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Effect of terminal velocities on macroscopic and microscopic hydrodynamic mixing
of stratified suspensions
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We performed numerical experiments to investigate the mixing of stratified suspensions composed of different
particle types by gravitational sedimentation. The mixing process is controlled by a dimensionless group
Ym ∼ Uf/USt1, where Uf is a typical velocity of a macroscopic sedimenting finger and USt1 is the Stokes
settling velocity of a single spherical particle in the upper suspension. The effects of components of Ym, in
particular, terminal velocities of particles, were investigated. For Ym = 100, no large difference was observed
for the difference of components of Ym, and it was confirmed that the mixing rate is determined by Ym,
because macroscopic (vessel-scale) mixing is dominant for large Ym. For Ym = 5, macroscopic mixing and
microscopic (individual particle-level) mixing due to the particle terminal velocity difference are of the same
order, while completely different mixing patterns were observed for positive, zero, and negative terminal velocity
differences: macroscopic mixing is promoted by the increase in apparent density due to microscopic mixing,
small macroscopic mixing is suppressed by the individual particle settling, and jetting mixing occurs owing to
pure liquid layer formation.

DOI: 10.1103/PhysRevE.106.045109

I. INTRODUCTION

The mixing of solid particles suspended in liquids is im-
portant not only in engineering processes related to pastes
and slurries but also in global natural phenomena such as
the formation of sedimentary layers [1]. If the gravity force
is significant, i.e., if the mixing occurs during sedimentation,
the relative motions of particles at various length-scales are
caused by the hydrodynamic interaction between particles
[2,3] and the relative motion plays an important role in the
mixing. Therefore, such mixing processes should be treated as
hydrodynamic events rather than thermodynamic ones, such
as an increase in mixing entropy.

Hydrodynamic mixing of stratified particle suspensions
with different conditions is further complicated by a com-
bination of hydrodynamic interactions and the effect of
gravity. For example, the settling velocity varies with the
particle concentration because of hydrodynamic interactions
[4]. Furthermore, large-scale convection occurs occasionally
by interfacial instability (Rayleigh-Taylor instability) at the
boundary of a suspension (concentration interface), and par-
ticles settle collectively [5–7]. Consequently, particle relative
motions of various spatial scales can occur at the concentra-
tion interface with different suspension conditions. Therefore,
the hydrodynamic mixing of particles is complex, involving
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not only the physical properties of suspended particles but
also the collective nature of the particles and the characteris-
tics of gravitational instability occurring at the concentration
interface.

The miscible or immiscible nature of the concentration
interface of fine particles is determined by the flow induced
by individual particles [8–10], which differs from the ordi-
nary fluid interface. When the particle concentration is large
enough, the interface exhibits an immiscible nature; on the
contrary, when the concentration is low, the immiscibility of
the interface is no longer maintained, and other particles from
the outside are allowed to enter. Mori et al. [11] conducted
experiments and numerical analyses of how particles mix
at the concentration interface of suspensions with different
concentrations. They found that “collectivity” (its definition is
described later) is important for the mixing behavior and that
the settling velocity of the upper suspension is proportional
to the difference between the squares of the modified collec-
tivities of the upper and lower suspensions. Yamamoto et al.
[12] performed numerical experiments in which the upper
and lower suspensions were composed of different types of
particles. The results showed that the difference between the
collectivities of the upper and lower suspensions causes mix-
ing at the particle scale (microscopic mixing) and vessel-scale
collective mixing (macroscopic mixing).

Yamamoto et al. [12] found that the mixing rate of stratified
suspensions of low-Reynolds-number particles in a narrow-
depth vessel by gravity by the following simple theoretical
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FIG. 1. Configuration of stratified suspensions in a rectangular
vessel.

consideration. First, the Stokes terminal velocity of a single
particle, USt, is given as

USt = (ρp − ρl )

18μl
d2

p g, (1)

where ρp and ρl denote the particle and liquid mass density,
respectively, μl denotes the dynamic viscosity of the liquid, dp

is the particle diameter, and g is the gravitational acceleration.
Assuming that the settling finger is immiscible, the finger’s
settling velocity Uf can be given in the form of the Hadamard-
Rybczynski solution [13] or the single-mode Rayleigh-Taylor
bubbling velocity [14,15] as

Uf = K ′ (ρs1 − ρs2)

