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Macroscopic and microscopic hydrodynamic mixing of stratified suspensions

Yasufumi Yamamoto * and Koki Yamada
Department of Mechanical Engineering, Kansai University, 3-35 Yamate-cho 3-chome, Suita, Osaka 564-8680, Japan

Yohsuke Tanaka
Faculty of Mechanical Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan

Shusaku Harada
Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, N13-W8 Sapporo, Hokkaido 060-8628, Japan

(Received 24 June 2021; accepted 17 August 2021; published 27 August 2021)

We conducted numerical experiments to investigate the mixing of stratified suspensions containing different
types of particles. We used a point-force two-way coupling method. We studied the mixing behavior of stratified
suspensions and we discovered two types of mixing: microscopic (individual-particle-level) and macroscopic
(vessel-scale) collective mixing. In addition, we examined the vertical mixing speed of the stratified suspension.
We used a simple theoretical model to analyze the fingering settling velocity. Then we introduced a nondimen-
sional number representing the difference in collectivities of the upper and lower suspensions while accounting
for particle terminal velocities. We discovered that the proposed nondimensional parameter has a negative sign
that distinguishes the mixing form of only microscopic individual-particle-level mixing and a positive value that
predicts the speed of macroscopic collective mixing of stratified suspensions.
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I. INTRODUCTION

The mixing of particulate matters in liquid is a common
phenomenon in chemical, civil, environmental, and mechan-
ical engineering processes. While there are processes that
promote the mixing of unevenly dispersed particles, some pro-
cesses inhibit mixing, such as the separation or stratification
of different types of particles. It is critical to quantitatively
predict and control the mixing behaviors for a given particle
and fluid condition in both processes.

In general, the mixing of nanoparticles or macromolecules
is explained in a thermodynamic framework as an increase in
entropy due to the lack of gravity’s influence and the dom-
inance of thermal motion. According to Fick’s law, mixing
these particles occurs via a mass flux proportional to the
concentration gradient. The mixing of micro-sized particles in
liquid, on the other hand, has an entirely different mechanism
from the Fickian mixing. The hydrodynamic force intricately
affects the relative motion of particles in such a system and,
as a result, mixing occurs on various spatial scales.

Consider two types of micro-sized particle suspensions that
are stratified in an ideal state. If the upper and lower particles
settle independently, each particle settles at the hindered set-
tling velocity determined by the mass density, particle size,
and concentration [1]. As a result of the difference in settling
velocities on a spatial scale at the particle level, the upper
and lower particles mix. The particle mixing caused by the
difference in settling velocity can be observed in stratified
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suspensions where the concentration gradient is positive in the
direction of gravity [2].

In contrast, suspensions with an interface where the con-
centration gradient is negative with respect to the direction
of gravity cause large-scale convective motion due to grav-
itational instability at the concentration interface. It causes
a wide variety of exciting suspension motions, such as the
convection formation in vessels known as the Boycott effect
[3], fingerlike settling of suspensions [4,5], and the splitting
of suspension droplets such as with fireworks [6–8].

In the motion mentioned above, the suspended particles
sometimes behave as a continuous fluid. The fluid flow in-
duced by the individual particles causes this collective motion,
which appears to shield the interface that borders the parti-
cles, forming an immiscible interface [9]. The dimensionless
parameter collectivity, which describes particle resolution of
the concentration interface, determines the collective motion
of suspension [5]. Suspended particles behave as a continuous
fluid with high collectivity, whereas they behave as individual
particles with low collectivity [5].

Under high collectivity conditions, gravitational instabil-
ity would cause the mixing of stratified suspensions with a
negative concentration gradient on a large spatial scale. It
is similar to the miscible and immiscible fluids generated
by gravitational instability, and it has long been studied as
Rayleigh-Taylor mixing (RT mixing). In these studies, it was
demonstrated that the growth speed of fingerlike interface
instability can be expressed similarly to the bubble rising
velocity [10]. The growth rate of RT mixing in the infinite
region exhibits a time dependency due to lateral finger growth
[11–16]. Theoretical, experimental, and numerical studies of
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single-mode RT mixing in a container with limited dimen-
sions have revealed that the mixing speed becomes constant
as a function of fluid density, viscosity, and interfacial tension
[17–21]. Like RT mixing of ordinary fluids, mixing of strati-
fied suspensions with high collectivity is expected to occur on
a large scale.

