定理である。この定理なしに

は固有値に関する様々な結果を導くことは困難であろう。

定理 12 -3 -1 (Cayley-Hamiltonの定理)

V (̸= {0V }) を K 上の有限次元ベクトル空間、T : V −→ V を三角化可能な K-線形変換と
する。このとき、
(12 -3 a) ∆T (T ) = 0.

但し、上式の右辺の 0 は 零写像を表わす。

上の定理を T = TA (A は n 次正方行列) の場合に考えると、次の定理を得る。

定理 12 -3 -2 (Cayley-Hamiltonの定理)

K 上三角化可能な正方行列 A ∈ Mn(K) に対して
(12 -3 b) ∆A(A) = O.

注意. [定理 12 -3 -1]および [定理 12 -3 -2]において「三角化可能」という条件は外すことがで
きる。しかし、この授業で用いる Cayley-Hamiltonの定理は、上で述べた形で十分である。

例 12 -3 -3 A =

(
a b
c d

)
に対して、

∆A(x) =

∣∣∣∣x− a −b
−c x− d

∣∣∣∣ = (x− a)(x− d)− (−b)(−c) = x2 − (a+ d)x+ (ad− bc)

であるから、Cayley-Hamiltonの定理により、
(12 -3 c) A2 − (a+ d)A+ (ad− bc)E2 = O

が成り立つ。
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例 12 -3 -4 A =

(
1 2
3 4

)
に対して、Cayley-Hamiltonの定理により、

A2 − 5A− 2E2 = O

が成り立つ。したがって、A2, A3, A4 は
A2 = 5A+ 2E2,

A3 = (A+ 5E2)(A
2 − 5A− 2E2) + 27A+ 10E2 = 27A+ 10E2,

A4 = (A2 + 5A+ 27E2)(A
2 − 5A− 2E2) + 145A+ 54E2 = 145A+ 54E2

のように A の多項式で表わされる (A を代入すれば、具体的に成分で書くこともできる)。ま
た、A(A− 5E2) = 2E2 より、A−1 = 1

2
(A− 5E2) である。

([定理 12 -3 -1]の証明)

n = dimV とおくと、T は三角化可能であるから、V の基底 B = “v1, · · · , vn” を適当にと
ると、T の B に関する行列表示A は上三角行列になる。そこで、

A =


α1 a12 · · · a1n

α2 · · · a2n
. . .

...O αn

 とおくと、
T (v1) = α1v1

T (v2) = a12v1 + α2v2

...
...

T (vn) = a1nv1 + · · ·+ an−1,nvn−1 + αnvn

となる。したがって、各 j に対して ⟨v1, · · · , vj⟩ := SpanK{v1, · · · , vj} と書くと、
(T − αj idV )(vj) = a1jv1 + · · ·+ aj−1,jvj−1 ∈ ⟨v1, · · · , vj−1⟩,

(T − αj idV )(vi) ∈ ⟨v1, · · · , vi⟩ ⊂ ⟨v1, · · · , vj−1⟩ (i = 1, 2, · · · , j − 1)

であるから
(12 -3 d) (T − αj idV )(⟨v1, · · · , vj⟩) ⊂ ⟨v1, · · · , vj−1⟩

となる。これを j = n, n− 1, · · · , 2, 1 を代入して具体的に書くと、
(T − αnidV )(⟨v1, · · · , vn−1, vn⟩) ⊂ ⟨v1, · · · , vn−1⟩,

(T − αn−1idV )(⟨v1, · · · , vn−1⟩) ⊂ ⟨v1, · · · , vn−2⟩,
...

(T − α2idV )(⟨v1, v2⟩) ⊂ ⟨v1⟩,

(T − α1idV )(⟨v1⟩) = {0}

となるから、
(12 -3 e) (T − α1idV ) ◦ · · · ◦ (T − αn−1idV ) ◦ (T − αnidV ) = 0

とわかる。T は三角化可能であるから、∆T (x) = (x− α1) · · · (x− αn−1)(x− αn) のように因
数分解されるので、(12 -3 e)は、∆T (T ) = 0 と書き換えられる。 □
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No.12 2025年 12月 15日
線形代数４事前練習用演習問題

