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§14. 広義重積分
ここでは、積分領域が有界閉集合でない場合や、関数が有界でない場合についての重積分を

考える。主に、非負値 2 変数連続関数の広義重積分を扱う。関数 f(x, y) = e−(x2+y2) に対して
D = { (x, y) ∈ R2 | x ≥ 0, y ≥ 0 } 上の広義重積分を計算し、工学や統計学などで頻繁に登場
する等式

∫ +∞

0

e−x2
dx =

√
π
2 を導く。最後に付録として、これまでの知識を総動員して、ゼー

タ関数値 ζ(2) =
∞∑
n=1

1
n2 の値を計算する。

● 14 -1 : R2 の部分集合の近似増加列
[a,+∞) 上で定義された１変数連続関数 f(x) に対して、広義積分

∫ ∞

a

f(x) dx は、極限

lim
R→+∞

∫ R

a

f(x) dx により定義された。ここで、R を +∞ に近づけることは、積分区間 [a,R] を
広げていくことに対応している。２変数関数の場合、積分領域を広げていく仕方としてあらゆ
る方向が考えられるから、 lim

R→+∞

∫ R

a

の代わりに、近似増加列による極限を考えることになる。

定義 14 -1 -1

D を R2 の部分集合とする。R2 の部分集合の列 {Dn}∞n=1 が D の近似増加列であるとは、
以下の条件が満たされるときをいう：

1⃝ 各 Dn は面積確定有界閉集合である。
2⃝ D1 ⊂ D2 ⊂ · · · ⊂ Dn ⊂ Dn+1 ⊂ · · · · · · ⊂ D.

3⃝ D に含まれるどのような有界閉集合 K についても、K ⊂ Dn となる番号 n が存在
する。

例 14 -1 -2 (1) D = { (x, y) ∈ R2 | 0 < x ≤ 1, 0 < y ≤ 1 } に対して、

(14 -1 a) Dn =
{
(x, y) ∈ R2

∣∣∣ 1
n

≤ x ≤ 1, 1
n

≤ y ≤ 1
}

(n = 1, 2, 3, · · · · · · )

を考える。{Dn}∞n=1 は D の近似増加列である。
(2) D = { (x, y) ∈ R2 | x ≥ 0, y ≥ 0 } に対して、

(14 -1 b) Dn = { (x, y) ∈ R2 | x2 + y2 ≤ n2, x ≥ 0, y ≥ 0 } (n = 1, 2, 3, · · · · · · )

を考える。{Dn}∞n=1 は D の近似増加列である。
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● 14 -2 : 広義重積分
f(x, y) を R2 の部分集合 D 上で定義された連続関数とする。D の近似増加列 {Dn}∞n=1 を

どのように選んでも、重積分の列

(14 -2 a)

∫
Dn

f(x, y) dxdy (n = 1, 2, 3, · · · · · · )
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が、ある一定の値 γ に収束するとき、f(x, y) は D 上で広義重積分可能であるといい、その極
限を

∫
D

f(x, y) dxdy で表わす：

(14 -2 b)

∫
D
f(x, y) dxdy = lim

n→∞

∫
Dn

f(x, y) dxdy.

注意 14 - 2 - 1 f(x, y) が D 上で広義重積分可能であることを、広義重積分
∫
D

f(x, y) dxdy

は収束する、と表現することもある。

D 上で f(x, y) が非負の値をとる連続関数の場合、次の定理が成り立つ。

定理 14 -2 -2

D ⊂ R2 上で定義された連続関数 f(x, y) がすべての点 (x, y) ∈ D に対して f(x, y) ≥ 0 を
満たすとき、D のある近似増加列 {Dn}∞n=1 について極限

(14 -2 c) lim
n→∞

∫
Dn

f(x, y) dxdy

が存在するならば、D の任意の近似増加列 {D′
n}∞n=1 についても極限 lim

n→∞

∫
D′

n

f(x, y) dxdy

は存在し、次の等式が成り立つ：

lim
n→∞

∫
D′

n

f(x, y) dxdy = lim
n→∞

∫
Dn

f(x, y) dxdy.

