
数学を学ぶ（関数と微分積分の基礎２）・第 15回 (2026年 1月 14日)授業用アブストラクト

§15. 条件付き極値問題
２変数関数の極値問題を解くための方法として、第９節においてヘッシアン判定法を学んで

いる。ここでは、例えば、(x, y) ∈ R2 が x2 + y2 = 1 といった制約条件を満たすときの関数
f(x, y)の極値問題について議論する。このような問題を解決する方法としてよく知られている、
ラグランジュの未定乗数法について学ぶ。

● 15 -1 : 条件付き極値問題：例
(x, y)-平面における点 (a, b) と単位円周 C = { (x, y) ∈ R2 | x2 + y2 = 1 } との最短距

離を求める問題を考えよう。この問題は、x2 + y2 = 1 という制約条件の下で、2 変数関数
f(x, y) = (x− a)2 + (y − b)2 ((x, y) ∈ R2) の最小値を求める問題として捉えることができる。
この問題の答えは図形を描いてみれば容易に想像がつくが、ここでは以下のようにして、1 変
数関数の極小値を求める問題に帰着させて、解決しよう。
関数 f(x, y) の定義域を C に制限したとき、f(x, y) は C 上の点 P(x0, y0) において最小値

をとると仮定する。
y0 > 0 の場合、P の近くの C 上の点は (x,

√
1− x2) と表わされる。したがって、g(x) =

f(x,
√
1− x2) (−1 < x < 1) とおくと、任意の x ∈ (−1, 1) に対して g(x) ≥ g(x0) となる。

g は C1-級 (すなわち、微分可能で、導関数が連続)であるから、平均値の定理により、x0 は
g′(x0) = 0 を満たす。合成関数の偏微分規則により、

g′(x0) =
∂f
∂x

(x0, y0)−
∂f
∂y

(x0, y0)
x0
y0

であるから、次の等式が成り立つ：

(15 -1 a) y0
∂f
∂x

(x0, y0)− x0
∂f
∂y

(x0, y0) = 0.

y0 < 0 の場合も同様にして (15 -1 a)が成り立つことがわかる。
y0 = 0の場合、x0 = ±1である。x0 = 1ならば、Pの近くの C 上の点は (

√
1− y2, y)と表わ

され、x0 = −1ならば、(−
√

1− y2, y)と表わされる。したがって、h(y) = f(x0
√

1− y2, y) (−1 <

y < 1) とおくと、任意の x ∈ (−1, 1) に対して h(y) ≥ h(y0) となる。h は C1-級であるから、
平均値の定理により、y0 は h′(y0) = 0 を満たすことがわかる。合成関数の偏微分規則を使って
h′(y0) を計算すると、やはり、(15 -1 a)が成り立つことがわかる。
以上の考察から、関数 f(x, y) の定義域を C に制限したとき、点 P(x0, y0) において最小値

をとるならば、(15 - 1 a)が成りたなければならないことがわかる。(x0, y0) は x20 + y20 = 1 を
満たすので、同時には 0 でないから、

(15 -1 a)が成立 ⇐⇒ ベクトル
(
∂f
∂x

(x0, y0),
∂f
∂y

(x0, y0)
)
と (y0,−x0) とは直交する

⇐⇒ ベクトル
(
∂f
∂x

(x0, y0),
∂f
∂y

(x0, y0)
)
と (x0, y0) とは平行である

⇐⇒
(
∂f
∂x

(x0, y0),
∂f
∂y

(x0, y0)
)
= λ(x0, y0) となる実数 λ が存在する

と言い換えられる。以上の考察から、関数 f(x, y) の定義域を C に制限したときの最小値を与
える点は、x, y, λ に関する連立方程式

(15 -1 b)


x2 + y2 = 1 · · · · · · · · · 1⃝
2(x− a) = λx · · · · · · · · · 2⃝
2(y − b) = λy · · · · · · · · · 3⃝
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の解の中にある。(a, b) ̸= (0, 0) のとき、連立一次方程式 (15 -1 b)の解は
(x, y, λ) =

(
∓ a√

a2 + b2
,∓ b√

a2 + b2
, 2 ± 2

√
a2 + b2

)
(複号同順)である。このうち、f(x, y)

