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§13. 広義固有空間分解と固有値の重複度
V 上の線形変換 T の固有値 α に属する固有空間は T − αidV の核に一致するが、対角化不

可能な場合にはそれだけを考えていたのでは不十分である。そこで、T −αidV を十分大きな数
だけ羃乗したものの核を考える。この空間を広義固有空間という。ここでは、三角化可能な線
形変換 T が与えられた有限次元ベクトル空間は、T に関する広義固有空間の直和に分解される
ことを示す。いつものように、K は体とする。

● 13 -1 : 広義固有空間
V ( ̸= {0V }) を K 上のべクトル空間とし、T : V −→ V を K-線形変換とする。T の固有値

α ∈ K に対して、次の部分集合を α に属する T の広義固有空間または一般固有空間という：
(13 -1 a) W̃ (α, T ) = { v ∈ V | (T − α idV )

n(v) = 0 となる n ∈ N が存在する }.

T が明白なときには、単に W̃ (α) で表わす。

補題 13 -1 -1
V ( ̸= {0V }) を K 上のべクトル空間とし、T : V −→ V を K-線形変換とする。T の固有値
α ∈ K に対して、W̃ (α) は V の T -不変部分空間である。
(証明)

W̃ (α) が部分空間をなすことは演習問題として残し、ここでは T -不変性を示す。
v ∈ W̃ (α) を任意にとり、T (v) ∈ W̃ (α) を示す。W̃ (α) の定義より、(T −α idV )(v) ∈ W̃ (α)

となる。(T − α idV )(v) = T (v) − αv より T (v) − αv ∈ W̃ (α) である。αv ∈ W̃ (α) であるか
ら、T (v) = (T (v)− αv) + αv ∈ W̃ (α) を得る。故に、W̃ (α) は T -不変である。 □

注意. {0} ⊂ Ker(T − α idV ) ⊂ Ker(T − α idV )
2 ⊂ · · · · · · ⊂ Ker(T − α idV )

k ⊂ · · · · · ·

であるから、V が有限次元ならば、十分大きな自然数 k に対して
Ker(T − α idV )

k = Ker(T − α idV )
k+1 = · · · · · ·

となることがわかる。このとき W̃ (α) は次で与えられる：
(13 -1 b) W̃ (α) = Ker(T − α idV )

k.

● 13 -2 : 広義固有空間分解
有限次元ベクトル空間 V 上に三角化可能な線形変換 T が与えられると、V は広義固有空間

の直和に分解される。このことを示す。そのために、多項式についての次の補題を用いる。

補題 13 -2 -1
0 でない多項式 f1, · · · , fn ∈ K[x] に対して次が成り立つ：

f1, · · · , fn は互いに素である (すなわち、1 次以上の共通因子を持たない)

⇐⇒ a1f1 + · · ·+ anfn = 1 を満たす多項式 a1, · · · , an ∈ K[x] が存在する

定理 13 -2 -2 (広義固有空間分解)

V (̸= {0V }) を K 上の有限次元べクトル空間とし、T : V −→ V を三角化可能な K-線形変
換とする。このとき、V は広義固有空間の直和に分解される：
(13 -2 a) V = W̃ (α1)⊕ · · · ⊕ W̃ (αr).

但し、α1, · · · , αr は T の相異なる固有値の全体である。
この直和分解を T による V の広義固有空間分解と呼ぶ。
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(証明)

T は三角化可能であるから、T の固有多項式 ∆T (x) は一次式の積に分解される：
∆T (x) = (x− α1)

m1(x− α2)
m2 · · · (x− αr)

mr .

