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§12. コンパクト開位相
位相空間の間の連続写像全体の集合にはコンパクト開位相という位相を考えることができる.

定義 12.1 X, Y を位相空間とし, Xから Y への連続写像全体の集合をC(X,Y )と表す. また,

A ⊂ XおよびB ⊂ Y に対して,

W (A,B) = {f ∈ C(X,Y ) | f(A) ⊂ B}

とおく. 更に,

M = {W (A,B) |Aはコンパクトであり, Bは Y の開集合 }

とおく. Mにより生成されるC(X,Y )の位相, すなわち, Mを含むC(X,Y )の位相全体の中で
最も小さいものをコンパクト開位相という.

まず, 次がなりたつ.

定理 12.1 X, Y を位相空間とする. A ⊂ X とし, Bを Y の閉集合とすると, コンパクト開位
相に関して, W (A,B)はC(X,Y )の閉集合である.

証明 de Morganの法則より,

W (A,B)c =

(⋂
a∈A

W ({a}, B)

)c

=
⋃
a∈A

W ({a}, B)c

=
⋃
a∈A

W ({a}, Bc)

である. ここで, {a}はコンパクトである. また, Bは Y の閉集合だから, Bcは Y の開集合であ
る. よって, コンパクト開位相に関して, W ({a}, Bc)は C(X,Y )の開集合である. したがって,

W (A,B)cはC(X,Y )の開集合である. すなわち, W (A,B)はC(X,Y )の閉集合である. □

更に, HをC(X,Y )の空でない部分集合とし, 写像ΦH : H ×X → Y を

ΦH(f, x) = f(x) (f ∈ H, x ∈ X)

により定める. Hに位相をあたえたとき, H ×Xの積位相を考え, ΦHの連続性との関係を考え
よう. まず, 次がなりたつ.

定理 12.2 Hの離散位相に関して, ΦH は連続である.

証明 Oを Y の開集合とすると,

Φ−1
H (O) = {(f, x) ∈ H ×X | f(x) ∈ O}

=
⋃
f∈H

(
{f} × f−1(O)

)
である. ここで, Hの離散位相に関して, {f}はHの開集合である. また, Oは Y の開集合であ
り, f は連続だから, f−1(O)はX の開集合である. よって, Φ−1

H (O)はH ×X の開集合である.

したがって, ΦH は連続である. □

C(X,Y )のコンパクト開位相に関するHの相対位相をHのコンパクト開位相という.
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ここで, 局所コンパクト性について, 幾つか思い出しておこう.

定義 12.2 Xを位相空間とする. 任意の x ∈ Xに対して, xのコンパクトな近傍が存在すると
き, Xは局所コンパクトであるという.

定理 12.3 X を局所コンパクトHausdorff空間とすると, 任意の x ∈ X に対して, xのコンパ
クトな近傍全体の集合は xの基本近傍系となる.

それでは, 次を示そう.

定理 12.4 Xを局所コンパクトHausdorff空間, Y を位相空間, HをC(X,Y )の空でない部分
集合とする. このとき, Hのコンパクト開位相に関して, ΦH は連続である.

証明 Oを Y の開集合とする. Φ−1
H (O) ̸= ∅とし, Φ−1

H (O)がH ×Xの開集合であることを示せ
ばよい.

(f, x) ∈ Φ−1
H (O)とする. ΦH の定義より, f(x) ∈ Oである. よって, Oは f(x)の近傍である.

更に, f は連続だから, f−1(O)は xの近傍である. ここで, 定理 12.3より, xのあるコンパクト
な近傍Kが存在し, K ⊂ f−1(O), すなわち, f(K) ⊂ Oとなる. このとき,

(f, x) ∈ (H ∩W (K,O))×K

⊂ Φ−1
H (O)

となるから, (f, x)はΦ−1
H (O)の内点である. (f, x)は任意だから, Φ−1

H (O)はH ×Xの開集合で
ある. □

更に, 次を用意しておこう.