μl
D2g, (2)

where the typical length of the finger is taken as the vessel
depth D, K ′ is a constant, which is determined on the basis of
the vessel configuration, and ρs is the apparent mass density
of the suspension. Subscripts 1 and 2 represent the upper and
lower suspensions, respectively, throughout this paper. ρs1 is
represented as

ρs1 = φ1ρp1 + (1 − φ1)ρl = φ1(ρp1 − ρl ) + ρl, (3)

where φ is the volume fraction of particles and ρs2 is given
in a similar form. Then, the nondimensional finger’s settling
velocity can be calculated as follows [noting the factor of
Eq. (1)]:

Uf

USt1
= K ′

USt1

φ1(ρp1 − ρl ) − φ2(ρp2 − ρl )

μl
D2g

= 18K ′
[

1

USt1

(ρp1 − ρl )

18μl
d2

p1g

(
D

dp1
φ

1/2
1

)2

− 1

USt1

(ρp2 − ρl )

18μl
d2

p2g

(
D

dp2
φ

1/2
2

)2]

= KYm, (4)

where K = 18K ′. Ym is defined as follows:

Ym = C2
mod1 − USt2

USt1
C2

mod2, (5)

where Cmod is the modified collectivity of suspension, as dis-
cussed in Mori et al. [11],

Cmod = D

dp
φ1/2. (6)

The original “collectivity” C is defined as

C = D

dp
φ1/3. (7)

C represents the ratio of the macroscopic finger scale to the
mean distance of particles, namely, the resolution of the finger
by Stokeslets. Ym represents the index of gravity instability
because it is proportional to the apparent density differences.
Furthermore, Ym contains the terminal velocities of the upper
and lower particles, so the effect of differential settling is
contained in Ym.

In this study, we define the mixing length Zmix of the
stratified suspension due to gravitational settling as the ver-
tical distance between the bottom-most particle of the upper
suspension and the top-most particle of the lower suspen-
sion, as reported by Yamamoto et al. [12], and examine the
mixing rate dZmix/dt . For gravitationally stable conditions
(ρs1 � ρs2) corresponding to Ym � 0 [found from Eqs. (2)
and (4)], the mixing only occurs due to the particle terminal
velocity difference USt1 > USt2. We call the mixing behavior
due to the terminal velocity difference “microscopic mixing,”
and the mixing rate can be estimated as USt1 − USt2. On the
other hand, for gravitationally unstable conditions (ρs1 > ρs2)

TABLE I. Suspension conditions for test 1. Subscripts 1 and 2 represent upper and lower suspensions, respectively.

Case Ym Mod. collect. Diam. (μm) Part. density (kg/m3) Vol. frac. Susp. density (kg/m3) Term. vel.

Cmod1 Cmod2 dp1 dp2 ρp1 ρp2 φ1 φ2 ρs1 ρs2 USt2/USt1

1-A-α 29.3 9528 0.002
100 11.00 4.58 33.4 7557 0.015 1074 992 1

1-A-β 80.2 2116.58 0.015

1-B-α 21.7 16567 0.005
100 14.00 9.79 30.3 8972 0.02 1135 1053 1

1-B-β 43.3 4891 0.02

1-C-α 24.5 13206 0.02
100 20.2 17.32 33.5 7517 0.05 1302 1220 1

1-C-β 38.7 5877 0.05
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TABLE II. Suspension conditions for test 2. Subscripts 1 and 2 represent upper and lower suspensions, respectively.

Ym Cmod1 Cmod2 dp1 dp2 ρp1 ρp2 φ1 φ2 ρs1 ρs2 USt2/USt1

2-A-α 29.3 18080 0.001
100 11.00 3.24 33.4 7557 0.015 1074 992 2

2-A-β 80.2 3258 0.0075

2-B-α Identical to 1-A-α
100 1

2-B-β Identical to 1-A-β

2-C-α 29.3 5251 0.004
100 11.00 6.48 33.4 7557 0.015 1074 992 0.5

2-C-β 80.2 1546 0.03

corresponding to Ym > 0, Rayleigh-Taylor mixing occurs with
fingering settling. In this case, we call the mixing behavior
“macroscopic mixing,” and the mixing rate can be estimated
by twice the finger’s settling speed [12]:

dZmix

dt

1

USt1
= 2KYm. (8)

Further, if particle terminal velocities differ between the upper
and lower suspensions, both microscopic and macroscopic
mixing can simultaneously occur. However, as pointed out
by previous works [7,11,12,16], the finger’s settling speed is
much larger than the single particle terminal velocity. Thus,
under gravitationally unstable conditions, microscopic mixing
cannot be found in many cases.