各 i = 1, · · · , r に対して
fi(x) =

∏
j ̸=i

(x− αj)
mj

とおく。f1(x), · · · , fr(x) は互いに素であるから、[補題 13 -2 -1]により、
(13 -2 b) a1f1 + · · ·+ arfr = 1

を満たす多項式 a1, · · · , ar ∈ K[x] が存在する。各 i = 1, · · · , r に対して写像 Pi : V −→ V を
Pi := ai(T ) ◦ fi(T ) によって定義する。(13 -2 b)により、
(13 -2 c) P1 + · · ·+ Pr = idV

が成り立つ。さらに、i ̸= j のとき、Cayley-Hamiltonの定理より、
(13 -2 d) Pi ◦ Pj =

( ∏
k ̸=i,j

(T − αkidV )
mk

)
◦∆T (T ) = 0

となる。また、このことと (13 -2 c)より

(13 -2 e) Pi ◦ Pi = Pi ◦ (
r∑

j=1

Pj) = Pi ◦ idV = Pi

を得る。(13 -2 c), (13 -2 d), (13 -2 e)より、次の直和分解を得る：
(13 -2 f) V = (ImP1)⊕ · · · ⊕ (Im Pr).

最後に、ImPi = W̃ (αi) (i = 1, · · · , r) を示す。任意に v ∈ ImPi をとると、v = (ai(T ) ◦
fi(T ))(v

′) となる v′ ∈ V が存在する。すると
(T − αiidV )

mi(v) = ((T − αiidV )
mi ◦ ai(T ) ◦ fi(T ))(v′) = (ai(T ) ◦∆T (T ))(v

′) = 0V

が成り立つので、v ∈ W̃ (αi) がわかる。つまり、次が成立する：
(13 -2 g) ImPi ⊂ W̃ (αi).

逆向きの包含関係を示すため、v ∈ W̃ (αi) を任意にとる。直和分解 (13 -2 f)に基づいて
v = v1 + · · ·+ vr (v1 ∈ ImP1, · · · , vr ∈ ImPr)

と書く。vj = 0 (j ̸= i) を示せばよい。
v ∈ W̃ (αi) より、ある k に対して (T − αiidV )

k(v) = 0 となる。よって、次式が成り立つ：
(13 -2 h) 0 = (T − αiidV )

k(v1) + · · ·+ (T − αiidV )
k(vr).

各 vj は ImPj に属するので、vj = (aj(T ) ◦ fj(T ))(v′j) (v′j ∈ V ) と書ける。これより、
(T − αiidV )

k(vj) =
(
(T − αiidV )

k ◦ aj(T ) ◦ fj(T )
)
(v′j)

=
(
aj(T ) ◦ fj(T ) ◦ (T − αiidV )

k
)
(v′j) = Pj((T − αiidV )

k(v′j)) ∈ Im Pj

がわかる。よって、(13 -2 h)は直和分解 (13 -2 f)の下での 0 の分解となるので、
(T − αiidV )

k(vj) = 0 (j = 1, · · · , r)

を得る。さて、j ̸= i のとき、2 つの多項式 (x − αj)
mj と (x − αi)

k は互いに素であるから、
a(x− αj)

mj + b(x− αi)
k = 1 となる a, b ∈ K[x] が存在する。したがって、

vj = (a(T ) ◦ (T − αj idV )
mj )(vj) + (b(T ) ◦ (T − αiidV )

k)(vj) = (a(T ))(0) + (b(T ))(0) = 0
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となる。よって、v = vi ∈ Im Pi であり、(13 -2 g)と合わせて Im Pi = W̃ (αi) が示された。 □

● 13 -3 : 固有値の重複度
V ( ̸= {0V }) を K 上の有限次元べクトル空間とし、T : V −→ V を K-線形変換とする。T

の固有値 α ∈ K について、「∆T (x) は (x−α)m で割り切れるが、(x−α)m+1 では割り切れな
い」を満たす自然数 m のことを T の固有値 α の重複度という。T が三角化可能なとき、T の
固有多項式 ∆T (x) は

∆T (x) = (x− α1)
m1 · · · (x− αr)

mr

(但し、α1, · · · , αr は異なる K の元で、m1, · · · ,mr は自然数) と表わされる。このとき、T の
固有値 αi (i = 1, · · · , r) の重複度は mi に一致する。

n 次正方行列 A ∈ Mn(K) に対して、A の K 内の固有値 α の重複度とは、K-線形変換
TA : Kn −→ Kn の固有値 α の重複度のことをいう。