As previously stated, the hydrodynamic mixing of micro-
sized particles is considered to be far from the Fickian mixing,
which is determined by the difference in settling velocity and
gravitational instability depending on the suspension condi-
tions. It is critical in engineering to understand the conditions
under which the microscopic and macroscopic mixing de-
scribed above occurs between the suspended particles, as well
as what determines the mixing speed.

Mori et al. [22] used experiments and numerical sim-
ulations to investigate the mixing behavior of stratified
suspensions with different volume fractions (i.e.,different col-
lectivities) composed of identical particles by gravitational
instability. It was discovered that the settling velocity of the
upper suspension can be determined by the square difference
between the collectivities of the upper and lower suspensions,
and that the hydrodynamic mixing of micro-sized particles
exhibits non-Fickian characteristics.

In this study, we conducted numerical experiments on
mixing stratified suspensions containing various types of
particles. Our previous study [22] has been extended to in-
vestigate the hydrodynamic mixing of micro-sized particles
under various conditions such as collectivity difference, ap-
parent mass density difference, and single-particle terminal
velocity difference of the upper and lower suspensions. As
expected from previous studies [5,22], the high collectivity of
the upper suspension enhances large-scale mixing via gravita-
tional instability. In contrast, the high terminal velocity of the
upper suspension enhances small-scale mixing via invasion
to lower suspension across the concentration interface. We
investigate such multiscale mixing of stratified suspension at
the concentration interface using numerical simulations with
various suspension conditions and discuss the mixing speed
quantitatively using a nondimensional number.

II. SYSTEM AND SIMULATION

The schematic representation of the numerical experiment
system is shown in Fig. 1. The test cell is a rectangular vessel
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particle 1

gravity

same

liquid

lower suspension
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particle 2

FIG. 1. Configuration of stratified suspensions in rectangular
vessel.

with D = 3 mm and T = 2D. The height L is conditionally
adjusted. Stationary suspensions are initially installed on the
upper and lower sides. The liquid’s properties are set similar
to those of silicone oil (mass density ρl = 972 kg/m3 and
dynamic viscosity μl = 100 mPa s). The upper suspension’s
initial height ranges from 2.3D to 4.6D, and the lower sus-
pension’s initial height ranges from 3.45D to 4.6D. Except
for the particle condition, these configurations are identical to
Mori et al. [22]. The properties of particles vary, as shown in
Table I. The Stokes terminal velocity of a single particle USt

can be calculated as follows:

USt = (ρp − ρl )

18μl
d2

p g, (1)

where ρp denotes the particle mass density, dp denotes particle
diameter, and g is the gravitational acceleration. Based on
the nondimensional number derived by Harada et al. [5,23],
the collectivity C has been defined as C ≡ (D/dp)φ1/3 by

TABLE I. Numerical condition of upper and lower suspensions for five characteristic cases.

Diameter Density Volume fraction Terminal velocity Apparent density Collectivity Parameter
Case Position dp (μm) ρp (kg/m3) φ USt (μm/s) ρs (kg/m3) C Ym

No. 1 upper 45 2500 0.01 16.82 990.3 14.36 43.8
lower 90 1000 0.009 1.10 975.2 6.93

No. 2 upper 67.5 2500 0.038 37.86 1033 17.94 72.3
lower 22.5 2500 0.0014 4.21 977.1 14.92

No. 3 upper 180 2500 0.04 269.2 1036 5.70 8.33
lower 45 2500 0.01 16.82 990.3 14.36

No. 4 upper 90 2500 0.001 37.30 976.5 3.33 −10.0
lower 45 2500 0.01 16.82 990.3 14.36

No. 5 upper 90 2500 0.015 67.30 997.9 8.22 5.56
lower 45 2500 0.01 16.82 990.3 14.36
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(a) No.2                 (b) No.3                (c) No.4

FIG. 2. External view of settling behavior of stratified suspen-
sions for three cases shown in Table I (black dot: upper particle;
white dot: lower particle; the dot size does not reflect the size of the
particle).

considering particle mean distance as described in Mori et al.
[22]. When C is greater than 14 (fluidlike condition), the
suspended particles behave perfectly as a continuum. When
C values are less than 2, they settle down almost with the
terminal velocity of an isolated particle. For C values between
2 and 14, the suspended particles’ individual and collective
behaviors coexist (intermediate condition). Unlike Mori et al.,
the single-particle terminal velocity of the upper suspension in
this study differs from that of the lower suspension.