In this work, we describe the mixing behaviors of stratified
suspensions with small and high Ym numbers with varying
collectivities and particle terminal velocities, which are the
components of Ym in Eq. (5). In particular, we observe the
mixing behaviors of the cases with a small macroscopic mix-
ing rate in the order of the individual particle terminal velocity
in detail.

II. SYSTEM AND SIMULATION

The schematic representation of the numerical experiment
system is shown in Fig. 1. Except for the particle condition,
the configurations and simulation methods used were identical
to those presented by Yamamoto et al. [12]. The test cell was a
rectangular vessel with depth D = 3 mm, width T = 2D, and
height L = 8D. Stationary suspensions were initially installed
on the upper and lower sides. The liquid properties were set
similar to those of silicone oil (mass density ρl = 972 kg/m3

and dynamic viscosity μl = 0.1 Pa s). For the vessel in this
study, Yamamoto et al. [12] found 2K = 0.465 in Eq. (8).
The initial heights of upper and lower suspensions were
both 3.45D. The particle properties were varied, as shown in

Tables I–IV (full information is provided in Ref. [17]). For all
cases, particle terminal velocities were set to USt1 = 4.000 ×
10−5 m/s, and the precision of terminal velocities was kept
in almost four significant digits by adjusting the particle mass
density.

As in previous studies [11,12,16,18], we employed the
Lagrangian tracking of individual particles with two-way cou-
pling using a point-force model by ignoring particle inertia
for a very small Stokes number. In the present simulations,
we must treat both mixing by differential settling and by hy-
drodynamic interactions due to large and long-ranged velocity
fluctuations [3]. Both effects can be naturally contained in this
two-way coupling point-force Lagrangian method, which is
an extension of the approach fully validated by comparing
with experimental measurements [11,16]. The particle veloc-
ity was determined by the interpolated liquid velocity at the
particle position plus its terminal velocity in the gravitational
direction, and the particle position was subsequently updated
using the second-order Adams-Bashforth method. The liquid
was incompressible, and its motion was described by the
continuity and the two-way-coupled Navier-Stokes equations.
Those equations were spatially discretized using the second-
order central finite-difference method. The simplified marker
and cell algorithm were used to link pressure and advance in
time.

The numbers of grid points for D, T , and L were set to
8, 16, and 64, respectively. The time step was set to a range
of 1–2.5×10−5 s. The particle and liquid velocities were set
to zero as initial conditions, and the particle positions were
determined using random numbers. For liquid motion, the
no-slip and no-permeable conditions were applied to all ex-
ternal boundaries. For the particle motion, the perfect elastic
with no-friction conditions was applied to external boundaries
except for the bottom wall. At the bottom wall, particles were
deposited with zero repulsion coefficient. To avoid interfering
with the mixing of suspensions, the top wall was slightly sepa-

TABLE III. Suspension conditions for test 3. Subscripts 1 and 2 represent upper and lower suspensions, respectively.

Ym Cmod1 Cmod2 dp1 dp2 ρp1 ρp2 φ1 φ2 ρs1 ρs2 USt2/USt1

3-A-α Identical to 1-A-α
100 1

3-A-β Identical to 1-A-β

3-B-α 29.3 9528 0.0067
50 11.00 8.4 33.4 7557 0.015 1074 1032 1

3-B-β 80.2 2116.58 0.05

3-C-α 29.3 9528 0.011 06
5 11.00 10.8 33.4 7557 0.015 1074 1070 1

3-C-β 62.3 2867 0.05
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TABLE IV. Suspension conditions for test 4. Subscripts 1 and 2 represent upper and lower suspensions, respectively.

Ym Cmod1 Cmod2 dp1 dp2 ρp1 ρp2 φ1 φ2 ρs1 ρs2 USt2/USt1

4-A-α 29.3 180 80 0.005 53
5 11.00 7.61 33.4 7557 0.015 1074 1070 2

4-A-β 62.3 4758 0.025

4-B-α Identical to 3-C-α
5 1

4-B-β Identical to 3-C-β

4-C-α 29.3 5251 0.0221
5 11.00 15.2 33.4 7557 0.015 1074 1070 0.5

3-C-β 44.1 2863 0.05

rated from the top of the upper-suspension packed region (i.e.,
there is a pure liquid region between the top wall and the upper
suspension). For the time step, because of the large viscosity,
the time step must be small to obtain a convergent solution
even if the implicit solution method is used for the viscous
term. The time step was adjusted according to the particle
conditions because the convergence speed varies with particle
concentration. A suitable implementation was discussed by
Yamamoto et al. [16] and validated by comparing the results
with the experimentally obtained values reported by Mori
et al. [11]. The grid resolution dependency was verified in
Yamamoto et al. [12].

