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§4. 曲線の長さ
Euclid空間内の曲線に対して長さを考えることができる. 線分の長さは三平方の定理を用い
て計算することができるが, 曲線の長さの場合は曲線を折れ線で近似すればよい. 有界閉区間
[a, b]からRnへの写像として表される曲線

γ : [a, b] → Rn

を考えよう. このとき, γの長さは定積分∫ b

a

∥γ′(t)∥ dt

によりあたえられる. [a, b]を単に Iと表すときは上の定積分を∫
I

∥γ′(t)∥ dt (∗)

と表す. 曲線の長さは n = 2の場合は微分積分においても扱われるが, 上の式はその一般化であ
る. 特に, γが

γ(t) = (t, f(t)) (t ∈ [a, b])

により定められるスカラー値関数のグラフの場合は, γの長さは∫ b

a

√
1 + (f ′(t))2 dt

である.

例 4.1 a, b > 0とし, 楕円
γ : [0, 2π] → R2

を
γ(t) = (a cos t, b sin t) (t ∈ [0, 2π])

により定める. γの長さを Lとおくと,

L =

∫ 2π

0

√
(−a sin t)2 + (b cos t)2 dt

=

∫ 2π

0

√
a2 sin2 t+ b2 cos2 t dt

である. これは楕円積分という積分の一種であり, 一般には Lの値を具体的に求めることはで
きないが, a = bのときは γは半径 aの円であり, L = 2πaとなる.

また, a ≥ bとし,

ε =

√
a2 − b2

a

とおくと,

L = a

∫ 2π

0

√
1− ε2 cos2 t dt

となる. εを離心率という.
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Iを有界閉区間とし, 向きを保つ変数変換

φ : J → I

を考えよう. すなわち, J は有界閉区間であり, 任意の u ∈ J に対して φ′(u) > 0である.

上の変数変換を用いて, 曲線
γ : I → Rn

に対して, 新たに曲線
γ ◦ φ : J → Rn

を定めることができる. γと γ ◦ φは写像としては異なるが, 像は同じである. このとき, 2つの
曲線の長さは元々の定義によれば一致すべきである. すなわち, 曲線の長さは径数表示に依存し
ない. このことは (∗) の計算を行うことによっても確かめることができる. 実際, 置換積分を行
うと, ∫

J

∥(γ ◦ φ)′(u)∥ du =

∫
J

∥γ′(φ(u))φ′(u)∥ du

=

∫
J

∥γ′(φ(u))∥φ′(u) du

=

∫
I

∥γ′(t)∥ dt

である.

ここでは正則な曲線を考えているから, 曲線は逆戻りすることなく点が動いて得られる軌跡
とみなすことができる. このとき, 直観的には点の動く速度を調節することにより, 速さを一定
に保つことができそうである. 次に示すようにそれは正しい. 区間 IからRnへの写像として定
義される曲線

γ : I → Rn

を考え, t0 ∈ Iを固定しておく. このとき, 関数

L : I → R

を
L(t) =

∫ t

t0

∥γ′(t)∥ dt (t ∈ I)

により定める. L(t)を γの t0から tまでの長さという. γは正則としていることに注意すると,

dL

dt
= ∥γ′(t)∥

> 0

だから, Lは連続な単調増加関数となる. よって, Lの像を J とおくと, J は区間であり, 更に
関数

L : I → J

の逆関数
L−1 : J → I
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が存在する. ここで, L−1を用いて変数変換を考え, 曲線

γ̃ : J → Rn

を
γ̃ = γ ◦ L−1

により定める. γと γ̃は写像としては異なるが, 像は同じである. 合成関数の微分法および逆関
数の微分法より,

γ̃′(u) = γ′(t)
dL−1

du

= γ′(t)
1

dL

dt

=
γ′(t)

∥γ′(t)∥
̸= 0

である. したがって, γ̃は正則であり,

∥γ̃′(u)∥ =

∥∥∥∥ γ′(t)

∥γ′(t)∥

∥∥∥∥
= 1

である.

更に, u0 ∈ J を固定しておき, u ∈ J とすると, γ̃の u0から uまでの長さは∫ u

u0

∥γ̃′(u)∥ du =

∫ u

u0

du

= u− u0

である. このことから次のように定義する.