As in previous studies [7,22,24], we employed Lagrangian
tracking of individual particles with two-way coupling using a
point-force model. We could ignore particle inertia by assum-
ing that the particle response time was much shorter than the
liquid flow timescale, and thus the Stokes number was much
smaller than unity. In this case, we considered particle motion
resulting only from Stokes drag and gravity, without inertia,
as

0 = −3πμl dp[v − u(xp)] + π

6
d3

p (ρp − ρl )g, (2)

where v and u are the particle velocity and liquid velocity
at particle position xp, respectively. The particle velocity was
instantaneously solved using the above equation with the
interpolated liquid velocity at the particle position, and the
particle position was subsequently updated by integration. We
used the second-order Adams-Bashforth method for integrat-
ing the particle position.

The liquid was assumed to be incompressible and its mo-
tion described by the continuity equation

∇ · u = 0, (3)

and the two-way-coupled Navier-Stokes equation,

∂u
∂t

+ ∇ · uu = − 1

ρl
∇p + μl

ρl
∇2u + 1

ρl
f , (4)

where f is the feedback force per unit volume as given by

f (x) = −3πμl dp

�3

∑
xp

[u(xp) − v]w(x − xp), (5)

where x denotes grid position and � denotes grid spacing.
The function w is a nondimensional weighting function and it
gives the trilinear distribution to the eight neighboring points
as shown in [24]. The liquid flow field was obtained by solving
Eqs. (3) and (4) with Eq. (5). Equations (3) and (4) were
spatially discretized using a staggered-grid system and the
second-order central finite-difference method. The advection
term was advanced in time using the second-order Adams-
Bashforth method, while the viscous term was advanced
using the second-order Crank-Nicolson scheme. The simpli-
fied marker and cell algorithm were used to link pressure to
Eq. (3), and the Poisson equation for pressure correction was
solved using the biconjugate gradient stabilized method.

The number of grid points for D, T , and L was set to 8, 16,
and 64–258, respectively. The time step was set to a range
of 1.5–10 × 10−5 s. The number of particles treated under
the maximum condition was 114 591 and the computational
time for that case was about 26 days. The particle and liq-
uid velocities were set to zero as initial conditions, and the
particle positions were determined using random numbers.
The suitable implementation of the method was discussed
in Yamamoto et al. [24] and was validated by quantitatively
comparing the results with the experimentally obtained values
as shown in Mori et al. [22]. The grid resolution dependency
was checked and is shown in the Appendix.

III. RESULT AND DISCUSSION

A. Settling behavior of stratified suspension

Figure 2 shows the settling behavior of stratified sus-
pensions for the No. 2(a), No. 3(b), and No. 4(c) cases in
Table I: (a) high collective suspension of large particles on

(a) t=0s    (b) t=20s   (c) t=40s  (d) t=60s (e) t=80s

FIG. 3. Mixing behavior of high collective suspension of small
heavy particles on low collective suspension of large light particles,
case No. 1 (in center plane region with depth of 0.1D; black dot:
upper particle; white dot: lower particle; the dot size does not reflect
the size of the particle).

025111-3



YAMAMOTO, YAMADA, TANAKA, AND HARADA PHYSICAL REVIEW E 104, 025111 (2021)

FIG. 4. Partial magnified image around the fingertip of
Fig. 3(d) (scale rate of sphere image corresponds to particle size).

high collective suspension of small particle, (b) low collective
suspension of large particles on high collective suspension
of small particle, and (c) low collective suspension of large
particles with relatively low apparent mass density on high
collective suspension of small particle with relatively high
apparent mass density. In case No. 2, we can see the typical
fingering settling of the upper suspension due to the grav-
itational instability. Also, in case No. 3, fingering settling
appears to occur; however, due to the low collectivity of the
upper suspension, the upper particles individually invade the
lower suspensions. Because it is unclear from the external
view only, we will investigate the central plane region in detail
later. Because the terminal velocity of the upper particle is
greater than that of the lower particle, fingering settling does
not occur in case No. 4, which is the gravitationally stable
condition, and particle scale mixing can occur.