が最小となるのは、(x, y) =
(

a√
a2 + b2

, b√
a2 + b2

)
のときである。(a, b) = (0, 0) のとき、連

立一次方程式 (15 - 1 b)の解は (x, y, λ) = (x, y, 2) ((x, y) は C 上の任意の点)である。このと
き、C 上で f(x, y) = 1 となり、C のすべての点で f(x, y) は最小になる。

● 15 -2 : ラグランジュの未定乗数法
f(x, y), g(x, y) を R2 の領域 D 上で定義された C1-級関数とする。関数 f(x, y) が制約条

件 g(x, y) = 0 の下で点 (a, b) ∈ D において広義極小であるとは、十分小さく ε > 0 をと
ると、(a, b) を中心とする ε-近傍 Uε(a, b) の中の g(x, y) = 0 を満たす任意の点 (x, y) に対
して f(x, y) ≥ f(a, b) となるときをいう。このとき、f(a, b) を制約条件 g(x, y) = 0 の下で
の広義極小値と呼ぶ。同様に、Uε(a, b) の中の g(x, y) = 0 を満たす任意の点 (x, y) に対して
f(x, y) ≤ f(a, b) となるとき、f(x, y) は制約条件 g(x, y) = 0 の下で点 (a, b) ∈ D において広
義極大であるといい、f(a, b) を制約条件 g(x, y) = 0 の下での広義極大値と呼ぶ。広義極小値
と広義極大値を総称して広義の極値と呼ぶ。
制約条件の下での関数の (広義の)極値や最大・最小値を求める問題は、第 15 -1 節で観察し

たように、(15 -1 b)のような連立一次方程式を解く問題に帰着させることができる。その方法
は次の定理で与えられ、ラグランジュの未定乗数法と呼ばれている。

定理 15 -2 -1 (ラグランジュの未定乗数法)

f(x, y), g(x, y) を R2 の領域 D 上で定義された C1-級関数とする。制約条件 g(x, y) = 0　
の下で関数 f(x, y) が点 (a, b) ∈ D において広義の極値をとるとする。このとき、次の 1⃝, 2⃝
のうちのいずれかが成り立つ。

1⃝ ∂g
∂x

(a, b) =
∂g
∂y

(a, b) = 0.

2⃝ ∂f
∂x

(a, b) = λ
∂g
∂x

(a, b),
∂f
∂y

(a, b) = λ
∂g
∂y

(a, b) を満たす実数 λ が存在する。

2⃝の λ をラグランジュの未定乗数と呼ぶ。

定理の証明は最後に廻し、定理の使い方を見よう。

例 15 -2 -2 制約条件 x2 + y2 = 1 の下で、関数 f(x, y) = x2 + xy− y2 ((x, y) ∈ R2) の最大
値と最小値を求めよう。

g(x, y) = x2 + y2 − 1 とおくと、 ∂g
∂x

= 2x,
∂g
∂y

= 2y である。
1⃝ g(x, y) = ∂g

∂x = ∂g
∂y = 0 を x, y について解く。

しかしながら、この解は存在しない。
2⃝ g(x, y) = 0, ∂f

∂x = λ ∂g
∂x ,

∂f
∂y = λ∂g

∂y を x, y, λ について解く。すなわち、

(15 -2 a)


x2 + y2 = 1 · · · · · · · · · 1⃝
2x+ y = 2λx · · · · · · · · · 2⃝
x− 2y = 2λy · · · · · · · · · 3⃝
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を解く。この解は次で与えられることがわかる。

(15 -2 b)

(x, y, λ) =
(
± 2 +

√
5√

10 + 4
√
5
,± 1√

10 + 4
√
5
,

√
5
2

)
(複号同順)(

± 2−
√
5√

10− 4
√
5
,± 1√

10− 4
√
5
,−

√
5
2

)
(複号同順)

これらの点の中に、制約条件 x2 + y2 = 1 の下で関数 f(x, y) の最大値と最小値を与える点が
存在する。実際、これらの点での f(x, y) の値を計算し、比較することにより、最大値は

√
5
2 で

あり、最小値は −
√
5
2 であることがわかる。 □

● 15 -3 : 陰関数とは
x, y に関する 2 次方程式 x2 + y2 − 1 = 0 を考える。この方程式の実数解を一遍に１つの関

数で表示することはできないが、ある解の近くでは、y を x の関数として表わすことができた
り、x を y の関数として表わすことができる。例えば、(±1, 0) 以外の解 (x0, y0) を１つ指定す
れば、y0 > 0 ならば、(x0, y0) の近くの 2 次方程式 x2 + y2 − 1 = 0 の解は (x,