III. RESULTS AND DISCUSSION

The first set of numerical experiments (test 1) were con-
ducted with fixed parameters as large as Ym = 100 with
USt2/USt1 = 1 and various collectivities Cmod shown in Table I.
The difference between α and β in each case is the lower
particle diameter; the lower particle is smaller than the upper
particle in α, while the lower particle is larger than the upper
particle in β for the same collectivity, Cmod2.

Figure 2 shows the instantaneous particle distribution at
time t = 10 s in the center plane with depth 0.1D for the cases
in Table I. In all cases, we found the fingering settling with a
typical mushroom shape, as commonly found in single-mode
Rayleigh-Taylor mixing. The mixing behaviors of these six
cases with Ym = 100 composed of different collectivities and

(a) 1-A-α (b) 1-A-β (c) 1-B-α (d) 1-B-β (e) 1-C-α (f) 1-C-β

FIG. 2. Center-plane particle distribution at 10 s of test 1, where
Ym = 100 with the same terminal velocity cases, in the center-plane
region with a depth of 0.1D (0.45D < y < 0.55D). Black dot: upper
particle. White dot: lower particle. The dot size does not reflect the
size of the particle, and upper pure liquid regions are cut out.

particle diameter conditions were similar. We also examined
the mixing rates dZmix/dt from the linearly increasing part of
Zmix and found that they were almost the same.

The second set of numerical experiments (test 2) was con-
ducted with fixed Ym = 100 with various USt2/USt1, as shown
in Table II. For the vessel in this study, 2K = 0.465 in Eq. (8);
therefore the mixing rate dZmix/dt for Ym = 100 can be esti-
mated as approximately 50 times the terminal velocity USt1.

Figure 3 shows the instantaneous particle distribution at
time t = 10 s for the cases in Table II. In all cases, we found
the typical-mushroom-shaped fingering settling. The mixing
behaviors of these six cases with Ym = 100 and different lower
suspension conditions were similar. In particular, the upper
particle conditions and even the initial particle positions in
those six cases were completely the same; thus, the charac-
teristics (rightward curved settling) of the upper suspensions
were also similar. The microscopic (individual particle-scale)
mixing due to the terminal velocity difference was not found,
even in those magnified images because the macroscopic
(vessel-scale) mixing rate was much larger (about 50 times)
than the terminal velocity. We found that the mixing rates for
those cases were almost the same, as shown later.

The third set of numerical experiments (test 3) was con-
ducted with various Ym with the same upper suspension, as
shown in Table III.

Figure 4 shows the instantaneous particle distribution for
the cases in Table III. For Ym � 50, we found the typical-
mushroom-shaped fingering settling but not microscopic
mixing. However, for Ym = 5, such a typical settling was not

(a) 2-A-α (b) 2-A-β (c) 2-B-α (d) 2-B-β (e) 2-C-α (f) 2-C-β

FIG. 3. Center-plane particle distribution at 10 s of test 2, where
Ym = 100 with different terminal velocities of lower particles (see
the caption of Fig. 2).
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(a) 3-A-α (b) 3-A-β (c) 3-B-α (d) 3-B-β (e) 3-C-α (f) 3-C-β

FIG. 4. Center-plane particle distribution of test 3, Ym = 100 (A,
t = 10 s), Ym = 50 (B, t = 17.5 s), and Ym = 5 (C, t = 50 s) with the
same terminal velocity (see the caption of Fig. 2).

observed, and complex settling patterns were found. In this
test, the upper particle conditions were completely the same
as those of the initial positions in these six cases; however,
the characteristics of settling behaviors and the mixing rate
were completely different due to the difference in the lower
suspensions’ collectivities. The larger the lower suspension’s
collectivity was, the smaller the apparent density difference
between the upper and lower suspensions was. For Rayleigh-
Taylor mixing of two immiscible fluids without interfacial
tension, the small density difference just retards the growth of
fingering settling; however, particles individually settle with
a relative speed to the liquid in the gravitational mixing of
stratified suspensions. Thus, the instability at the suspensions’
interface cannot grow enough, and the dominantly grown
wavelength becomes different from the wavelengths of other
Ym cases. The details for low Ym number cases are discussed
in the following test.

