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§15. Jordan標準形とその応用
前節では冪零変換の Jordan標準形の求め方を学んだ。この節では、一般の三角化可能な線

形変換の Jordan標準形の求め方とその理論の微分方程式への応用を学ぶ。以下、K はいつも
のように体を表わす。

● 15 -1 : Jordan標準形 (復習)

α ∈ K に対して、m 次正方行列

(15 -1 a) J(α,m) =


α 1 Oα 1

. . .
. . .

O α 1
α


を Jordanブロックまたは Jordan細胞という。有限個の Jordanブロックの直和として与え
られる行列を Jordan行列という。

定理 15 -1 -1
V (̸= {0V }) を K 上の有限次元べクトル空間とし、T : V −→ V を三角化可能な K-線形変
換とする。このとき、V の基底 B を適当に選ぶと、B に関する T の行列表示は Jordan行
列になる。その行列を T の Jordan標準形という。

上の定理を行列だけを使って表現しなおすと、次の形になる。

系 15 -1 -2

n 次正方行列 A ∈ Mn(K) が K 上三角化可能ならば、P−1AP が Jordan行列となるような
正則行列 P ∈ Mn(K) が存在する。その Jordan行列を A の Jordan標準形という。

注意. 線形変換および正方行列の Jordan標準形は、直和の順番を無視すれば一意的である。

例 15 -1 -3 正方行列 A の固有多項式が ∆A(x) = (x− 1)3(x− 2)2 であるとしよう。このと
き、考えられ得る A の Jordan標準形をすべて求めよう。但し、直和の順番の入れ替えで移り
あうものは同じ Jordan標準形とみなすことにする。

∆A(x) の形から、A の Jordan標準形は対角線上に 1 が 3 個、2 が 2 個でなければならな
い。対角線上に 1 が 3 個並ぶ 3 次 Jodran行列は次の３種類ある：

J(1, 3) =

1 1 0
0 1 1
0 0 1

 , J(1, 2)⊕ J(1, 1) =

 1 1 0
0 1 0

0 0 1

 , J(1, 1)⊕3 =

 1 0 0
0 1 0
0 0 1


対角線上に 2 が 2 個並ぶ 2 次 Jodran行列は次の２種類ある：

J(2, 2) =

(
2 1
0 2

)
, J(2, 1)⊕ J(2, 1) =

(
2 0
0 2

)
よって、 ∆A(x) = (x− 1)3(x− 2)2 となるような正方行列 A の Jardan標準形としては、直和
の順番の入れ替えで移りあうものを無視すると、次の６ (= 3× 2)個の可能性が考えられる。

1 1 0
0 1 1
0 0 1

2 1
0 2

 ,


1 1 0
0 1 1
0 0 1

2

2

 ,


1 1
0 1

1

2 1
0 2


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
1 1
0 1

1

2

2

 ,


1

1

1

2 1
0 2

 ,


1

1

1

2

2



● 15 -2 : [定理 15 -1 -1]の証明の方針
[定理 15 -1 -1]の厳密な証明は教科書に譲り、ここでは証明の方針のみを示す。
α1, · · · , αr を T の相異なる固有値の全体とする。[定理 13 - 2 - 2]により、V は広義固有空間

の直和に分解される：V = W̃ (α1)⊕ · · · ⊕ W̃ (αr). [補題 13 - 1 - 1]により、各 W̃ (αj) は T -不変
であるから、線形変換 T |W̃ (αj)

: W̃ (αj) −→ W̃ (αj) が定義され、

T = T |W̃ (α1)
⊕ · · · ⊕ T |W̃ (αr)

となる。ここで、[補題 13 - 4 - 1]により、T |W̃ (αj)
の固有値は αj のみである。したがって、[定

理 15 -1 -1]は、固有値が 1 つだけの K-上三角化可能な線形変換の場合に帰着される。
さらに、[定理 15 - 1 - 1]は、固有値が 0 だけしか持たない場合、すなわち、冪零変換の場合

