線形代数4演習問題

2-1. 次の $n \ge 4$ 次行列式を、順列の転倒数を用いた行列式の定義に基づいて、計算せよ。

$$\begin{vmatrix} 0 & 1 & 0 & \cdots & 0 & n \\ \vdots & 0 & 2 & \cdots & 0 & 0 \\ \vdots & \vdots & 0 & \ddots & \vdots & \vdots \\ 0 & \vdots & \vdots & \ddots & n-2 & 0 \\ n+1 & 0 & \vdots & \cdots & 0 & n-1 \\ n & n-1 & 0 & \cdots & 0 & 0 \end{vmatrix}$$

2-2. 計算の仕方を工夫して、次の行列式を計算せよ。

$$\begin{vmatrix} (b+c)^2 & ab & ca \\ ab & (c+a)^2 & bc \\ ca & bc & (a+b)^2 \end{vmatrix}$$

■ 第1回学習内容チェックシートについて

- \circ Q1(2) では「 $1_{\mathbb{K}} \neq 0_{\mathbb{K}}$ 」も必要なのですが、それがないシートがほとんどでした。Q1(3) では「任意の $a \in \mathbb{K}$ に対して」というフレーズを入れているシートが多かったです。問題文に記された a について答えるべきですから、これは書いてはダメです。Q1(4) も同様です。
- 。Q2の表に挙げられた集合のうち、体をなさないものは $\mathbb{Z},\mathbb{Z}[i],S$ の 3 つです。この判断はできているものの、理由が不十分なシートが多かったです。 $\mathbb{Z},\mathbb{Z}[i]$ については $\lceil 2 \in \mathbb{Z}$ は積に関する逆元を \mathbb{Z} 内に持たないため」、S については $\lceil \sqrt{2} \in S, \sqrt{3} \in S$ だが $\sqrt{2}\sqrt{3} = \sqrt{6} \notin S$ であるため」のように具体例を挙げて理由を書いてください。
- 。Q3 の (3) は例を挙げて説明することを要求しています。解答欄には、「結合法則と交換法則の両方を満たすことは、n 個の元について、元の並びと括弧の付け方を任意の順番に変えて * を施しても、最終的に得られる S の元はすべて等しいことを意味している」と書いたあとに、「例えば $a,b,c,d\in S$ について」と続けて、例を挙げるとよいでしょう。

■ 演習 1-1 について

- $(1) はよくできていました。 \alpha = a + b\sqrt{q}, \ \beta = c + d\sqrt{q} \ (a,b,c,d \in \mathbb{K}) \ とおくと、 \alpha + \beta = (a + c) + (b + d)\sqrt{q}, \ \alpha\beta = (ac + bdq) + (ad + bc)\sqrt{q} \ となります。あとは、 a + c, b + d, ac + bdq, ad + bc \in \mathbb{K}$ を示せばよいわけですが、その理由を「 $q \in \mathbb{K}$ 」と「 \mathbb{K} は \mathbb{R} における和と積に関して体をなす」ことからのようにはっきりと書くことが重要です。
- (2) は理由が正しくない答案が多かったです。 $0 \in \mathbb{K}(\sqrt{q})$ を示すには、0 が $0 = a + b\sqrt{q}$ $(a,b \in \mathbb{K})$ と書けることを確認することになります。 $0 = 0 + 0\sqrt{q}$ と書くことができるので、 $0 \in \mathbb{K}$ かどうかを確認すればよいことになります。これは、 \mathbb{K} が \mathbb{R} における和と積に関して体をなすことから成立するので、解答には、 $0 = 0 + 0\sqrt{q}$ とともにそのことを明記すればよいわけです。 $1 \in \mathbb{K}(\sqrt{q})$ についても同様に解答します。
- (3) も理由が正しくない答案が多かったです。 $\alpha = a + b\sqrt{q} \in \mathbb{K}(\sqrt{q}) \ (a,b \in \mathbb{K})$ とおくと、 $-\alpha = (-a) + (-b)\sqrt{q}$ となります。 \mathbb{K} は体なので $a,b \in \mathbb{K}$ より $-a,-b \in \mathbb{K}$ です。これより、 $-\alpha \in \mathbb{K}(\sqrt{q})$ がいえます。

 $\alpha \neq 0$ のとき、

$$\alpha^{-1} = \frac{a - b\sqrt{q}}{(a + b\sqrt{q})(a - b\sqrt{q})} = \frac{a}{a^2 - b^2q} + \frac{-b}{a^2 - b^2q}\sqrt{q}$$

と書くことができます。ここで、少し注意すべきことがあります。波線部分で、分母と分子に $a-b\sqrt{q}$ を掛けていますが、 $a-b\sqrt{q}=0$ になったとしたら大変です。実際これが成立しないことを、 $a-b\sqrt{q}=0$ であったと仮定して、矛盾を導いて確認します。そのあとは、 $c:=\frac{a}{a^2-b^2q},\ d=\frac{-b}{a^2-b^2q}$ が $\mathbb K$ の元であることが示されればよく、それは $a,b,q\in\mathbb K$ と $\mathbb K$ が体であることから従います。

■ 次回予告

次回は、数字 $1, \dots, n$ の順列を n 文字の置換 (つまり、集合 $\{1, \dots, n\}$ 上の全単射) とみなし、順列の転倒数の偶奇が、置換の符号により捉えられることを示します。n 文字の置換全体に積を導入してその性質を調べます。

線形代数4・第2回(2025年9月29日)演習問題解答シート

学 籍	釆	早	乒 夕	
丁 和	THI.	つ	μ τ	

※自分の解答を以下に書いてください。書ききれない場合には、裏面に続けてください。解答には、答えだけでなく、適宜、途中の式や考察を含めてください(答えのみは評価しません)。