The fourth set of numerical experiments (test 4) was con-
ducted with fixed Ym = 5 with the same upper suspension, as
shown in Table IV. Using Eq. (8), the macroscopic mixing
rate for Ym = 5 can be estimated as 2USt1, indicating that the
macroscopic mixing rate is in the same order of the micro-

(a) 7.5s            (b) 12.5s            (c) 20.0s           (d) 37.5s

FIG. 5. Mixing behavior of test 4-B-α, where Ym = 5 with the
same terminal velocity, large particles on small particles in 0.1D
depth center plane.

(a) 7.5s            (b) 12.5s            (c) 20.0s           (d) 37.5s

FIG. 6. Mixing behavior of 4-B-β, small particles on large parti-
cles in 4-B.

scopic mixing rate. Thus, the lower particles move away from
the upper suspension in case 4-A, and the upper particles
plunge into the lower suspension in case 4-C.

Figures 5 and 6 show the mixing behaviors for cases
4-B in Table IV corresponding to the temporal development
of Figs. 4(e) and 4(f). For these cases, the apparent density

(a) 7.5s            (b) 12.5s            (c) 20.0s           (d) 37.5s

(e) partial magnified image of central part of (b)

FIG. 7. Mixing behavior of test 4-C-α, where Ym = 5 with
USt2 = 0.5USt1 cases, large particles on small particles.
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(a) 7.5s            (b) 12.5s            (c) 20.0s           (d) 37.5s

(e) partial magnified image of central part of (b)

FIG. 8. Mixing behavior of test 4-C-β, small particles on large
particles in 4-C.

difference between the upper and lower suspensions is very
small (1074–1070 kg/m3); thus, the instability at the suspen-
sions’ interface grows very slowly. Further, particles in those
suspensions settle down at the terminal velocity individually
by dragging the surrounding liquid. However, since the liquid
movement is constrained by volume conservation, a complex
mixing behavior occurs. In these cases, due to the same termi-
nal velocity, USt2 = USt1, microscopic mixing does not occur.
The macroscopic mixing behaviors without mushroom-type
fingering are found in low Ym with USt2/USt1 = 1.

Figures 7 and 8 show the mixing behaviors for cases 4-C
in Table IV. For these cases with the same Ym as in test 4-B,
the apparent density difference between the upper and lower
suspensions is very small. However, the upper particles settle
faster than the lower particles since USt1 = 2USt2; thus, the mi-
croscopic mixing occurs at the suspensions’ interface. Then,
the interface instability growth is promoted by the increasing
apparent density of the mixed region from ρs1 to ρmix, where

ρmix = (φ1ρp1 + φ2ρp2) + (1 − φ1 − φ2)ρl

= ρs1 + φ2(ρp − ρl ). (9)

As a result, the fingering settling behaviors are observed for
both α and β cases, and the mixing rate becomes the sum of
the microscopic and macroscopic mixing contributions.

(a) 7.5s            (b) 12.5s            (c) 20.0s           (d) 37.5s

(e) partial magnified image of central part of (b)

FIG. 9. Mixing behavior of test 4-A-α, where Ym = 5 with
USt2 = 2USt1 cases, large particles on small particles.

Figures 9 and 10 show the mixing behaviors for cases 4-A
in Table IV. For these cases with the same Ym as in the other
test 4, the apparent density difference between the upper and
lower suspensions is very small. If one tries conducting the
real experiments for this condition, such a density difference
may be hardly controlled and the densities may be approx-
imately equal. Therefore, the instability at the suspensions’
interface grows very slowly. Furthermore, the lower particles
settle faster than the upper particles because USt2 = 2USt1,
and the pure liquid layer is generated between the upper and
lower suspensions. At the interface between the pure liquid
layer and the lower suspension, the interface proceeds in the
direction of flattening due to gravitationally stable conditions.
Thus, the growth of interface instability between the upper
suspension and the pure liquid layer is inhibited by the flat-
tened lower interface. Then, the upper suspension settles with
the flattened interface (two flattened fingers observed in both
Figs. 9 and 10 push down the lower suspension). Because of
volume conservation, the lower suspension cannot help but jet
up somewhere. Thus, we obtained jet flow in the central part
of the interface in both Figs. 9 and 10. As a result, the mixing
rate becomes larger than test 4-B and 4-C cases because of
jetting. However the total mixing state may be, the mixing
rate is large in small Ym with USt2 > USt1 (the mixing rate
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(a) 7.5s            (b) 12.5s            (c) 20.0s           (d) 37.5s