B. Microscopic and macroscopic mixing

This section gives a detailed discussion of the results for
each case. Figure 3 shows the mixing behavior of a high
collective (C = 14.36) suspension of small heavy particles
on a low collective (C = 6.93) suspension of large light par-
ticles, which is case No. 1 in Table I, and Fig. 4 depicts

(a) t=0s   (b) t=4.5s   (c) t=9s    (d) t=13.5s  (e) t=18s

FIG. 5. Mixing behavior of high collective suspension of large
particles on high collective suspension of small particles, case No. 2
(see the caption of Fig. 3).

FIG. 6. Partial magnified image around the fingertip of Fig. 5(e)
(see the caption of Fig. 4).

a partial magnified image around the fingertip of Fig. 3(d).
Because of the gravitational instability, we can see the typical
mushroom-type fingering settling of the upper suspension. In
addition, due to volume exchange, the lower suspension rises.
The relatively clear interface between the upper and lower
suspensions can be seen by looking at the tip of the upper
suspension’s finger. The terminal velocity of the upper particle
is greater than that of the lower particle in this case, but
microscopic (individual-particle-level) mixing is rare. This is
due to the high collectivity C of the upper suspension. The
lower particle cannot enter the upper suspension, which is
made up of collective particles associated with Stokes flow
fields.

Figure 5 shows the mixing behavior of a high collective
(C = 17.94) suspension of large particles on a high collective
(C = 14.92) suspension of small particles in case No. 2, and
Fig. 6 is a partial magnified version of Fig. 5(e). We can see
the typical mushroom-type fingering settling of the upper sus-
pension and moving up of the lower suspension due to volume
exchange in this case as well. The very clear interface between
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t=0s
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t=18s

0       0.5 1       1.5

FIG. 7. Vertical distribution of particle volume density ψ (z) for
case No. 2; zint0 is the initial interface height.
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(a) t=0s   (b) t=4.5s (c) t=9s    (d) t=13.5s (e) t=18s

FIG. 8. Mixing behavior of low collective suspension of large
particles on high collective suspension of small particles, case No.
3 (see the caption of Fig. 3).

the upper and lower suspensions can be seen by viewing the
tip of the upper suspension’s finger, and the particles in both
suspensions cannot invade the other suspension individually
because the collectivities of both upper and lower suspensions
are high.

The vertical distribution of particle volume density in hor-
izontal plane ψ (z) is evaluated in this case by counting the
number of particles in T × D × 3� boxes for the upper and
lower particles, respectively. Figure 7 shows the volume den-
sities normalized by each suspension’s volume fraction. The
upper particle density just above the interface decreases over
time, while that just below the interface increases, and vice
versa for the lower particle density. At t = 18 s, the density
of the upper particles approaches that of the lower particles
at the same height within ±2D, confirming the macroscopic
(vessel-scale) mixing.

Figure 8 shows the mixing behavior of a low collective
(C = 5.70) suspension of large particles on a high collective
(C = 14.36) suspension of small particles, in case No. 3, and
Fig. 9 is a magnified version of Fig. 8(d). We do not see the
typical mushroom-type fingering settling in this case. Because
the upper settling suspension’s collectivity is low, the finger
cannot have a clear interface. As shown in Fig. 9, the interface

FIG. 9. Partial magnified image around the fingertip of
Fig. 8(d) (see the caption of Fig. 4).
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FIG. 10. Vertical distribution of particle volume density ψ (z) for
case No. 3.

cannot shield the microscopic particle mixing, so the upper
particles invade the lower suspensions individually.

Figure 10 shows the vertical distribution of particle volume
densities in this case. The upper particle infiltrates the lower
suspension over time, but the lower suspension does not move
upward so much. Because of the weak shielding of the inter-
face, volume exchange slightly occurs.

Figure 11 shows the mixing behavior of a low collective
(C = 3.33) suspension of large particles with relatively low
apparent mass density on a high collective (C = 14.36) sus-
pension of small particles with relatively high apparent mass
density in case No. 4, and Fig. 12 depicts a partial magnifi-
cation around the bottom-most upper particle of Fig. 11(e).