定理 12.5 X, Y を位相空間, KをXのコンパクト部分集合, Lを Y のコンパクト部分集合, O

をK × L ⊂ Oとなる積空間X × Y の開集合とする. このとき, Xのある開集合 U および Y の
ある開集合 V が存在し,

K ⊂ U, L ⊂ V, U × V ⊂ O

となる.

証明 (x, y) ∈ K ×Lとする. K ×L ⊂ Oより, (x, y) ∈ Oであり, OはX × Y の開集合だから,

Xのある開集合 U(x,y)および Y のある開集合 V(x,y)が存在し,

(x, y) ∈ U(x,y) × V(x,y) ⊂ O

となる. このとき,

L ⊂
⋃
y∈L

V(x,y)

であり,

{V(x,y) | y ∈ L}

は Lの開被覆である. Lはコンパクトだから, ある y1, y2, . . . , yn ∈ Lが存在し,

L ⊂
n⋃

i=1

V(x,yi)

となる. ここで,

Ux =
n⋂

i=1

U(x,yi), Vx =
n⋃

i=1

V(x,yi)
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とおく. このとき, UxはXの開集合, Vxは Y の開集合であり,

{x} × L ⊂ Ux × Vx ⊂ O

である. 更に,

K ⊂
⋃
x∈K

Ux

となり,

{Ux |x ∈ K}

はKの開被覆である. Kはコンパクトだから, ある x1, x2, . . . , xm ∈ Kが存在し,

K ⊂
m⋃
j=1

Uxj

となる. 以上より,

U =
m⋃
j=1

Uxj
, V =

m⋂
j=1

Vxj

とおけばよい. □

最後に, 次を示そう.

定理 12.6 X, Y を位相空間, H を C(X,Y )の空でない部分集合とする. ΦH が連続となるH

の位相はHのコンパクト開位相より大きい.

証明 KをXのコンパクト部分集合, Oを Y の開集合とし,

f ∈ W (K,O) ∩H

とする. このとき,

{f} ×K ⊂ Φ−1
H (O)

である. ΦH が連続なとき, Φ−1
H (O)はH ×Xの開集合である. ここで, {f}, Kはコンパクトだ

から, 定理 12.5より, Hのある開集合 U およびXのある開集合 V が存在し,

{f} ⊂ U, K ⊂ V, U × V ⊂ Φ−1
H (O)

となる. このとき, g ∈ U とすると,

g(K) = ΦH({g} ×K)

⊂ ΦH(U × V )

⊂ O,

すなわち, g(K) ⊂ Oである. よって,

U ⊂ W (K,O) ∩H

となるから, f はW (K,O)∩Hの内点となり, W (K,O)∩HはHの開集合である. したがって,

Hの位相はコンパクト開位相より大きい. □
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問題 12

1.X, Y を位相空間とし, C(X,Y )のコンパクト開位相を考える. Y がHausdorffならば, C(X,Y )

はHausdorffであることを示せ.

2. Xを位相空間とする. このとき, C(X)の一様収束位相を考えることができる. また, C(X) =

C(X,R)だから, C(X)のコンパクト開位相を考えることができる.

(1) C(X)の一様収束位相はコンパクト開位相より大きいことを示せ.

(2) Xがコンパクトならば, C(X)の一様収束位相とコンパクト開位相は一致することを示せ.

3. XをHausdorff空間, AをXの局所コンパクトな部分空間とする. このとき, Xのある開集
合Oおよび閉集合Bが存在し,

A = O ∩B

となることを示せ.
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問題 12の解答
1. f, g ∈ C(X,Y ), f ̸= gとする. このとき, ある x ∈ Xが存在し, f(x) ̸= g(x)となる. ここで,

Y はHausdorffだから, Y のある開集合 U , V が存在し,

f(x) ∈ U, g(x) ∈ V, U ∩ V = ∅

となる. このとき, W ({x}, U), W ({y}, V )はそれぞれ f , gの開近傍である. 更に,

W ({x}, U) ∩W ({x}, V ) = ∅

である. よって, C(X,Y )はHausdorffである.

