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§11. Tietzeの拡張定理
T4空間の閉集合で定義された実数値連続関数は全空間で定義された実数値連続関数に拡張す
ることができる. これがTietzeの拡張定理である.

定義 11.1 Xを位相空間, AをXの部分空間とし, f ∈ C(A)とする. ある g ∈ C(X)が存在し,

任意の a ∈ Aに対して, g(a) = f(a)となるとき, gを f のX上への拡張という. また, f はX上
へ拡張可能であるという.

例 11.1 f ∈ C((0, 1))を
f(x) =

1

x
(x ∈ (0, 1))

により定めると, f はR上へ拡張可能ではない. このことを背理法により示そう.

f のR上への拡張 g ∈ C(R)が存在すると仮定する. このとき, h ∈ C([−1, 1])を h = g|[−1,1]

により定めることができる. hはコンパクト空間 [−1, 1]で定義された実数値連続関数となるが,

最大値をもたない. これは矛盾である. よって, f はR上へ拡張可能ではない.

Tietzeの拡張定理を証明するために必要な定理を用意しておこう.

定理 11.1 Xを T4空間, AをXの空でない閉集合とする. 更に, m > 0, u ∈ C(A)とし, 任意
の a ∈ Aに対して, |u(a)| ≤ mであるとする. このとき, ある v ∈ C(X)が存在し, 任意の x ∈ X

および任意の a ∈ Aに対して,

|v(x)| ≤ m

3
, |u(a)− v(a)| ≤ 2

3
m

となる.

証明 F, G ⊂ Aを

F =
{
a ∈ A

∣∣∣u(a) ≥ m

3

}
, G =

{
a ∈ A

∣∣∣u(a) ≤ −m
3

}
により定める. このとき, F , Gは互いに素である. また, AはXの閉集合であり, uは連続だか
ら, F , GはXの閉集合である. 更に, Xは T4空間だから, Urysohnの補題より, ある v ∈ C(X)

が存在し,

v(X) ⊂
[
−m

3
,
m

3

]
, v(F ) =

{m
3

}
, v(G) =

{
−m

3

}
となる. このとき, 任意の a ∈ Aに対して,

|u(a)− v(a)| ≤ 2

3
m

である. □
定理 11.2 Xを T4空間, AをXの空でない閉集合とする. 更に, f ∈ C(A)とし, 任意の a ∈ A

に対して, |f(a)| ≤ 1であるとする. このとき, 任意の x ∈ Xに対して, |g(x)| ≤ 1となる f のX

上への拡張 g ∈ C(X)が存在する.

証明 まず, 定理 11.1においてm = 1, u = fとすると, ある g1 ∈ C(X)が存在し, 任意のx ∈ X

および任意の a ∈ Aに対して,

|g1(x)| ≤
1

3
, |f(a)− g1(a)| ≤

2

3

となる. ここで, f1 ∈ C(A)を

f1(a) = f(a)− g1(a) (a ∈ A)
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により定める. このとき, 任意の a ∈ Aに対して,

|f1(a)| ≤
2

3

である.

同様の操作を続けると, 各 n ∈ Nに対して, ある gn ∈ C(X)および fn ∈ C(A)が存在し, 任
意の x ∈ Xおよび任意の a ∈ Aに対して,

|gn(x)| ≤
2n−1

3n
, |fn(a)| ≤

2n

3n
, fn+1(a) = fn(a)− gn+1(a) (∗)

となる.

