Polynomial invariants of a semisimple and cosemisimple Hopf algebra based on braiding structures

Michihisa Wakui (Kansai Univ.)

August 31st, 2009
in La Falda, Córdoba

- a new family of monoidal Morita invariants of a semisimple and cosemisimple Hopf algebra of finite dimension by using the braiding structures.
- computational results and usefulness of our invarinats for detecting whether representation categories of Hopf algebras are monoidally equivalent or not.
- basic properties of our invariants, including integer property and stability under extensions of the base field.

Notation

- $\boldsymbol{k}=\mathbf{a}$ field.
- $A=$ a finite-dimensional Hopf algebra over k.
- ${ }_{A} \mathbb{M}^{\text {fld. }}=$ the monoidal category of finite-dimensional left \boldsymbol{A}-modules.

Problem

For Hops algebras A and B, when ${ }_{A} \mathbb{M}$, ${ }_{B} \mathbb{M}$ are equivalent as monoidal categories?

Known results Schauenburg has shown that
$\mathbb{M}^{A} \simeq \mathbb{M}^{B}$ as monoidal categories
\Longleftrightarrow there is an (A, B) bi-Galois extension of k
$\underset{(\mathrm{f} . \mathrm{d} . \text { case })}{\Longleftrightarrow} A$ and B are cocycle deformations of each other.
Masuoka, Di, Takeuchi and Schauenburg have determined the bi-Galois objects and cocycle deformations for various special families of Hops algebras.

Motivation (Quantum invariants of knots and 3-manifolds) Given $M \in{ }_{A} \mathbb{M}^{\text {fid. }}$, we have a function
$\left.\begin{array}{c}\text { a quasitriangular str. } R \in A \otimes A \\ \text { a framed knot } K \text { in } \mathbb{S}^{3}\end{array}\right\} \longmapsto\langle K, R\rangle_{M} \in k$.
For each fixed R and M, the function $\langle-, R\rangle_{M}$ is a topological invariant, so called a quantum invariant. In this research we fix K, especially $K=\varnothing$, and study on $\left\{\langle K,-\rangle_{M}\right\}_{M \in_{A} \mathbb{M}^{f . d .}}$ as an invariant of Hopf algebras.

Drinfeld element

If $R=\sum_{i} a_{i} \otimes b_{i}$ is a QT structure of A, then
$u=\sum_{i} S\left(b_{i}\right) a_{i} \in A$ is invertible, and

$$
S^{2}(a)=u a u^{-1} \quad \text { for all } a \in A
$$

This element u is called the Drinfeld element associated to R. If A is semisimple and cosemisimple, then u belongs to the center of A by (\dagger) and $S^{2}=\mathrm{id}_{A}$ [Etingof and Gelaki].

Braided dimension For $M \in{ }_{A} \mathbb{M}^{\text {fld. }}$ we define

$$
\underline{\operatorname{dim}}_{R} M=\operatorname{Trace}(\text { the left action of } u \text { on } M)
$$

and call it the R-dimension of M. The R-dimension is a special case of the braided dimension of M in the left rigid

Theorem (Etingof and Gelaki) If A is cosemisimple, then
(1) the set of QT structures $\underline{\operatorname{Braid}}(A)$ is finite,
(2) provided that A is semisimple, $(\operatorname{dim} M) 1_{k} \neq 0$ for any absolutely simple left A-module M.

Definition of polynomial invariants

Suppose that A is semisimple and cosemisimple, and fix a positive integer d. Let $\left\{M_{1}, \ldots, M_{t}\right\}$ be a full set of non-isomorphic absolutely simple left \boldsymbol{A}-modules of dimension d. Then we define

$$
P_{A}^{(d)}(x):=\prod_{i=1}^{t} \prod_{R \in \underline{B r a i d}(A)}\left(x-\frac{\operatorname{dim}_{R} M_{i}}{\operatorname{dim} M_{i}}\right) \in k[x] .
$$

Theorem If A and B are monoidally Morita equivalent, then $P_{A}^{(d)}(x)=P_{B}^{(d)}(x)$ for all d.

Satoshi Suzuki's Hopf algebras

Let $N \geq 1$ be an odd integer and $n \geq 2$ an integer. Let
$G_{N n}$ be the finite group presented by

$$
G_{N n}=\left\langle h, t, w \left\lvert\, \begin{array}{c}
t^{2}=h^{2 N}=1, w^{n}=h^{N} \\
t w=w^{-1} t, h t=t h, h w=w h
\end{array}\right.\right\rangle .
$$

Suppose that $\operatorname{ch}(k) \neq 2$, and define Δ, ε, S by
$\Delta(h)=h \otimes h$,

$$
\varepsilon(h)=1, S(h)=h^{-1}
$$

$$
\Delta(t)=h^{N} w t \otimes e_{1} t+t \otimes e_{0} t, \quad \varepsilon(t)=1, \quad S(t)=\left(e_{0}-e_{1} w\right) t
$$

$$
\Delta(w)=w \otimes e_{0} w+w^{-1} \otimes e_{1} w, \varepsilon(w)=1, S(w)=e_{0} w^{-1}+e_{1} w
$$ where $e_{0}=\frac{1+h^{N}}{2}, e_{1}=\frac{1-h^{N}}{2}$. Then, $A_{N n}=\left(k\left[G_{N n}\right], \Delta, \varepsilon, S\right)$ is a semisimple and cosemisimple Hopf algebra of dimension $4 n N$, and self-dual ie. $A_{N n} \cong\left(A_{N n}\right)^{*} . \quad\left[A_{1 n}\right.$ is well-studied by Masuoka.]

Remark A_{12} is isomorphic to the Kac-Paljutkin algebra.