(a) t=0s   (b) t=15s   (c) t=30s   (d) t=45s   (e) t=60s

FIG. 11. Mixing behavior of low collective suspension of large
particles with relatively low apparent mass density on high collective
suspension of small particles with relatively high apparent mass
density, case No. 4 (see the caption of Fig. 3).
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FIG. 12. Partial magnified image around the bottom-most upper
particle of Fig. 11(e) (see the caption of Fig. 4).

Because this condition is gravitationally stable, we cannot
see the fingering settling. Furthermore, because the terminal
velocity of the upper particle is greater than that of the lower
particle, the upper particles invade the lower suspension as
individual particles rather than as a collective suspension, as
illustrated in Fig. 12.

Figure 13 shows the vertical distribution of particle volume
densities in this case. Because the mixing is only microscopic
and caused by individual particles, it takes a very long time;
and the upward flow of the lower suspension due to volume
exchange does not occur.

Figure 14 shows the mixing behavior of a low collective
(C = 8.22) suspension of large particles on a high collective
(C = 14.36) suspension of small particles (case No. 5), and
Fig. 15 depicts a partially magnified image around the finger-
tip of Fig. 14(e). The collectivity C of the upper suspension is
higher in this case than in case No. 3, but the interface between
the upper and lower suspensions is more miscible, as shown
in Figs. 8 and 14. Actually, the lower suspension conditions
in both No. 3 and No. 5 are the same, as illustrated in Table I.
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FIG. 13. Vertical distribution of particle volume density ψ (z) for
case No. 4.

(a) t=0s    (b) t=12s  (c) t=24s    (d) t=36s  (e) t=48s

FIG. 14. Mixing behavior of low collective suspension of large
particles on high collective suspension of small particles, case No. 5
(see the caption of Fig. 3).

Comparing Figs. 9 and 15, we discovered that the interface
in Fig. 15 cannot shield the particle microscopic mixing, so
the mixing strength cannot be described solely by the magni-
tude of the collectivity. As a result, the suspensions’ mixing
behavior varies depending on the collectivity and terminal
velocity. The miscibility of the suspensions’ interface causes
microscopic mixing and the immiscibility of the interface
causes macroscopic mixing. In the following section, we will
examine a unified description of these mixing behaviors at
different spatial scales.

IV. UNIFIED MODEL OF PARTICLE MIXING

For the five cases in Table I, Fig. 16 shows the time evolu-
tion of the mixing height Zmix, which is defined as the vertical
distance between the bottom-most particle of the upper sus-
pension and the top-most particle of the lower suspension.
With the exception of case No. 4, an individual particulate
settling rather than collective fingering settling, Zmix increases
exponentially at the start and then almost linearly thereafter.
The broken lines represent the fitted linear lines and their
slopes represent mixing speeds. The mixing speeds for those
conditions vary depending on the mixing behavior, which can

FIG. 15. Partial magnified image around the fingertip of
Fig. 14(e) (see the caption of Fig. 4).
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FIG. 16. Temporal development of mixing height Zmix for five
cases (broken lines are linear fit of maximum slope region).

be macroscopic fingering mixing or microscopic individual-
particle-scale mixing.

In this study, we attempted a theoretical approach that
considers the collective suspension’s settling velocity. When
we assume that the upper suspension is nearly immiscible
with the lower suspension, the settling velocity of a single
fingerlike upper suspension blob in the lower suspension can
be estimated in the same way as the Hadamard-Rybczynski
solution of low Reynolds number fluid sphere settling [25] or
Stokes terminal velocity, such as

Uf ∼ (ρs1 − ρs2)

μl
λDg, (6)

where Uf is the settling velocity of the fingerlike upper sus-
pension blob, and λ is the finger width. ρs1 and ρs2 are the
apparent mass density of the upper and lower suspensions,
respectively, as

ρs1 = φ1ρp1 + (1 − φ1)ρl , (7)

ρs2 = φ2ρp2 + (1 − φ2)ρl . (8)

where ρs is the apparent density of suspension, φ is the volume
fraction of the particle, and subscripts 1 and 2 denote the upper
and lower suspensions, respectively.