√
1− x2) によ

り与えられ、符号が特定され、したがって、y は x の関数として表されることがわかる。これ
らの関数は 2 次方程式 x2 + y2 − 1 = 0 の中に (必然的に)“潜む”関数と考えられる。

定義 15 -3 -1

g(x, y) を R2 の領域 D 上で定義された C1-級関数とし、(a, b) ∈ D は g(a, b) = 0 を満たし
ているとする。開区間 I 上で定義された C1-級関数 ϕ(t) が次の (i), (ii)のいずれかを満た
すとき、方程式 g(x, y) = 0 の (a, b) のまわりの陰関数と呼ばれる。

(i) 1□ a ∈ I, ϕ(a) = b であり、
2□ 点 (a, b) を含むある開集合 U 内の点 (x, y) に対して、

g(x, y) = 0 ⇐⇒ x ∈ I, y = ϕ(x).

(ii) 1□ b ∈ I, ϕ(b) = a であり、
2□ 点 (a, b) を含むある開集合 U 内の点 (x, y) に対して、

g(x, y) = 0 ⇐⇒ y ∈ I, x = ϕ(y).

(i)における条件 1□, 2□は、(a, b) の近くで方程式 g(x, y) = 0 を満たす y が x の C1-級関数
として表わされることを意味する。(ii)における条件件 1□, 2□についても同様に解釈される。

例 15 -3 -2 C1-級関数 g(x, y) = y2−x2(x+1) ((x, y) ∈ R2)を考える。g(3,−6) = 0であり、
ϕ(x) = −x

√
x+ 1 (x > −1)とおくと、関数 ϕ(x)は C1-級であり、ϕ(3) = −6を満たす。(3,−6)

を含む開集合 U = { (x, y) ∈ R2 | x > −1, y < 1 } において、「g(x, y) = 0 ⇐⇒ y = ϕ(x)」
となるから、開区間 I = (−1,∞) 上で定義された関数 ϕ(x) は方程式 g(x, y) = 0 の (3,−6) の
まわりでの陰関数である。 □

● 15 -4 : 陰関数定理とその応用
x, y についての方程式 ax + by + c = 0 は、b ̸= 0 ならば、y = −a

bx − c
b のように、y につ

いて解くことができる。関数 g(x, y) を g(x, y) = ax+ by+ c ((x, y) ∈ R2) によって定めると、
b = ∂g

∂y であるから、b ̸= 0 という条件を ∂g
∂y ̸= 0 という条件に置き換えることができる。この

事実の一般化が次の陰関数定理である。

– 87 –



数学を学ぶ（関数と微分積分の基礎２）・第 15回 (2026年 1月 14日)授業用アブストラクト

定理 15 -4 -1 (陰関数定理)

g(x, y) を R2 の領域 D 上で定義された C1-級関数とし、点 (a, b) ∈ D は g(a, b) = 0 を満
たしているとする。
(1) ∂g

∂y (a, b) ̸= 0 ならば、方程式 g(x, y) = 0 の (a, b) のまわりの陰関数 ϕ(x) (x ∈ I) であっ
て、[定義 15 -3 -1](i)のタイプのものが存在する。
(2) ∂g

∂x(a, b) ̸= 0 ならば、方程式 g(x, y) = 0 の (a, b) のまわりの陰関数 ϕ(y) (y ∈ I) であっ
て、[定義 15 -3 -1](ii)のタイプのものが存在する。

陰関数定理の証明は本格的な微分積分学の教科書を参照。ここでは、有用な応用例を１つ述
べよう。陰関数定理を利用すれば、陰関数を具体的に求めなくても、その微分を計算すること
ができる。

例 15 -4 -2 C1-級関数 g(x, y) = ex + xy2 + xey − y ((x, y) ∈ R2) を考える。p0 = (0, 1) は
g(p0) = 0, ∂g

∂y (p0) = −1 ̸= 0 を満たすから、陰関数定理により、p0 の近くで方程式 ex + xy2 +

xey − y = 0 の解 (x, y) は、0 を含む R のある開区間 I 上で定義された C1-級関数 ϕ(x) を用い
て、(x, y) = (x, ϕ(x)) と表わされる。任意の x ∈ I に対して ex + xϕ(x)2 + xeϕ(x) − ϕ(x) = 0

が成り立つから、この両辺を x で微分して、
ex +

(
ϕ(x)2 + x · 2ϕ(x) · ϕ′(x)