(e) partial magnified image of central part of (b)

FIG. 10. Mixing behavior of test 4-A-β, small particles on large
particles in 4-A.

is defined by the vertical distance between the bottom-most
particle of the upper suspension and the top-most particle of
the lower suspension). Overall, the observed behaviors are
very interesting from a physical point of view.

The mixing rates were calculated by linear fitting, as re-
ported by Yamamoto et al. [12], for the results of the present
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FIG. 11. Mixing rates obtained by numerical experiments with
Eq. (8).
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FIG. 12. Strict version of mixing rates with Eq. (10).

numerical tests. The mixing rates are plotted in Fig. 11. In
cases with terminal velocity differences, the mixing rate may
tend to be larger than that of the same terminal velocity case.

In Yamamoto et al. [12], the mixing rate at Ym = 0 was not
considered in Eq. (8). For the limit of Ym → 0, the mixing rate
should approach the difference in the terminal velocities; thus,
the strict version of the mixing rate is described as follows:[

dZmix

dt
− (USt1 − USt2)

]
1

USt1
= 2KYm. (10)

The strict version of the mixing rates (corresponding to the
macroscopic mixing rates) is plotted in Fig. 12. The mixing
rates of the stratified suspension produced by the present
simulation method vary with the initial conditions in the range
of about 10USt1, even for the same Ym. So, the vertical shift
with the above strict consideration USt1 − USt2 and the com-
plex microscopic mixing effect observed in Ym = 5 conditions
are within a reasonable range. Thus, the mixing rate equa-
tion concerning the nondimensional number Ym proposed by
Yamamoto et al. [12] [Eq. (8)] can still be effectively used for
rough estimations.

IV. CONCLUSION

Based on the mixing rate estimation equation proposed in
our previous work [12], we conducted numerical experiments
to study the effects of modified collectivity and the particle
terminal velocity ratio, the components of the nondimensional
number Ym, on the mixing behavior of stratified suspensions.

For Ym = 100, macroscopic mixing due to gravitational
instability is dominant, and the different values of compo-
nents for the same Ym do not affect the mixing behavior. In
those cases, microscopic mixing due to the terminal velocity
difference cannot be observed.

For Ym = 5, where the macroscopic mixing rate is in the
same order as the microscopic mixing rate, when the upper
and lower terminal velocities are the same, instability near
the suspension interface grows very slowly because of the
small apparent density difference, and particles settle indi-
vidually relative to the liquid; thus, settling as small pieces is
observed unlike in the Rayleigh-Taylor mixing of two immis-
cible fluids. When the upper terminal velocity is larger than
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the lower terminal velocity, microscopic mixing produces a
high-apparent-density region, promoting instability near the
suspension interface. When the lower terminal velocity is
larger than the upper terminal velocity, the pure liquid layer
is produced between two suspensions, and the gravitationally
stable lower-side interface prevents the growth in the variation
of the gravitationally unstable upper-side interface. Because
of the volume conservation of the liquid and the force ex-
erted by the flattened interface of the upper suspension, the
jetting up of the lower suspension is formed. Although mixing
rates vary depending on such mixing behaviors, macroscopic
mixing rates essentially vary with a slight difference in the
suspension setting. Thus, the equation proposed in the previ-
ous work [12] reasonably estimates the mixing behaviors of
stratified suspensions.

In a system of suspensions of approximately equal ap-
parent density in contact with the top and bottom, one
would normally expect no mixing if the terminal velocity of

the lower particle is greater than that of the upper particle
because the lower particles move away from the upper parti-
cles. However, if the particle concentration changes slightly
and the apparent density of the upper suspension becomes
slightly (even less than 1%) greater than that of the lower sus-
pension, an unexpected result is observed where a jet suddenly
mixes out of an unmixing situation, as described above. This
is a very valuable finding. The knowledge of this unexpected
mixing is critical for spontaneous mixing and active control
of mixing, such as preventing the mixing of things that should
not be mixed or mixing things that are difficult to mix in
practical applications.
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