No.4

線形代数4演習問題

4-1. 次の 6 次正方行列 A の行列式の値は (2!3!4!5!)² であることを示せ。

$$A = \begin{pmatrix} 1 & 1! & 2! & 3! & 4! & 5! \\ 1! & 2! & 3! & 4! & 5! & 6! \\ 2! & 3! & 4! & 5! & 6! & 7! \\ 3! & 4! & 5! & 6! & 7! & 8! \\ 4! & 5! & 6! & 7! & 8! & 9! \\ 5! & 6! & 7! & 8! & 9! & 10! \end{pmatrix}$$

4-2. 頂点が $A\begin{pmatrix}2\\1\\1\end{pmatrix}$, $B\begin{pmatrix}3\\3\\4\end{pmatrix}$, $C\begin{pmatrix}3\\5\\10\end{pmatrix}$, $D\begin{pmatrix}2\\-1\\-2\end{pmatrix}$ で与えられる \mathbb{R}^3 内の四面体の体積をベクトルの外積を用いて求めよ。

■ 第3回学習内容チェックシートについて

- \circ Q1(4) は、「 $\sigma \in \mathfrak{S}_m$, $\tau \in \mathfrak{S}_n$ のとき」と書いて答えた人がいましたが、「 σ, τ がともに n 文字の置換である」という前提のもとで $\sigma = \tau$ となるための条件を答えてください。
- \circ Q1(5)(i) では 1,3,2,4 という誤答、(ii) では $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4 \end{pmatrix}$ という誤答が多かったです。 $[extit{M}\,3\text{-}1\text{-}1]$ に例示されているように、置換と順列との対応は、

$$\mathfrak{S}_n \ni \sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ i_1 & i_2 & \cdots & i_n \end{pmatrix} \iff "i_1, i_2, \cdots, i_n" \in S_n$$

により与えられます。よって、 $\sigma=\begin{pmatrix}1&2&3&4\\3&4&2&1\end{pmatrix}$ に対応する順列は 3,4,2,1 であり、順列 5,4,3,2,1 に対応する置換は $\begin{pmatrix}1&2&3&4&5\\5&4&3&2&1\end{pmatrix}$ になります。

 \circ Q3(2) では、長さ 2 の巡回置換という解答が一定数ありました。単に互換とは?と問われればこの答えでよいのですが、 $(i\ j)$ と具体的に指定されているので、 $[i\ b\ j]$ に写し、 $[i\ b\ b\ b]$ については $[i\ b\ b\ b]$ に写す置換のこと」のように答えましょう。

■ 演習 3-1 について

正答率は高かったですが、(1) と (2) は理由が書かれていない答案が多かったです。(1) の正解の 1 つは $\sigma=(1\ 6\ 4)(2\ 3\ 7\ 8)$ です。理由は、[例 3-4-2] を真似て書けばよいでしょう。(2) は巡回置換を互換の積に分解する公式 $(i_1\ i_2\ \cdots\ i_k)=(i_1\ i_2)(i_2\ i_3)\cdots(i_{k-1}\ i_k)$ を用いればよく、 $\sigma=(1\ 6)(6\ 4)(2\ 3)(3\ 7)(7\ 8)$ のように表わすことができます。(3) は (2) により σ は 5 個の互換の積で表わされることから、 $\operatorname{sgn}\sigma=(-1)^5=-1$ となります。

■ 演習 3-2 について

方針としては、① σ を順列とみなして転倒数 $N(\sigma)$ を計算する、② σ を互換の積に表わす、の 2 通りがあります。この問題の場合、圧倒的に①の方が簡単です。 σ を順列とみなしたものは " $n+1,n+2,\cdots,2n,n,n-1,\cdots,1$ " です。 $i=1,\cdots,2n$ とし、この順列において i よりも左側にあって i よりも大きな数字の個数を N_i とおくと、その値が次のように求まります。

$$N_1 = 2n - 1, \ N_2 = 2n - 2, \ \cdots, N_n = n, \ N_{n+1} = \cdots = N_{2n} = 0.$$

したがって、 $N(\sigma)=(2n-1)+(2n-2)+\cdots+n=\frac{n(3n-1)}{2}$ であり、 $\mathrm{sgn}(\sigma)=(-1)^{\frac{n(3n-1)}{2}}$ となります。より詳しく値を求めるなら n を mod 4 で場合分けします。すると、 $\mathrm{sgn}(\sigma)$ は、 $n\equiv 0,\ 3\ (\mathrm{mod}\ 4)$ のとき 1 であり、 $n\equiv 1,\ 2\ (\mathrm{mod}\ 4)$ のとき -1 であることがわかります。

②の方針をとる場合、初めから n の偶奇で場合分けする必要があります。n が偶数なら σ は $\frac{n}{2}$ 個の長さ 4 の巡回置換の積で表されることがわかり、 $\mathrm{sgn}(\sigma)=(-1)^{\frac{3n}{2}}$ が得られます。n が奇数なら σ は $\frac{n-1}{2}$ 個の長さ 4 の巡回置換と 1 個の互換 $(\frac{n+1}{2},n+\frac{n+1}{2})$ の積で表わされることがわかり、 $\mathrm{sgn}(\sigma)=(-1)^{3\frac{n-1}{2}+1}=(-1)^{\frac{3n-1}{2}}$ が得られます。

■ 次回予告

次回からベクトル空間の一般論を学んでいきます。次回は、ベクトル空間の定義と代表例、 一次独立の概念を取り上げます。

線形代数4・第4回 (2025年10月13日) 演習問題解答シート

|--|

※自分の解答を以下に書いてください。書ききれない場合には、裏面に続けてください。解答には、答えだけでなく、適宜、途中の式や考察を含めてください(答えのみは評価しません)。