基礎数学演義 3 第 14 回・問題解答&要約シート (1)

学籍番号_____ 氏名____

Q14-1. (1) $a_n=\left(1-\frac{1}{n}\right)^n \ (n\geq 2,\ n\in\mathbb{N})$ の逆数を、n=m+1 とおき、m を使って書き換えよ。

(2) $\lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^n = \frac{1}{e}$ となることを示せ。但し、e はネイピアの数を表わす。

Q14-2. 極限 $\lim_{n\to\infty} \left(\frac{n^2+3n+2}{n^2}\right)^n$ を求めよ。

基礎数学演義 3 第 14 回・問題解答&要約シート (2)

学籍番号_______ 氏名_____

Q14-3. 和 $1+\sum\limits_{k=1}^{5}\frac{1}{k!}$ を計算し、e の近似値を小数点以下 2 桁まで求めよ。

Q14-4. 第 14-2 節のように、O を中心とする単位円に内接する正 k 角形 P_k と外接する正 k 角形 Q_k の辺の長さの総和をそれぞれ p_k,q_k とおく。 Q_k の隣り合う頂点 A, B および P_k の隣り合う頂点 C, D を 55 ページの図のようにとる。但し、M, K はそれぞれ辺 AB, CD の中点であり、 $\theta=\angle {\rm AOM}$ である。 $t=\tan\frac{\theta}{2}$ とおく。

(1) (14-2 c) を導け。

(2) (14-2 d) を導け。

(3) (i)
$$p_{2k} = \sqrt{q_{2k}p_k}$$
, (ii) $q_{2k} = \frac{2p_kq_k}{p_k+q_k}$ が成り立つことを示せ。