2. (1) KをXのコンパクト部分集合, OをRの開集合とする. 一様収束位相に関して, W (K,O)

がC(X)の開集合であることを示せばよい.

まず, y ∈ R, A ⊂ R, A ̸= ∅とし,

d(y, A) = inf{|y − a| | a ∈ A}

とおく. このとき, 問題 9-1より, d(y, A) = 0と y ∈ Aは同値であり, 関数 d( · , A) : R
→ Rは連続である. ここで, f ∈ W (K,O)とし,

ε = inf{d(f(x), Oc) |x ∈ K}

とおく. f ∈ W (K,O)より, x ∈ Kのとき, f(x) ∈ Oである. また, f は連続であり, K

はコンパクトである. よって, ε > 0となる.

次に, 一様収束位相に関して, g ∈ B
(
f ; ε

2

)
とする. また, x ∈ Kとする. このとき, 三

角不等式より,

d(g(x), Oc) ≥ d(f(x), Oc)− |f(x)− g(x)|

≥ ε− ε

2

=
ε

2

> 0

である. したがって, g(K) ⊂ Oとなる. gは任意だから,

B
(
f ;

ε

2

)
⊂ W (K,O)

となり, 一様収束位相に関して, W (K,O)はC(X)の開集合である.

(2) f ∈ C(X), ε > 0とする. (1)より, 一様収束位相に関するB(f ; ε)がコンパクト開位相に
関する f の近傍であることを示せばよい.

まず, f は連続だから, 集合族{
f−1

((
f(x)− ε

4
, f(x) +

ε

4

)) ∣∣∣ x ∈ X
}

はXの開被覆である. Xはコンパクトだから, ある x1, x2, . . . , xn ∈ Xが存在し,

X =
n⋃

i=1

f−1
((

f(xi)−
ε

4
, f(xi) +

ε

4

))
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となる. ここで, 各 i = 1, 2, . . . , nに対して,

Ki = f−1
([

f(xi)−
ε

4
, f(xi) +

ε

4

])
, Oi =

(
f(xi)−

ε

2
, f(xi) +

ε

2

)
とおく. このとき, Kiはコンパクト空間Xの閉集合だから, コンパクトである. また,

OiはRの開集合である. 更に, f(Ki) ⊂ Oi, すなわち, f ∈ W (Ki, Oi)である.

g ∈ W (Ki, Oi), x ∈ Kiとすると, 三角不等式より,

|f(x)− g(x)| ≤ |f(x)− f(xi)|+ |f(xi)− g(x)|

<
ε

4
+

ε

2

=
3

4
ε

となる. 更に,

X =
n⋃

i=1

Ki

だから, h ∈
n⋂

i=1

W (Ki, Oi)とすると,

d(f, h) <
3

4
ε

< ε

となる. よって,

f ∈
n⋂

i=1

W (Ki, Oi) ⊂ B(f ; ε)

となり, コンパクト開位相に関して, B(f ; ε)は f の近傍である.

3. x ∈ Aとする. Aは局所コンパクトだから, Aにおける xのコンパクトな近傍 U が存在する.

また, XはHausdorffだから, U はXの閉集合である. 更に, U はAにおける xの近傍だか
ら, Xのある開集合 V が存在し,

x ∈ V ∩ A ⊂ U

となる. ここで, U はXの閉集合だから,

x ∈ V ∩ A

⊂ V ∩ A

⊂ U

となり, U はAにおける xの近傍となる. xは任意だから, AはAの開集合である. したがっ
て, Xのある開集合Oが存在し,

A = O ∩ A

となる. すなわち, B = Aとおくと, BはXの閉集合であり,

A = O ∩B

である.