に帰着される。実際、T : V −→ V の固有値が α だけのとき、T − αidV は冪零変換である。
V の基底 B に関する T − αidV の行列表示が Jordan標準形 J(0,m1)⊕ · · · ⊕ J(0,ml) であれ
ば、同じ基底 B に関する T の行列表示も Jordan標準形 J(α,m1)⊕ · · · ⊕ J(α,ml) となる。

● 15 -3 : Jordan標準形の求め方
実例で説明する。

例 15 -3 -1 行列 A =

 −1 1 0
−4 3 0
8 −5 3

 の Jordan標準形と、A を Jordan標準形に変換す

る正則行列 P を１つ求めよう。
まず、固有値を求める。計算により、∆A(x) = (x− 3)(x− 1)2 となるから、A は R 上三角

化可能で、固有値は 1, 3 である。
T = TA : R3 −→ R3 の固有値 α = 1, 3に属する広義固有空間を W̃ (α)とおく。[定理 13 - 5 - 1]

により、dim W̃ (1) = 2, dim W̃ (3) = 1 とわかる。
• α = 1 のとき：

A− E3 =

 −2 1 0
−4 2 0
8 −5 2

 , (A− E3)
2 =

 0 0 0
0 0 0

20 −12 4


であるから、dim(Ker T(A−E3)2) = 3− rank (A− E3)

2 = 2 = dim W̃ (1) となる。したがって、

W̃ (1) = KerT(A−E3)2 =

{  x
y

−5x+ 3y

 ∣∣∣∣∣ x, y ∈ R

}

であり、(TA−E3)|W̃ (1) : W̃ (1) −→ W̃ (1) は羃零指数 2 の羃零変換である。

dim(KerTA−E3) = 3− rank(A− E3) = 1

より (TA−E3)|W̃ (1) が定めるYoung図形は の形になる。(TA)|W̃ (1) が Jordan標準形となる
ような W̃ (1) の基底を構成しよう。
まず、(KerTA−E3)⊕ ⟨v⟩ = W̃ (1) となる v ∈ W̃ (1) を１つ選ぶ。
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KerTA−E3 =

{  x
2x
x

 ∣∣∣∣∣ x ∈ R

}

に含まれないベクトルとして v =

0
1
3

 を選ぶと (A−E3)v =

1
2
1

 となるから、W̃ (1) の基底

“(A− E3)v, v” に関する T |W̃ (1) = (TA)|W̃ (1) : W̃ (1) −→ W̃ (1) の行列表示は J(1, 2) となる。
• α = 3 のとき：dim W̃ (3) = 1 なので、冪零変換 (TA−3E3)|W̃ (3) が定めるYoung図形は

であり、W̃ (3) = Ker(A− 3E3) である。よって、 0 でないベクトル u ∈ Ker(A− 3E3) を１
つ取れば、W̃ (3) の基底 “u” に関する T |W̃ (3) : W̃ (3) −→ W̃ (3) の行列表示は J(3, 1) となる。

A− 3E3 =

 −4 1 0
−4 0 0
8 −5 0

 より W̃ (3) = KerTA−3E3 =

{ 0
0
z

 ∣∣∣∣∣ z ∈ R

}

がわかるので、u として u =

0
0
1

 を取ろう。
以上から、A の Jordan標準形は

J(1, 2)⊕ J(3, 1) =

 1 1
0 1

3


であり、P = ((A−E3)v v u) =

1 0 0
2 1 0
1 3 1

 とおくと P−1AP = J(1, 2)⊕J(3, 1) となる。 □

● 15 -4 : Jordan標準形の定数係数線形微分方程式への応用
Jordan標準形の理論を用いて、定数係数 k 階微分方程式が初期条件の下で一意的に解を持