● 14 -3 : 定符号関数の広義重積分の計算
[定理 14 - 2 - 2]により、D 上で非負であるような連続関数 f(x, y) に対しては、D のある近

似増加列 {Dn}∞n=1 をとったときに、(14 - 2 c)の極限が存在するならば、その値が広義重積分∫
D

f(x, y) dxdy の値になる。これを使った、広義重積分の計算例を与えよう。

例 14 -3 -1 D = { (x, y) ∈ R2 | 0 < x ≤ 1, 0 < y ≤ 1 } について、広義重積分∫
D

1
√
xy

dxdy

を考える。D の近似増加列 {Dn}∞n=1 として、[例 14 -1 -2](1)で与えたものをとることにより、∫
D

1
√
xy

dxdy = lim
n→∞

∫
Dn

1
√
xy

dxdy = lim
n→∞

4

(
1−

√
1
n

)2

= 4

となることがわかる。 □

● 14 -4 : 広義重積分を用いた広義積分の計算
近似増加列の選び方を工夫すると、１変数関数の広義積分が計算できることがある。

例 14 -4 -1 D = { (x, y) ∈ R2 | x ≥ 0, y ≥ 0 } について、

(14 -4 a)

∫
D
e−(x2+y2) dxdy =

π

4

であり、したがって、

(14 -4 b)

∫ +∞

0
e−x2

dx =

√
π

2
.
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(証明)

D の近似増加列 {Dn}∞n=1 として、[例 14 - 1 - 2](2)で与えたものをとる。En =
{
(r, θ) ∈

R2
∣∣ 0 ≤ r ≤ n, 0 ≤ θ ≤ π

2

}
とおくと、極座標変換 x = r cos θ, y = r sin θ により∫

Dn

e−(x2+y2) dxdy =

∫
En

e−r2r drdθ =

∫ π
2

0

(∫ n

0
re−r2 dr

)
dθ =

π

4
(1− e−n2

)

となる。これは n → +∞ のとき収束するから、∫
D
e−(x2+y2) dxdy = lim

n→∞

∫
Dn

e−(x2+y2) dxdy = lim
n→∞

π

4
(1− e−n2

) =
π

4
.

次に、D の近似増加列としてD′
n = { (x, y) ∈ R2 | 0 ≤ x ≤ n, 0 ≤ y ≤ n } をとると∫

D′
n

e−(x2+y2) dxdy =

(∫ n

0
e−x2

dx

)(∫ n

0
e−y2 dy

)
=

(∫ n

0
e−x2

dx

)2

であるから、

lim
n→∞

(∫ n

0
e−x2

dx

)2

= lim
n→∞

∫
D′

n

e−(x2+y2) dxdy =

∫
D
e−(x2+y2) dxdy =

π

4

を得る。１変数関数の収束判定条件より、広義積分
∫ +∞

0

e−x2
dx は収束するので、上式の左辺

は
(∫ +∞

0

e−x2
dx

)2
に等しい。よって、(14 -4 b)を得る。 □

● 14 -5 : ゼータ関数値 ζ(2) の値

広義重積分を応用して、級数
∞∑
n=1

1
n2 の和の値を求めよう。

例 14 -5 -1 D = { (x, y) ∈ R2 | 0 ≤ x < 1, 0 ≤ y < 1 } とおくとき、
∞∑
n=0

1
(2n+ 1)2

=

∫
D

1
1− x2y2

dxdy =
π2

8

(証明)

• x が |x| < 1 なる実数のとき、任意の自然数 n に対して、

1
1− x

=

n∑
k=0

xk + xn+1

1− x

と表わせるから、(x, y) ∈ D に対して、

(※) 1
1− x2y2

=

n∑
k=0

x2ky2k +
x2(n+1)y2(n+1)

1− x2y2

が成り立つ。D の近似増加列として、

Dm =
{

(x, y) ∈ R2
∣∣∣ 0 ≤ x ≤ 1− 1

m
, 0 ≤ y ≤ 1− 1

m

}
(m = 1, 2, 3, · · · )

を考える。このとき、∫
Dm

1
1− x2y2

dxdy =
n∑

k=0

(∫ 1− 1
m

0
x2k dx

)2
+

∫
Dm

x2(n+1)y2(n+1)

1− x2y2
dxdy

である。ここで、
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∫
Dm

x2(n+1)y2(n+1)

1− x2y2
dxdy ≤

∫
Dm

x2(n+1)y2(n+1)