ここで, φn ∈ C(X)を

φn =
n∑

i=1

gi

により定める. x ∈ X, m ≥ nとすると, (∗)の第 1式より,

|φn(x)− φm(x)| ≤
m∑

i=n+1

|gi(x)|

≤ 2n

3n+1

1−
(
2

3

)m−n

1− 2

3

<

(
2

3

)n

である. よって, 定理 3.1の証明と同様に, C(X)の点列 {φn}∞n=1はある g ∈ C(X)に一様収束す
ることがわかる. また,

|φn(x)| ≤
1

3

1−
(
2

3

)n

1− 2

3

= 1−
(
2

3

)n

だから,

|g(x)| ≤ 1

である. 更に, a ∈ Aとすると, (∗)の第 3式より,

φn(a) =
n∑

i=1

gi(a)

= (f(a)− f1(a)) +
n∑

i=2

(fi−1(a)− fi(a))

= f(a)− fn(a)

である. したがって, (∗)の第 2式より,
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g(a) = lim
n→∞

φn(a)

= lim
n→∞

(f(a)− fn(a))

= f(a)− lim
n→∞

fn(a)

= f(a)

である. □

それでは, Tietzeの拡張定理を示そう.

定理 11.3 (Tietzeの拡張定理) Xを T4空間, AをXの空でない閉集合とする. このとき,

C(A)の任意の元はX上へ拡張可能である.

証明 まず, f ∈ C(A)とする. 関数 ψ : R → (−1, 1)を

ψ(t) =
t

1 + |t|
(t ∈ R)

により定めると, ψは同相写像となる. よって, ψ ◦ f ∈ C(A)であり, 任意の a ∈ Aに対して,

|(ψ ◦ f)(a)| < 1

である. このとき, 定理 11.2より, ある g ∈ C(X)が存在し, 任意の x ∈ Xおよび任意の a ∈ A

に対して,

|g(x)| ≤ 1, g(a) = (ψ ◦ f)(a)

となる. ここで,

B = {x ∈ X | |g(x)| = 1}

とおくと, A, Bは互いに素である. また, gは連続だから, BはX の閉集合である. 更に, Aは
Xの閉集合であり, Xは T4空間だから, Urysohnの補題より, ある h ∈ C(X)が存在し,

h(X) ⊂ [0, 1], h(A) = {1}, h(B) = {0}

となる. 次に, k ∈ C(X)を
k(x) = g(x)h(x) (x ∈ X)

により定める. このとき, 任意の x ∈ Xおよび任意の a ∈ Aに対して,

|k(x)| < 1, k(a) = (ψ ◦ f)(a)

である. 更に, l ∈ C(X)を
l = ψ−1 ◦ k

により定める. このとき, 任意の a ∈ Aに対して,

l(a) = f(a)

である. したがって, lは f のX 上への拡張である. 以上より, C(A)の任意の元はX 上へ拡張
可能である. □
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問題 11

1. Sを問題 10-1の Sorgenfrey直線, すなわち, S = (R,O)とする. このとき, 積空間 S× Sを
Sorgenfrey平面という.

(1) S× Sは可分であることを示せ.

(2) 空でない集合X, Y に対して, Xと Y の濃度が等しいことをX ∼ Y と表す. また, Xか
ら Y への写像全体の集合をF (X,Y )と表す. このとき, 次の (a), (b)がなりたつことが分
かる.

(a) X, Y , X ′, Y ′が空でない集合であり, X ∼ X ′, Y ∼ Y ′ならば,

F (X,Y ) ∼ F (X ′, Y ′).

(b) X, Y , Zが空でない集合ならば, F (X × Y, Z) ∼ F (X,F (Y, Z)).

(a), (b)を用いることにより, C(S× S) ∼ Rであることを示せ.

(3) ∆ ⊂ S× Sを
∆ = {(x,−x) |x ∈ R}

により定める. ∆は S× Sの閉集合であることを示せ.

(4) S× Sの部分空間∆の位相は離散位相であることを示せ.

(5) C(∆) ∼ 2Rであることを示せ.

(6) S× Sは T4空間ではないことを示せ. 特に, S× Sは正規ではない.

2. 2つの T3空間の積空間は T3空間であることを示せ．
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問題 11の解答
1. (1)まず, Qは可算だから, Q×Qは可算である. また, 問題 10-1より, Q = Sである. よって,

Q×Q = Q×Q

= S× S

となる. したがって, Q×Qは Sの可算な稠密部分集合となり, S× Sは可分である.