つことを証明することができる。

定理 15 -4 -1
c1, · · · , ck ∈ R を定数とし、微分方程式

(15 -4 a)
dkf

dxk
+ c1

dk−1f

dxk−1
+ · · ·+ ckf = 0

を考える。多項式 xk + c1x
k−1 + · · ·+ ck−1x+ ck が R[x] において一次式の積に分解すると

仮定する。このとき、任意の a ∈ Rk に対して、初期条件
f(0)
df
dx(0)

...

dfk−1

dxk−1 (0)

 = a

を満たす (15 -4 a)の解 f が一意的に存在し、“u1, · · · ,uk” を Rk の基底とし、fi を
fi(0)
dfi
dx (0)

...

dfk−1
i

dxk−1 (0)

 = ui

を満たす (15 - 4 a)の解とすると、“f1, · · · , fk” は微分方程式 (15 - 4 a)の解全体のなすベク
トル空間の基底を与える。
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(証明)

x =


f
df
dx

...

dfk−1

dxk−1

, A =


0 1 O0 1

. . .
. . .

O 0 1
−ck −ck−1 · · · −c2 −c1

 とおくと、連立微分方程式

(15 -4 b)
dx
dx

= Ax

が得られる。x が (15 -4 b)の解であることと (15 -4 a)の解であることとは同値である。
∆A(x) = xk + c1x

k−1 + · · ·+ ck−1x+ ck であり、これは仮定により R[x] において一次式の
積に分解するから、A は R 上三角化可能である。よって、J := P−1AP が Jordan標準形とな
るような正則行列 P ∈ Mn(R) が存在する。y(x) = P−1x(x) とおくと、連立微分方程式 (15 -

4 b)は連立微分方程式

(15 -4 c)
dy
dx

= Jy

に帰着される。Jordanブロックごとに [定理 7 - 3 - 2](2)を (15 -4 c)に適用して、任意の a ∈ Rk

に対して x(0) = a となる (15 -4 b)の解 x が一意的に存在することがわかる。同様にして、定
理の後半の主張も示される。 □

微分方程式 (15 -4 a)を満たす関数 f = f(x)の全体からなるべクトル空間 V = D(c1, · · · , ck)
の「よい」基底を探そう。“f1, · · · , fk” を、[定理 15 - 4 - 1]において Rk の基底 “u1, · · · ,uk”

を標準基底 “e1, · · · ,ek” にとったときの V の基底とする。このとき、“f1, · · · , fk” に関する
T := d

dx : V −→ V の行列表示は、[定理 15 - 4 - 1]の証明における k 次正方行列 A になる。
∆T (x) = ∆A(x) = xk + c1x

k−1 + · · ·+ ck−1x+ ck より、A が K 上三角化可能なとき、V は
V = W̃ (α1)⊕ · · · ⊕ W̃ (αr) (α1, · · · , αr は T の相異なる固有値)

のように広義固有空間分解される。このとき、[定理 13 - 5 - 1]より dim W̃ (αj) = mj である。一
方、[例 10 - 1 - 2]より、T の固有値 αj に属する固有空間 W (αj) の次元は dimW (αj) = 1 であ
るから、冪零変換 (T − αj idV )|W̃ (αj)

によって定まるYoung図形は

mj

…

となる。これは次の補題からわかる。

補題 15 -4 -2
V (̸= {0V }) を体 K 上の有限次元べクトル空間とし、T : V −→ V を冪零指数 k の冪零変
換とする。もし、dim(KerT ) = 1 であれば、冪零変換 T : V −→ V が定めるYoung図形は
次のようになる：

k

…
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(証明)

Wi = KerT i (i = 0, 1, 2, · · · ), di = dimWi − dimWi−1 (i = 1, 2, · · · ) とおくと、[定理
14 - 3 - 3]により、d1 ≥ d2 ≥ · · · ≥ dk > 0 かつ dk+1 = dk+2 = · · · = 0 となる。もし、1 ≤ i ≤ k