On the other hand, Sohn [20] derived the single-mode RT
bubbling velocity of fluids (not suspensions) in the nonlinear
regime in the cylindrical geometry as

URT = −k
μup

ρup
+

√
(ρup − ρlow)

ρup

g

k
+ k2

(
μup

ρup

)2

, (9)

where k = 2π/L represents the single-mode dominant wave
number (L is the cylinder diameter), and subscripts up and
low are for upper and lower fluids. Further, we omitted the in-
terfacial tension term. As discussed in [11–16], for unbounded
turbulent RT mixing, the mixing speed is proportional to time
t and the penetration distance is proportional to t2. However,
for the single-mode RT mixing in the narrow channel, the pen-
etration speed is constant, as shown by Eq. (9). Zanella et al.
[21] applied a Taylor expansion to Eq. (9) for high viscosity
conditions; then the bubble velocity can be expressed in our

notation for zero interfacial tension as

URT = 1

8π2

(ρup − ρlow)

μup
L2g. (10)

They performed the numerical simulation for a square chan-
nel, then confirmed that the theoretical velocity for the
axisymmetric case could be applied for the square channel.
It is interesting that Eq. (10) is a completely similar form to
Eq. (6), although the derivation process is different.

Based on Eq. (6), we discuss the settling velocity of a
fingerlike blob of the heavier suspension in the lighter sus-
pension. According to Harada et al. [23], the finger width λ in
this aspect ratio vessel can be estimated to be of the order of
D. The proportion constant of Eq. (6) is affected by the aspect
ratio of the rectangular vessel, as discussed in the works of
Harada et al. [23] and Kurose et al. [26]. We set the constant
K ′ for the vessel in this study and substitute Eqs. (7) and (8)
into Eq. (6),

Uf = K ′ φ1(ρp1 − ρl ) − φ2(ρp2 − ρl )

μl
D2g. (11)

Here, from the right-hand side of Eq. (11), we can factor out
the upper and lower particle terminal velocities as

Uf = 18K ′
[(

D

dp1

)2

φ1
(ρp1 − ρl )

18μl
d2

p1g

−
(

D

dp2

)2

φ2
(ρp2 − ρl )

18μl
d2

p2g

]
. (12)

Then, the settling velocity of the fingerlike upper suspension
blob nondimensionalized by the terminal velocity of the upper
particle is obtained as

Uf

USt1
= K

[(
D

dp1
φ

1/2
1

)2

−
(

D

dp2
φ

1/2
2

)2 USt2

USt1

]
, (13)

where K = 18K ′. The element (D/dp)φ1/2 is the modified
collectivity of suspension as discussed in Mori et al. [22]. We
set the nondimensional terms in square brackets in Eq. (13) to
a parameter Ym as

Ym =
(

D

dp1
φ

1/2
1

)2

−
(

D

dp2
φ

1/2
2

)2 USt2

USt1
. (14)

This nondimensional parameter includes both the upper and
lower suspensions’ collectivities as well as the upper and
lower particle terminal velocities, so it affects both macro-
scopic and microscopic mixing speeds. Then, we will consider
the mixing speed by using this nondimensional parameter Ym.

We calculated the mixing speed dZmix/dt from the slope
of Zmix in a linearly increasing region, for five cases in Fig. 16
and for the other 34 cases (see Supplemental Material [27]),
and plotted dZmix/dt nondimensionalized by the upper parti-
cle terminal velocity USt1 versus Ym in Fig. 17. Note that all the
data shown in Fig. 17 were obtained by numerical simulations,
although Mori et al. [22] conducted experimental observations
partially corresponding to the present study. Because the tip
position of the upward finger (spike) of the lower suspension
cannot be observed from outside of the vessel in the experi-
ment, we discuss the mixing rate by using numerical results.
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FIG. 17. Relation between mixing speed dZmix/dt and nondi-
mensional number Ym for 39 cases (bold solid line represents the
estimated relation using experimentally fitted finger settling speed).

The conditions causing only microscopic particulate mix-
ing in this figure are in the negative region of Ym. As shown in
Eq. (6), the sign of Ym corresponds to the sign of (ρs1 − ρs2),
with Ym � 0 corresponding to a gravitationally stable condi-
tion and Ym > 0 corresponding to a gravitationally unstable
(Rayleigh-Taylor) condition.