)
+
(
eϕ(x) + xeϕ(x) · ϕ′(x)

)
− ϕ′(x) = 0

を得る。ϕ(0) = 1 であるから、ϕ の 0 における微分係数が ϕ′(0) = 2 + e のように求まる。 □

● 15 -5 : [定理 15 -2 -1]の証明
1⃝でないときには 2⃝が成り立つことを示す。 1⃝でないとき、 ∂g

∂x(a, b) ̸= 0 か、∂g
∂y (a, b) ̸= 0

の少なくとも一方が成り立つ。∂g
∂y (a, b) ̸= 0 であったとすると、陰関数定理により、方程式

g(x, y) = 0 の (a, b) のまわりの陰関数 ϕ(x) (x ∈ I) であって、a ∈ I, ϕ(a) = b および、任意
の x ∈ I に対して (x, ϕ(x)) ∈ D, g(x, ϕ(x)) = 0 を満たすものが存在する。g(x, ϕ(x)) = 0 の
両辺を微分して

(15 -5 a)
∂g
∂x

(x, ϕ(x)) · 1 + ∂g
∂y

(x, ϕ(x)) · ϕ′(x) = 0

を得る。一方、関数 f(x, y) は制約条件 g(x, y) = 0 の下で (a, b) において広義の極値をとるか
ら、1変数関数 h(x) = f(x, ϕ(x)) (x ∈ I) は x = a において広義の極値をとる。したがって、
平均値の定理により、h′(a) = 0 を満たす。合成関数の連鎖律から、

(15 -5 b)
∂f
∂x

(a, b) · 1 + ∂f
∂y

(a, b) · ϕ′(a) = h′(a) = 0

を得る。この２式から
∂f
∂x

(a, b)
∂g
∂y

(a, b)− ∂f
∂y

(a, b)
∂g
∂x

(a, b) = 0

が得られる。あとは第 15 -1 節の方法と同様にして、(
∂f
∂x

(a, b),
∂f
∂y

(a, b)
)
= λ

(
∂g
∂x

(a, b),
∂g
∂y

(a, b)
)

を満たす λ ∈ R の存在がわかる。 ∂g
∂x

(a, b) ̸= 0 の場合にも同様の議論で 2⃝が成立することが
示される。 □
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Q1. f(x, y), g(x, y) を領域 D ⊂ R2 上で定義された C1-級関数とします。次の表を完成させな
さい。ページ欄にはその言葉の説明が書かれているアブストラクトのページを書きなさい。

ページ 意味
関数 f(x, y) が制約条件
g(x, y) = 0 の下で点
(a, b) ∈ D において広義
極小であるとは？

p.

Q2. f(x, y), g(x, y)を領域 D ⊂ R2 上で定義された C1-級関数とし、制約条件 g(x, y) = 0の下
で関数 f(x, y) が点 (a, b) ∈ D において広義の極値をとるとします。 ∂g

∂x
(a, b) =

∂g
∂y

(a, b) = 0

でないとき、
• ラグランジュの未定乗数 λ ∈ R が満たす等式を下の枠内に書きなさい。

• ラグランジュの未定乗数法を用いて、制約条件 g(x, y) = 0 の下での関数 f(x, y) の最
大値を求める手順を述べなさい。

Q3. g(x, y) を領域 D ⊂ R2 上で定義された C1-級関数とし、(a, b) ∈ D は g(a, b) = 0 を満た
しているとします。次の に適当な言葉や数式を入れなさい。

• ある開区間 I 上で定義された C1-級関数 ϕ(x) が次の 2 条件を満たすとき、方程式
g(x, y) = 0 の (a, b) のまわりの と呼ばれる。
1□ a ∈ I かつ
2□ 点 (a, b) を含むある開集合 U 内の点 (x, y) に対して、

g(x, y) = 0 ⇐⇒ .

• ならば、 により、方程式 g(x, y) = 0 の (a, b)

のまわりの陰関数 ϕ(x) (x ∈ I)であって、Q3における 1□, 2□を満たすものが存在する。
このとき、関数 ϕ(x) の a における微分係数 ϕ′(a) は、 ∂g

∂x
(a, b),

∂g
∂y

(a, b) を用いて　

ϕ′(a) = のように表わされる。

Q4. 第 15回の授業で学んだ事柄について、わかりにくかったことや考えたことなどがあれば、
書いてください。