を満たすある整数 i に対して di ≥ 2 であったとすると、
dim(KerT ) = dimW1 = d1 ≥ di ≥ 2

となり、矛盾が生じる。よって、1 ≤ i ≤ k を満たす任意の整数 i に対して di = 1 でなければ
ならない。したがって、Young(T ) は補題の図のようになる。 □

上のことから、T の固有値 αj に属する広義固有空間 W̃ (αj) の基底を適当に選ぶと T |W̃ (αj)

は Jordanブロック J(αj ,mj) によって表わされることがわかる。W̃ (αj) のこのような基底と
して、

(15 -4 d) “eαjx, eαjxx, eαjx
x2

2!
, · · · , eαjx

xmj−1

(mj − 1)!
”

を取ることができる。実際、これらの関数は R 上一次独立である。さらに、
(T − αj idV )(e

αjx) = d
dx

(eαjx)− αje
αjx = 0

であり、1 ≤ i < mj に対して

(T − αj idV )
(
eαjx xi

i!

)
= d

dx

(
eαjx xi

i!

)
− αje

αjx xi

i!
= eαjx xi−1

(i− 1)!

を満たす。したがって、
(T − αj idV )

mj

(
eαjx

xi

i!

)
= 0

となる。よって、(15 - 4 d)の mj 個の関数はすべて W̃ (αj) に属している。dim W̃ (αj) = mj

であるから、(15 -4 d)の mj 個の関数は W̃ (αj) の基底になる。なお、W̃ (αj) の基底 (15 -4 d)

に関する T |W̃ (αj)
− αj idW̃ (αj)

の行列表示は、上の計算から J(0,mj) になるから、W̃ (αj) の
基底 (15 -4 d)に関する T |W̃ (αj)

の行列表示は J(0,mj) + αjEmj = J(αj ,mj) である。
以上より、次の定理が得られた。

定理 15 -4 -3

c1, · · · , ck を実定数とする k 次多項式 xk + c1x
k−1 + · · ·+ ck−1x+ ck は

xk + c1x
k−1 + · · ·+ ck−1x+ ck = (x− α1)

m1 · · · (x− αr)
mr

(α1, · · · , αr は相異なる実数、m1, · · · ,mr は自然数)

のように R[x] において一次式の積に分解すると仮定する。このとき、微分方程式
dkf

dxk
+ c1

dk−1f

dxk−1
+ · · ·+ ckf = 0

を満たす R 上の任意の関数 f = f(x) は次の関数の一次結合として一意的に表わされる：

eα1x, eα1xx, eα1xx
2

2!
, · · · , eα1x xm1−1

(m1 − 1)!
,

· · · · · · · · · · · · · · ·

eαrx, eαrxx, eαrxx
2

2!
, · · · , eαrx xmr−1

(mr − 1)!
.
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例 15 - 4 - 4 微分方程式 f ′′ + 2f ′ + f = 0 を満たす R 上の関数 f = f(x) であって、
f(0) = 1, f ′(0) = −2 を満たすものを上の定理を利用して求めよう。

x2 + 2x+ 1 = (x+ 1)2 であるから、微分方程式 f ′′ + 2f ′ + f = 0 を満たす R 上の任意の関
数 f = f(x) は

e−x, xe−x

の一次結合として一意的に表わされる。そこで、c1, c2 を実数として
f(x) = c1e

−x + c2xe
−x

とおく。
f ′(x) = (−c1 + c2)e

−x − c2xe
−x

であり、f(0) = 1, f ′(0) = −2 より、{
1 = c1,

−2 = −c1 + c2

が成り立つ。この連立一次方程式を解いて、c1 = 1, c2 = −1 を得る。故に、
f(x) = e−x − xe−x

である。 □

[定理 15 -4 -3]と同様の結果が、c1, · · · , ck ∈ K を定数とする漸化式
an+k + c1an+k−1 + · · ·+ ckan = 0 (n = 1, 2, · · · )