The conditions with macroscopic mixing by collective
settling, on the other hand, are in the positive Ym region,
and the nondimensional mixing speed is proportional to Ym.
The microscopic mixing speed is small and comparable to
the single-particle terminal velocity. The macroscopic mixing
speed can be estimated by the fingering settling speed and the
almost similar speed of the upflow due to volume exchange,
which we estimate as twice the finger settling speed and from
Eqs. (13) and (14),

dZmix

dt

1

USt1
∼ 2

Uf

USt1
= 2KYm. (15)

Zanella et al. [21] show the vertical symmetric behavior in
the high viscosity case RT mixing in a confined vessel, so the
mixing speed can be estimated as twice the bubble velocity. In
Fig. 17, the relation of Eq. (15) is shown by the bold solid line.
Mori et al. [22] obtained the coefficient K of that line by fit-
ting the experimental data within 30 � (dp/D)−2(φ1 − φ2) <

120, which is in the same vessel condition as in this study
and (dp/D)−2(φ1 − φ2) corresponds to Ym with homogeneous
particles (2K = 0.465). In our study, the mixing speed data
obtained by the numerical experiments with positive Ym al-
most agree with the relation by Eq. (15), indicating that the
parameter Ym can determine the speed of the macroscopic
mixing. This stratified suspensions mixing is determined by
the properties of the suspensions and particles, rather than by
the concentration gradient as in Fickian mixing. The coeffi-
cient K in Eq. (15) can be estimated using the Harada et al.
[23] experimental relationship for the other vessel conditions.
In addition, as a reference in different configurations assum-
ing the axisymmetric case, we compute the coefficient K by
using Eq. (10) with the narrower depth L = D and obtained
2K = 2(18/8π2) = 0.456, which is very close to our results.
Thus, using only one parameter Ym, we can predict the mix-

ing behavior and estimate the mixing speed of the stratified
suspensions.

V. SUMMARY

We used a point-force two-way coupling method to con-
duct numerical experiments to investigate the mixing of
stratified suspensions containing different types of particles.
We studied the mixing behavior of stratified suspension in the
vessel’s center plane and discovered two types of mixing: mi-
croscopic (individual-particle-level) mixing and macroscopic
(vessel-scale) collective mixing, which differed from Fickian
mixing. In addition, we investigated the vertical mixing speed
of the stratified suspension. We used a simple theoretical
model to analyze the fingering settling velocity. Then we
introduced a nondimensional number Ym, which represents the
difference in collectivities of the upper and lower suspensions
while accounting for both upper and lower particle terminal
velocities. We discovered that the negative sign of the pro-
posed nondimensional parameter Ym could distinguish only
microscopic mixing, whereas the positive value of Ym could
predict macroscopic mixing speed.
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APPENDIX: RESOLUTION DEPENDENCY TEST

We compared the results obtained by three resolution con-
ditions, i.e., low (4 × 8 × 32), middle (8 × 16 × 64), and high
(16 × 32 × 128), for D × T × L. The time steps for each
cases were adjusted to 10, 5, and 2.5 × 10−5 s for the low,

(a) D/Δ=4       (b) D/Δ=8     (c) D/Δ=16

FIG. 18. Comparison of grid resolutions for snapshots of case
No. 1 at t = 50 s. D is the depth of the vessel and � is grid spacing
(see the caption of Fig. 3).
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middle, and high resolution, respectively. Figure 18 shows
the instantaneous particle distribution at t = 50 s in the cen-
ter plane region with depth of 0.1D, which is the same as
Fig. 3. The finger shape obtained by the low resolution case
Fig. 3(a) is different from the other results [Figs. 3(b) and
3(c)]; however, the middle case result [Fig. 3(b)] is almost
the same as that by the high resolution [Fig. 3(c)]. A nondi-

mensional mixing speed (dZmix/dt )/USt1 is also compared for
those three conditions and obtained as 17.3, 18.0, and 18.4
for the low, middle, and high resolution, respectively. The low
resolution result is about 6% different from the high resolution
case; however, the middle resolution result is only 2% less
than the high resolution case. Thus we considered the middle
resolution condition to be satisfactorily usable in this study.
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