例 13 -3 -1 行列 A =

3 2 1
0 3 2
0 0 0

 の固有多項式は ∆A(x) = (x− 3)2x と因数分解されるか

ら、A の R 内の固有値は 3, 0 であり、固有値 3, 0 の重複度はそれぞれ 2, 1 である。 □

● 13 -4 : 広義固有空間上への制限写像の固有多項式

補題 13 -4 -1
V (̸= {0V })を K上の有限次元べクトル空間とし、T : V −→ V を三角化可能な K-線形変換
とする。α ∈ Kを T の固有値とすると、[補題 13 -1 -1]により、線形変換 T |W̃ (α) : W̃ (α) −→
W̃ (α) が定義される。このとき、線形変換 T |W̃ (α) の固有多項式は、m = dim W̃ (α) とおく
と、∆T |W̃ (α)

(x) = (x− α)m となる。特に、T |W̃ (α) の固有値は α のみである。

(証明)

α = α1 とおき、α 以外の T の相異なる固有値の全体を α2, · · · , αr とすると、広義固有空
間分解より、V = W̃ (α1)⊕ W̃ (α2)⊕ · · · ⊕ W̃ (αr) となる。V1 = W̃ (α2)⊕ · · · ⊕ W̃ (αr) とおく
と、V1 は T -不変な V の部分空間であるから、T は 2 つの線形変換 T |W̃ (α), T |V1 の直和にな
る：T = T |W̃ (α) ⊕ T |V1 : V = W̃ (α)⊕ V1 −→ W̃ (α)⊕ V1 = V .

よって、∆T (x) = ∆T |W̃ (α)
(x) ·∆T |V1 (x) が成り立つ。T は三角化可能であるから、∆T (x) は

K[x] において一次式の積に分解する。したがって、∆T |W̃ (α)
(x) も K[x] において一次式の積に

分解する。そこで、
∆T |W̃ (α)

(x) = (x− α′
1) · · · (x− α′

m) (α′
1, · · · , α′

m ∈ K)

とおく。α′
i = α (i = 1, · · · ,m) となることを示す。

各 α′
i は T |W̃ (α) の固有値であるから、T (vi) = α′

ivi となる vi ∈ W̃ (α) であって、vi ̸= 0 と
なるものが存在する。W̃ (α) = Ker(T − α idV )

k と表わされるから、(T − α idV )
k(vi) = 0 であ

る。T (vi) = α′
ivi を繰り返し用いると、

(T − α idV )
k(vi) = (T − α idV )

k−1(T (vi)− αvi) = (T − α idV )
k−1(α′

ivi − αvi)

= (α′
i − α)(T − α idV )

k−1(vi) = · · · · · ·

= (α′
i − α)kvi

となることがわかる。よって、(α′
i − α)kvi = 0 を得る。vi ̸= 0 であるから、(α′

i − α)k = 0 す
なわち、α′

i = α でなければならない。こうして、∆T |W̃ (α)
(x) = (x− α)m が示された。 □
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● 13 -5 : 広義固有空間の次元と固有値の重複度

定理 13 -5 -1
V (̸= {0V }) を K 上の有限次元べクトル空間とし、T : V −→ V を三角化可能な K-線形変
換とする。すると、T の固有多項式 ∆T (x) は一次式の積に分解される：

∆T (x) = (x− α1)
m1 · · · (x− αr)

mr

(但し、α1, · · · , αr は異なる K の元で、m1, · · · ,mr は自然数).

このとき、各固有値 αi に対して、dim W̃ (αi) = mi である。
(証明)

ni = dim W̃ (αi)とおくと、[補題13 -4 -1]により∆T |W̃ (αi)
= (x−αi)

ni となる。V = W̃ (α1)⊕
· · · ⊕ W̃ (αr) であって、各 W̃ (αi) は T -不変であるから、∆T (x) = ∆T |W̃ (α1)

(x) · · ·∆T |W̃ (αr)
(x)