を満たす数列 {an}∞n=1 に対しても成立する。[定理 15 -4 -3]と同様にして証明することができ
るので、ここでは結果のみを記す。

定理 15 -4 -5

c1, · · · , ck ∈ K を定数とする k 次多項式 xk + c1x
k−1 + · · ·+ ck−1x+ ck は

xk + c1x
k−1 + · · ·+ ck−1x+ ck = (x− α1)

m1 · · · (x− αr)
mr

(α1, · · · , αr は相異なる K の元、m1, · · · ,mr は自然数)

のように K[x] において一次式の積に分解すると仮定する。このとき、漸化式
an+k + c1an+k−1 + · · ·+ ckan = 0 (n = 1, 2, · · · )

を満たす、K の元からなる任意の数列 {an}∞n=1 は次の数列の一次結合として一意的に表わ
される：

{αn
1}∞n=1,

{(
n

1

)
αn−1
1

}∞

n=1

,

{(
n

2

)
αn−2
1

}∞

n=1

, · · · ,
{(

n

m1 − 1

)
αn−m1+1
1

}∞

n=1

,

· · · · · · · · · · · · · · ·

{αn
r }∞n=1,

{(
n

1

)
αn−1
r

}∞

n=1

,

{(
n

2

)
αn−2
r

}∞

n=1

, · · · ,
{(

n

mr − 1

)
αn−mr+1
r

}∞

n=1

.
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No.15 2026年 1月 19日
線形代数４事前練習用演習問題

pre15-1. 漸化式 an+2 − 4an+1 + 4an = 0 (n = 1, 2, · · · ) を満たす実数列 {an}∞n=1 であって、
a1 = 2, a2 = −1 を満たすものの一般項を求めよ。

ヒントと略解（最初は見ずに解答してください）
pre15-1.

[定理 15 -4 -5]を使えば、[例 15 -4 -4]のように、連立一次方程式を立てて計算するだけで求
めることができる。しかし、ここでは直接的な方法による略解を載せる。
与えられた漸化式を満たす実数列の全体のなす実ベクトル空間を V とおき、線形変換 T :

V −→ V を T ({an}∞n=1) = {an+1}∞n=1 により定義する。e1, e2 を最初の 3 項目が次のように与
えられる V に属する数列とする：

e1 = 1, 0,−4, · · · · · · ,

e2 = 0, 1, 4, · · · · · ·

“e1, e2” は V の基底をなし、この基底に関する T の行列表示は

A =

(
0 1

−4 4

)
である。∆T (x) = ∆A(x) = x2 − 4x+ 4 = (x− 2)2 であるから、T の固有値は 2 のみである。
したがって、T − 2idV は冪零変換である。

A− 2E2 =

(
−2 1
−4 2

)
(A− 2E2)

2 =

(
0 0
0 0

)
であるから、T − 2idV の冪零指数は 2 である。よって、T − 2idV が定めるYoung図形は
の形になる。
この Young図形に適合する V の基底を 1 組与えよう。まず、(KerTA−2E2) ⊕ ⟨v⟩ = W̃ (2)

を満たす v ∈ W̃ (2) を 1 つ選ぶ。

KerTA−2E2 =

{ (
x
2x

) ∣∣∣∣ x ∈ R
}

より v =

(
0
1

)
を選ぶと、先の Young図形に適合する V の基底B = “(A − 2E2)(v), v”が得

られる。この V の基底に関する T − 2idV の行列表示は J(0, 2) であるから、同じ基底に関す
る T の行列表示は J(2, 2) となる。したがって、V の基底 “e1, e2” に関する座標系のもとで
(A− 2E2)(v), v ∈ R2 に対応する V の数列をそれぞれ {xn}∞n=1, {yn}∞n=1 とおくと、