pre12-1. (1) 3 次正方行列

A =

0 1 0
0 0 1
1 0 0


の C における固有値と P−1AP が対角行列となるような正則行列 P ∈ M3(C) を 1 つ求めよ。

(2) 3 次複素正方行列

B =

a1 a2 a3
a3 a1 a2
a2 a3 a1


を E3, A,A

2 の多項式で表わし、B の C における固有値と Q−1BQ が対角行列となるような
正則行列 Q ∈ M3(C) を 1 つ求めよ。

ヒントと略解（最初は見ずに解答してください）

pre12-1. (1) 計算により、∆A(x) =

∣∣∣∣∣∣
x −1 0
0 x −1

−1 0 x

∣∣∣∣∣∣ = (x− 1)(x2 + x+ 1) がわかる。

ω =
−1 +

√
3i

2
とおくと、ω2 =

−1−
√
3i

2
, ω3 = 1 を満たし、∆A(x) = (x−1)(x−ω)(x−

ω2) となる。したがって、A の C における固有値は 1, ω, ω2 である。
P−1AP が対角行列となる正則行列 P を見つけるため、各固有値 α について、その固有値

に属する固有空間 W (α) を求める。連立一次方程式 (αE3 −A)x = 0 の複素数解を求めること
により、W (α) は以下のように与えられることがわかる。

W (1) = SpanC

{ 1
1
1

 }
, W (ω) = SpanC

{  1
ω
ω2

 }
, W (ω2) = SpanC

{  1
ω2

ω

 }
.

条件を満たす P は各固有空間から基底をとり、並べて作ることができる。そこで、

P =

1 1 1
1 ω ω2

1 ω2 ω


とおく。P は正則であり、

P−1AP =

1 0 0
0 ω 0
0 0 ω2


となることがわかる。

(2) B = a1E3 + a2A+ a3A
2 と表わされる。(1)で求めた正則行列 P について、P−1A2P =

– 93 –



1 0 0
0 ω2 0
0 0 ω

 であるから、
P−1BP = a1P

−1E3P + a2P
−1AP−1 + a3P

−1A2P

= a1

1 0 0
0 0 0
0 0 0

+ a2

1 0 0
0 ω 0
0 0 ω2

+ a3

1 0 0
0 ω2 0
0 0 ω


=

a1 + a2 + a3 0 0
0 a1 + a2ω + a3ω

2 0
0 0 a1 + a2ω

2 + a3ω


となる。
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線形代数４・第 12回 (2025年 12月 15日)演習問題事前練習シート
※このシートを A4片面１枚に印刷して、授業前までに事前練習用演習問題の解答をここに書
いてください。略解を参照して答え合わせをしたものを授業に持参してください。但し、この
シートは提出せず、各自で保管してください。



線形代数４・第 12回学習内容チェックシート 2025年 12月 15日

学 籍 番 号 氏 名

Q1. V を K 上のベクトル空間とし、S, T を V 上の 2 つの K-線形変換とする。
(1) (i) T 0 はどのような写像か。

(ii) 整数 k ≥ 1 に対して、T k はどのような写像か。
(2) S+T はどのような写像か。
(3) t ∈ Kに対して、tT はどのような写像か。

Q2. x を不定元とする多項式 f(x) = −2 + 3x− 4x2 ∈ C[x] を考える。
(1) n 次正方行列 A ∈ Mn(C) に対して、f(A) = .

特に、A =

(
0 −i
i 0

)
(但し、i は虚数単位)のとき、f(A) =

.

(2) V を複素ベクトル空間とし、T を V 上の C-線形変換とする。V 上の C-線形変換 f(T )

により、各 v ∈ V はどのような V の元に写されるか。idV や T 2 を用いずに答えよ。(
f(T )

)
(v) =

Q3. (1) Frobeniusの定理とはどのような定理か。行列版の内容を説明せよ。

(2) n 次正方行列 A ∈ Mn(C) の C における相異なる固有値の全体が 0, 1,−1, i,−i であると
する。このとき、行列 A2 − 2En の相異なる固有値の全体は である。

Q4. (1) Cayley-Hamiltonの定理とはどのような定理か。線形変換版の内容を説明せよ。

(2) 2 次正方行列 A =

(
a b
c d

)
に対してCayley-Hamiltonの定理を適用すると、どのような

等式の成立がわかるか。

(3) V ( ̸= {0V }) を K 上 3 次元のベクトル空間とし、T を V 上の K-線形変換とする。T の
固有多項式が ∆T (x) = x3 + bx2 + cx+ d (b, c, d ∈ K) により与えられるものとする。

(i) Cayley-Hamiltonの定理を適用して、どのような等式の成立がわかるか。

(ii) d−1 ̸= 0 のとき、逆写像 T−1 は T のどのような多項式として表わすことができるか。

Q5. 第 12回の授業で学んだ事柄について、わかりにくかったことや考えたことなどがあれば、
書いてください。