となる。よって、
(x− α1)

m1 · · · (x− αr)
mr = (x− α1)

n1 · · · (x− αr)
nr

を得る。両辺における一次因子 x− αi の個数を比較して、mi = ni がわかる。 □

例 13 -5 -2 実正方行列 A =


1 0 1 1
1 0 1 1
0 1 −2 −5

−2 0 1 4

 が定める R-線形変換 TA : R4 −→ R4 に

対して、固有値 α に属する広義固有空間 W̃ (α) を求めよう。
A の固有多項式は、実数の範囲内で ∆A(x) = x3(x − 3) のように因数分解されることがわ

かる。よって、A は R 上三角化可能であり、その固有値は 0, 3 である。TA : R4 −→ R4 の
固有値 α = 0, 3 に属する広義固有空間を W̃ (α) とおく。[定理 13 - 5 - 1]より、dim W̃ (0) =

3, dim W̃ (3) = 1 とわかる。
• W̃ (3) を求める。dim W̃ (3) = 1 なので、W̃ (3) = W (3) = Ker TA−3E4 である。A − 3E4

に行基本変形を施し、(A− 3E4)x = 0 を解いて、W̃ (3) は次で与えられることがわかる：

W̃ (3) =

 t


0
0
−1
1

 ∈ R4

∣∣∣∣∣∣∣∣ t ∈ R

 .

• W̃ (0) を求める。dim(Ker TA−0E4) = 4 − rankA = 4 − 3 = 1 < 3 = dim W̃ (0) であるか
ら、Ker TA−0E4 ⫋ W̃ (0) である。

A2 =


−1 1 0 0
−1 1 0 0
11 −2 0 −9

−10 1 0 9

 に行基本変形を施して階段型にすることにより、rank (A2) = 2

がわかる。よって、
dim(Ker T(A−0E4)2) = 4− rank (A2) = 2 < 3 = dim W̃ (0)

であり、したがって、Ker T(A−0E4)2 ⫋ W̃ (0) である。さらに、A3 を計算して rank (A3) = 1

がわかるから、dim(Ker T(A−0E4)3) = 4 − rank (A3) = 3 = dim W̃ (0) であり、したがって、
W̃ (0) = Ker T(A−0E4)3 を得る。A3x = 0 を解いて、W̃ (0) は次で与えられることがわかる：

W̃ (0) =



s
t
u
s

 ∈ R4

∣∣∣∣∣∣∣∣ s, t, u ∈ R

.
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線形代数４事前練習用演習問題

pre13-1. A を 3 次実正方行列とし、A から定まる R-線形写像 TA : R3 −→ R3 を考える。
(1) A の固有多項式は ∆A(x) = (x− 1)(x− 2)2 であるとする。
(i) f1 = (x− 2)2, f2 = x− 1 ∈ R[x] とおく。

a1f1 + a2f2 = 1

を満たす多項式 a1, a2 ∈ R[x] を一組求めよ。
(ii) A の固有値 α に属する広義固有空間 W̃ (α, TA) は A についてのある多項式 pα(A) の
列ベクトルによって張られる空間に一致する。A の各固有値 α に対して、このような
pα(A) を１つずつ求めよ。

(2) A =

 6 −3 −2
4 −1 −2
3 −2 0

 ∈ M3(R) のとき、(1)を利用して、A の各固有値 α に対して広義

固有空間 W̃ (α, TA) を求めよ。さらに、x =

x
y
z

 ∈ R3 を W̃ (1, TA) の元と W̃ (2, TA) の元の

和で表わせ。

ヒントと略解（最初は見ずに解答してください）
pre13-1. (1) (i) f1 を f2 で割ると、f1 = (x−3)f2+1となる。したがって、a1 = 1, a2 = −x+3

とおくと、a1f1 + a2f2 = 1 となる。
(ii) Pi := ai(A)fi(A) (i = 1, 2) とおくと、ImPi = W̃ (i, TA) となる ([定理 13 - 2 - 2]の証明

を参照)。したがって、

p1(A) = P1 = a1(A)f1(A) = (A− 2E3)
2,

p2(A) = P2 = a2(A)f2(A) = (−A+ 3 E3)(A− E3)