Computational results

Suppose that k contains a primitive $4 n N$-th root of unity ω.
If $n \geq 3$ is odd, then $P_{A_{N n}}^{(d)}(x)=P_{k\left[G_{N n}\right]}^{(d)}(x)(d=1,2)$.

However,

Theorem If n is even, then the pair of two Hops algebras $A_{N n}$ and $k\left[G_{N n}\right]$ gives an example of that their representation categories are not equivalent, meanwhile their representation rings are isomorphic.
(Proof) If $n=2$, then

$$
\begin{aligned}
P_{A_{N 2}}^{(1)}(x) & =\prod_{s, i=0}^{N-1}\left(x-\omega^{-16 i s^{2}}\right)^{16}\left(x+\omega^{-8 i s^{2}}\right)^{8}\left(x+\omega^{-16 i s^{2}}\right)^{8} \\
P_{k\left[G_{N 2}\right]}^{(1)}(x) & =\prod_{s, i=0}^{N-1}\left(x-\omega^{-16 i s^{2}}\right)^{32}
\end{aligned}
$$

So, $P_{A_{N 2}}^{(1)}(-1)=0 \neq P_{k\left[G_{N 2}\right]}^{(1)}(-1)$.

If $n \geq 4$ is even, then

$$
\begin{aligned}
& P_{A_{N n}}^{(2)}(x)= \prod_{s, i=0}^{N-1} \prod_{t=1}^{\frac{n}{2}} \prod_{j=0}^{n-1}\left(x^{2}-\omega^{-4 i(2 s+1)^{2} n-2(2 j-1)(2 t-1)^{2} N}\right) \\
& \times \prod_{s, i=0}^{N-1} \prod_{t=1}^{\frac{n-2}{2}} \prod_{j=0}^{n-1}\left(x-\omega^{-8 i s^{2} n-4(2 j-1) t^{2} N}\right)^{2} \\
& P_{k\left[G_{N n}\right]}^{(2)}(x)= \prod_{s, i=0}^{N-1} \prod_{t=1}^{\frac{n}{2}} \prod_{j=0}^{n-1}\left(x^{2}-\omega^{-4 i(2 s+1)^{2} n-4 j(2 t-1)^{2} N}\right) \\
& \times \prod_{s, i=0}^{N-1} \prod_{t=1}^{\frac{n-2}{2}} \prod_{j=0}^{n-1}\left(x-\omega^{-8 i s^{2} n-8 j t^{2} N}\right)^{2}
\end{aligned}
$$

Thus $P_{A_{N n}}^{(2)}\left(\omega^{-N}\right)=0 \neq P_{k\left[G_{N n}\right]}^{(2)}\left(\omega^{-N}\right)$.
On the other hand, $\mathrm{K}_{0}\left(A_{N n}\right), \mathrm{K}_{0}\left(k\left[G_{N n}\right]\right)$ are isomorphic to
$\mathbb{Z}\left\langle\begin{array}{c|l}a, b, c, & a^{2}=b^{2}=c^{N}=1, a x_{i}=x_{i}, \\ x_{1}, \ldots, x_{n-1} & b x_{i}=x_{n-i}, x_{i} x_{j}=c^{\frac{1-(-1)^{i j}}{2}}\left(x_{|i-j|}+x_{i+j}\right)\end{array}\right\rangle^{\text {abel }}$,
where $x_{0}=1+a, x_{n}=b(1+a), x_{n+i}=x_{n-i}(1 \leq i \leq n-1)$.

Integer property

Let K be an extension field of k. Then $A^{K}=A \otimes K$ becomes a Hopf algebra over K, and the group Aut (K / k) acts on $H:=A^{K}$ and $\operatorname{Braid}(H)$ by

$$
\sigma(a \otimes c)=a \otimes \sigma(c)
$$

Theorem If K / \boldsymbol{k} is a finite Galois extension, then $P_{A^{K}}^{(d)}(x) \in\left(k \cap Z_{K}\right)[x]$ for any d. Here, $Z_{K}= \begin{cases}(\text { the algebraic integers in } K) & (\operatorname{ch}(K)=0), \\ \left(\text { the algebraic closure of } \mathbb{F}_{p} \text { in } K\right) & (\operatorname{ch}(K)=p) .\end{cases}$

Corollary If \boldsymbol{K} is a finite Galois extension field of $\boldsymbol{k}=\mathbb{Q}$, then $P_{A^{K}}^{(d)}(x) \in \mathbb{Z}[x]$ for any d.

Stability under extensions of the base field

An extension of field K / \boldsymbol{k} yields a natural injection Braid $(A) \longrightarrow \underline{B r a i d}\left(A^{K}\right)$, which defines

$$
R=\sum_{i} \alpha_{i} \otimes \beta_{i} \longmapsto R^{K}=\sum_{i}\left(\alpha_{i} \otimes 1_{k}\right) \otimes_{K}\left(\beta_{i} \otimes 1_{k}\right)
$$

By using a result of Etingof and Gelaki one can show the existence of a separable finite extension field L of k such that $\underline{\operatorname{Braid}}\left(A^{L}\right)=\underline{\operatorname{Braid}}\left(A^{E}\right)$ for any extension E / L. This leads to the following theorem.

Theorem There is a separable finite extension field L of k such that for any extension E / L and for any positive integer $d, P_{A^{E}}^{(d)}(x)=P_{A^{L}}^{(d)}(x)$ in $E[x]$.

[^0]
[^0]: Reference
 arXiv:0907.0089, M. Wakui, Polynomial invariants for a semisimple and cosemisimple Hopf algebra of finite dimension, to appear in JPAA.