1− (1− 1
m)4

dxdy = 1
1− (1− 1

m)4

(∫ 1− 1
m

0
x2n+2 dx

)2

≤ 1
1− (1− 1

m)4

(∫ 1

0
x2n+2 dx

)2
= 1

1− (1− 1
m)4

· 1

(2n+ 3)2

となるので、n → ∞ のとき、これは 0 に収束する。よって、∫
D

1
1− x2y2

dxdy = lim
m→∞

∫
Dm

1
1− x2y2

dxdy
(∗)
= lim

n→∞
lim

m→∞

n∑
k=0

(∫ 1− 1
m

0
x2k dx

)2

= lim
n→∞

n∑
k=0

( 1

2k + 1

)2
=

∞∑
n=0

1

(2n+ 1)2

を得る (注：(∗) の部分は慎重な議論を必要とする)。
• U =

{
(u, v) ∈ R2

∣∣∣ 0 ≤ u < π
2
, 0 ≤ v < π

2

}
上の写像 F : U −→ R2 を

F (u, v) =
(
sinu
cos v

, sin v
cosu

)
により定義する。F は C1-級であり、F によって、U と D とは１対１に対応する。したがっ
て、任意の自然数 n に対して、F は、面積確定有界閉集合

En =
{
(u, v) ∈ R2

∣∣∣ 0 ≤ u, 0 ≤ v, u+ v ≤ π
2

− 1
n

}
から面積確定有界閉集合 Dn = F (En) への変数変換を与える。任意の (u, v) ∈ U に対して

JF (u, v) = det


cosu
cos v

sinu sin v
cos2 v

sin v sinu
cos2 u

cos v
cosu

 = 1− sin2 v sin2 u
cos2 u cos2 v

であるから、変数変換公式により、次式を得る：∫
Dn

1
1− x2y2

dxdy =

∫
En

1

1−
(
sinu
cos v

)2( sin v
cosu

)2 ·
(
1− sin2 v sin2 u

cos2 u cos2 v

)
dudv =

1

2

(π
2
− 1

n

)2
.

n → ∞ のとき、これは収束するから、広義重積分
∫
D

1
1− x2y2

dxdy は存在し、その値は、∫
D

1
1− x2y2

dxdy = lim
n→∞

∫
Dn

1
1− x2y2

dxdy = lim
n→∞

1

2

(π
2
− 1

n

)2
=

π2

8
. □

[例 14 -5 -1]を用いて、

(14 -5 a)

∞∑
n=1

1
n2 =

π2

6

を証明しよう。自然数 n に対して、
2n+1∑
k=1

1
k2

=
n∑

k=0

1
(2k + 1)2

+
n∑

k=1

1
(2k)2

=
n∑

k=0

1
(2k + 1)2

+
1

4

n∑
k=1

1
k2

である。この両辺の極限をとって、
∞∑
n=1

1
n2 =

∞∑
n=0

1
(2n+ 1)2

+
1

4

∞∑
n=1

1
n2

を得る。したがって、[例 14 -5 -1]により、
∞∑
n=1

1
n2 = 4

3

∞∑
n=0

1
(2n+ 1)2

= 4
3
· π

2

8
=

π2

6
.
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Q1. R2 の部分集合 D = { (x, y) ∈ R2 | 0 < x ≤ 1, 0 < y ≤ 1 } に対して、その近似増加列
{Dn}∞n=1 を２つ与えて、図示しなさい (式で表わしにくい場合には図だけで構いません)。

Dn の例１ Dn の例２

Q2. 次の表を完成させなさい。ページ欄にはその言葉の説明が書かれているアブストラクトの
ページを書きなさい。

ページ 意味
D 上で定義された連続関数
f(x, y) が D 上で広義重積
分可能である (または収束す
る)とは？

p.

Q3. 次の に適当な言葉や数式を入れなさい。
• D 上で定義された連続関数 f(x, y) が条件

を満たすとき、極限 lim
n→∞

∫
Dn

f(x, y)dxdy が存在するような D の近似増加列 {Dn}∞n=1

が 1 つ見つかれば、その極限の値が f(x, y) の D 上での広義重積分の値になる。
• D = { (x, y) ∈ R2 | x ≥ 0, y ≥ 0 } の近似増加列として

Dn = (n = 1, 2, 3 · · · )

を用いると、
∫
D
e−(x2+y2)dxdy = π

4
と計算される。一方、D の近似増加列として

D′
n = { (x, y) ∈ R2 | 0 ≤ x ≤ n, 0 ≤ y ≤ n } (n = 1, 2, 3 · · · )

を用いると、
∫
D′

n

e−(x2+y2)dxdy =

( )2

となることから、1 変数関数

f(x) = e−x2
(x ≥ 0) の広義積分の値が

∫ +∞

0
e−x2

dx = と求まる。

• 級数
∞∑
n=1

1
n2 の和を ζ(2) とおくと、ζ(2) = である。

Q5. 第 14回の授業で学んだ事柄について、わかりにくかったことや考えたことなどがあれば、
書いてください。