とおけばよい。
(2) A の固有多項式は ∆A(x) = (x − 1)(x − 2)2 であることが確かめられる。(1)(ii)より、

W̃ (1, TA), W̃ (2, TA) はそれぞれ p1(A) = (A− 2E3)
2, p2(A) = (−A+ 3 E3)(A−E3) の列ベク

トルにより張られる空間に一致する。

p1(A) =

−2 1 2
−2 1 2
−2 1 2

 ,

p2(A) =

3 −1 −2
2 0 −2
2 −1 −1

 行基本変形の繰り返し−→ · · · −→

1 0 −1
0 −1 1
0 0 0

 · · · · · · · · · (∗)

であるから、

W̃ (1, TA) = SpanR

{ 1
1
1

 }
, W̃ (2, TA) = SpanR

{ 3
2
2

 ,

1
0
1

 }

となる。
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p1(A) + p2(A) = E3 であるから、x = p1(A)x+ p2(A)x と表わされる。x =

x
y
z

 とおくと
p1(A)x = (−2x+ y + 2z)

1
1
1

 , p2(A)x = x

3
2
2

+ y

−1
0
−1

 + z

−2
−2
−1


となる。(∗)より、 −2

−2
−1

 = −

3
2
2

+

1
0
1


と表わされるから、

p2(A)x = (x− z)

3
2
2

+ ( −y + z)

1
0
1


と書き換えられる。このように、x =

x
y
z

 ∈ R3はW̃ (1, TA)の元 p1(A)x = (−2x+y+2z)

1
1
1


と W̃ (2, TA) の元 p2(A)x = (x− z)

3
2
2

+ ( −y + z)

1
0
1

 の和により表わされる。

グレー部分を修正（2025年 12月 22日 16時 30分）
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※このシートを A4片面１枚に印刷して、授業前までに事前練習用演習問題の解答をここに書
いてください。略解を参照して答え合わせをしたものを授業に持参してください。但し、この
シートは提出せず、各自で保管してください。



線形代数４・第 13回学習内容チェックシート 2025年 12月 22日

学 籍 番 号 氏 名

Q1. V (̸= {0V }) を K 上のベクトル空間とし、T を V 上の K-線形変換とする。T の固有値
α に属する固有空間 W (α, T ) と広義固有空間 W̃ (α, T ) はそれぞれどのように定義されるか。

W (α, T ) = ,

W̃ (α, T ) =

Q2. V (̸= {0V }) を K 上の有限次元ベクトル空間とし、T を V 上の K-線形変換とする。
(1) T の固有値 α の重複度とは何か。その定義を述べよ。

(2) T の固有多項式が ∆T (x) = x2(x+ 5)(x− 4)3 により与えられるとき、T の固有値とそ
の重複度を求めると次のようになる。

Q3. V (̸= {0V }) を K 上の有限次元ベクトル空間とし、T を V 上の三角化可能な K-線形変換
とする。

(1) T による V の広義固有空間分解とは何か。説明せよ。

(2) ∆T (x) = (x− α1)
m1 · · · (x− αr)

mr (但し、α1, · · · , αr は異なる K の元で、m1, · · · ,mr

は自然数) であるとき、各 i = 1, · · · , r に対して
dim W̃ (αi, T ) =

Q4. 4 次実正方行列 A の固有多項式は ∆A(x) = (x + 2)(x − 4)3 により与えられるものとす
る。R-線形変換 TA : R4 −→ R4 を考える。

(1) dim W̃ (−2, TA) = であるから、W̃ (−2, TA) = W (−2, TA) = Ker と
なる。このことから、W̃ (−2, TA) を求めるには、連立一次方程式

を R の範囲で解けばよい。
(2) dim W̃ (4, TA) = である。
k ∈ N に対して、W̃ (4, TA) の部分空間KerT(A−4E4)k の次元は、rank(A− 4E4)

k を用いて
dim(KerT(A−4E4)k) =

で与えられる。このことから、k = 1, 2, · · · と順番に考えて、初めて dim(KerT(A−4E4)k) =

となる k を見つけると W̃ (4, TA) = KerT(A−4E4)k となるので、この k について、連立
一次方程式

を R の範囲で解けば、W̃ (4, TA) が求められる。

Q5. 第 13回の授業で学んだ事柄について、わかりにくかったことや考えたことなどがあれば、
書いてください。