(2) f, g ∈ C(S× S)とする. (1)より, 任意の (x, y) ∈ Q×Qに対して, f(x, y) = g(x, y)なら
ば, f = gである. よって, 定義域をQ×Qに制限することにより, C(S× S)から
F (Q×Q,R)への単射を定めることができる. ここで, (a), (b)より,

F (Q×Q,R) ∼ F (Q,R)

∼ F (N, 2N)

∼ F (N, F (N, {0, 1}))
∼ F (N×N, {0, 1})
∼ F (N, {0, 1})
∼ 2N

∼ R,

すなわち,

F (Q×Q,R) ∼ R

となるから, C(S× S)からRへの単射が存在する. 一方, 定数関数を考えると, Rから
C(S×S)への単射が存在する. したがって, Bernsteinの定理より, C(S×S) ∼ Rである.

(3) まず,

(x, y) ∈ (S× S) \∆

とする. このとき, x+ y ̸= 0である.

x+ y > 0のとき,

(x′, y′) ∈ [x, x+ 1)× [y, y + 1)

とする. このとき, x′ + y′ > 0となり,

(x′, y′) ∈ (S× S) \∆

である. よって, (x, y)は (S× S) \∆の内点である.

x+ y < 0のとき,

x+ y = −ε (ε > 0)

とおき,

(x′, y′) ∈
[
x, x+

ε

2

)
×
[
y, y +

ε

2

)
とする. このとき,

x′ + y′ < x+
ε

2
+ y +

ε

2

= 0,

すなわち, x′ + y′ < 0となり,
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(x′, y′) ∈ (S× S) \∆

である. よって, (x, y)は (S× S) \∆の内点である.

したがって, (S× S) \∆はXの開集合となるから, ∆はXの閉集合である.

(4) x ∈ Rとする. このとき,

(x,−x) = ([x, x+ 1)× [−x,−x+ 1)) ∩∆

である. よって, {(x,−x)}は∆の開集合である. したがって, ∆の位相は離散位相である.

(5) まず, ∆の定義より, ∆ ∼ Rである. 更に, (4)より,

C(∆) ∼ F (R,R)

∼ F (R, F (N, {0, 1}))
∼ F (R×N, {0, 1})
∼ F (R, {0, 1})
∼ 2R,

すなわち, C(∆) ∼ 2Rである.

(6) 背理法により示す.

S×SがT4空間であると仮定する. (3)より, ∆はS×Sの閉集合である. よって, Tietze

の拡張定理より, f ∈ C(∆)とすると, f の S× S上への拡張 g ∈ C(S× S) が存在する.

このとき, f から gへの対応はC(∆)からC(S× S)への単射を定める. (2), (5)および
Cantorの定理より, これは矛盾である. よって, S× Sは T4空間ではない.

2. X, Y を T3空間とする. (x, y) ∈ X × Y とし, U を (x, y)の近傍とすると, 積位相の定義より,

Xのある開集合Oxおよび Y のある開集合Oyが存在し,

(x, y) ∈ Ox ×Oy ⊂ U

となる. ここで, Xは T3空間だから, xの閉近傍全体の集合は xの基本近傍系となる. よっ
て, Xのある開集合O′

xが存在し,

x ∈ O′
x, O′

x ⊂ Ox

となる. 同様に, Y のある開集合O′
yが存在し,

y ∈ O′
y, O′

y ⊂ Oy

となる. このとき, (x, y) ∈ O′
x ×O′

yである. また,

O′
x ×O′

y = O′
x ×O′

y

⊂ Ox ×Oy

となるから,

O′
x ×O′

y ⊂ Ox ×Oy

である. したがって, (x, y)の閉近傍全体の集合は (x, y)の基本近傍系となるから, X × Y は
T3空間である. すなわち, 2つの T3空間の積空間は T3空間である.