T ({xn}∞n=1) = 2{xn}∞n=1 · · · · · · · · · · · · · · · 1⃝

T ({yn}∞n=1) = {xn}∞n=1 + 2{yn}∞n=1 · · · · · · 2⃝

が成立する。T は初項を削る写像であるから、 1⃝より xn+1 = 2xn (n = 1, 2, · · · · · · ) を得
る。これより、xn = 2n−1x1 (n = 1, 2, · · · · · · ) がわかる。(A − 2E2)(v) =

(
1
2

)
であるから、

{xn}∞n=1 = e1 + 2e2 = “1, 2, · · · · · · ” である。これより

xn = 2n−1 (n = 1, 2, · · · · · · )
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がわかる。
同様に、 2⃝より yn+1 = xn+2yn (n = 1, 2, · · · · · · )を得る。これに xn = 2n−1 を代入すると、

yn+1

2n+1 = 1
4
+

yn
2n

となるから、これを解いて、
yn = (n− 1)2n−2 (n = 1, 2, · · · · · · )

が得られる。
以上より、漸化式 an+2 − 4an+1 + 4an = 0 (n = 1, 2, · · · ) を満たす実数列 {an}∞n=1 の一般

項は s, t ∈ R を定数として
(∗) an = s · 2n−1 + t · (n− 1)2n−2 (n = 1, 2, · · · · · · )

により与えられることがわかる。
最後に、a1 = 2, a2 = −1 を満たすものを求めよう。(∗)は n = 1, 2 のとき{

s = 2,

2s+ t = −1

であるから、s = 2, t = −5 とわかる。よって、漸化式 an+2 − 4an+1 +4an = 0 (n = 1, 2, · · · )
および初期条件 a1 = 2, a2 = −1 を満たす数列 {an}∞n=1 の一般項は

an = 2n − 5 · (n− 1)2n−2 = (9− 5n)2n−2

により与えられる。
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線形代数４・第 15回 (2026年 1月 19日)演習問題事前練習シート
※このシートを A4片面１枚に印刷して、授業前までに事前練習用演習問題の解答をここに書
いてください。略解を参照して答え合わせをしたものを授業に持参してください。但し、この
シートは提出せず、各自で保管してください。



線形代数４・第 15回学習内容チェックシート 2026年 1月 19日

学 籍 番 号 氏 名

Q1. (1) n 次正方行列 A ∈ Mn(K) の Jordan標準形とは何か。説明せよ。

(2) A =

(
A1 O
O A2

)
(但し、Oは零行列), ∆A1(x) = (x−1)2(x−2), ∆A2(x) = (x−1)(x−2)2

により与えられる実正方行列 A の Jordan標準形として考えられ得るものをすべて列挙せよ。
但し、直和の順番の入れ替えで移りあうものは同じ Jordan標準形とみなす。

Q2. n 次正方行列 A の固有多項式は
∆A(x) = (x− α1)

m1(x− α2)
m2 (α1, α2 は異なる実数で、m1,m2 ≥ 1)

のように因数分解されるものとし、R-線形変換 T = TA : Rn −→ Rn を考える。T の固有値
αi (i = 1, 2) に属する広義固有空間を W̃ (αi) とおく。

(1) dim W̃ (αi) = .

(2) 広義固有空間 W̃ (αi) は、どのような連立一次方程式を解くことによって求められるか。

(3) 冪零変換 (TA−αiEn)|W̃ (αi)
: W̃ (αi) −→ W̃ (αi) が定めるYoung図形が であった

とする。このとき、

(i) T |W̃ (αi)
の Jordan標準形はどうなるか。

(ii) T |W̃ (αi)
の行列表示が Jordan標準形であるような W̃ (αi) の基底は、ある v,u ∈ R5 を

用いて
“(A− αiEn)

2v, (A− αiEn)v, v, (A− αiEn)u,u”

によって与えられる。v,uはそれぞれどのようなベクトルを探すことにより得られるか。

[v を探すための条件]

[uを探すための条件]

Q3. 第 15回の授業で学んだ事柄について、わかりにくかったことや考えたことなどがあれば、
書いてください。