定義 4.1 曲線
γ : I → Rn

は任意の t ∈ Iに対して,

∥γ′(t)∥ = 1

となるとき, 弧長により径数付けられているという. このとき, パラメータ tを弧長径数という.

例 4.2 原点中心, 半径 aの円
γ : [0, 2πa] → R2

を
γ(t) =

(
a cos

t

a
, a sin

t

a

)
(t ∈ [0, 2πa])

により定める. このとき,

∥γ′(t)∥ =

√(
− sin

t

a

)2

+ cos2
t

a

= 1

である. よって, tは弧長径数である.
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問題 4

1. γを有界閉区間 [a, b]からの写像として定義されるRn内の曲線とする.

(1) ∥v∥ = 1となる任意の v ∈ Rnに対して,

⟨γ(b)− γ(a), v⟩ =
∫ b

a

⟨γ′(t), v⟩ dt ≤
∫ b

a

∥γ′(t)∥ dt

がなりたつことを示せ.

(2) 不等式

∥γ(b)− γ(a)∥ ≤
∫ b

a

∥γ′(t)∥ dt

がなりたつことを示せ. 特に, あたえられた端点を結ぶ曲線の中で長さが最も短いものは
線分であることが分かる.

2. a > 0とし, 平面曲線
γ : [0, 2π] → R2

を
γ(t) = (a cos3 t, a sin3 t) (t ∈ [0, 2π])

により定める. γを星芒形またはアステロイドという.

(1) γ′(t) = 0となる t ∈ [0, 2π]を求めよ.

(2) γの長さを求めよ.

(3) t0 ∈ [0, 2π]を (1)で求めた以外の値とする. γの t = t0における接線の陰関数表示は

{(x, y) ∈ R2 | (sin t0)x+ (cos t0)y = a cos t0 sin t0}

であることを示せ.

(4) (3)の接線がx軸および y軸と交わる点をそれぞれA, Bとする. 線分ABの長さを求めよ.

3. a > 0とし, 平面曲線
γ : [0, 2π] → R2

を
γ(t) = (a(t− sin t), a(1− cos t)) (t ∈ [0, 2π])

により定める. γを　
はいせん

擺線　またはサイクロイドという.

(1) γ′(t) = 0となる t ∈ [0, 2π]を求めよ.

(2) γの長さを求めよ.
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問題 4の解答
1. (1) まず, ∫ b

a

⟨γ′(t), v⟩ dt =
∫ b

a

d

dt
⟨γ(t), v⟩ dt

= [⟨γ(t), v⟩]ba
= ⟨γ(b), v⟩ − ⟨γ(a), v⟩
= ⟨γ(b)− γ(a), v⟩

である.

また, Cauchy-Schwarz の不等式より,

⟨γ′(t), v⟩ ≤ |⟨γ′(t), v⟩|
≤ ∥γ′(t)∥∥v∥
= ∥γ′(t)∥

である. よって, ∫ b

a

⟨γ′(t), v⟩ dt ≤
∫ b

a

∥γ′(t)∥ dt

である.

したがって, 題意の式がなりたつ.

(2) γ(a) = γ(b)のとき, あたえられた不等式は明らかになりたつ.

γ(a) ̸= γ(b)のとき, v ∈ Rnを

v =
γ(b)− γ(a)

∥γ(b)− γ(a)∥
により定めると, ∥v∥ = 1 である. よって, (1)より, あたえられた不等式がなりたつ.

2. (1) まず,

γ′(t) = (−3a cos2 t sin t, 3a sin2 t cos t)

である. よって, γ′(t) = 0とすると,

cos2 t sin t = sin2 t cos t = 0

である. これを解くと,

t = 0,
π

2
, π,

3

2
π, 2π

である.

(2) γの長さは 0 ≤ t ≤ π
2
の部分の長さを 4倍して,

4

∫ π
2

0

∥γ′(t)∥ dt = 4

∫ π
2

0

√
(−3a cos2 t sin t)2 + (3a sin2 t cos t)2 dt

= 12a

∫ π
2

0

√
cos4 t sin2 t+ sin4 t cos2 t dt

= 12a

∫ π
2

0

sin t cos t dt

= 12a

[
1

2
sin2 t

]π
2

0

= 6a
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である.

(3) γの t = t0における接線の径数表示は

l(t) = (a cos3 t0, a sin
3 t0) + (−3a cos2 t0 sin t0, 3a sin

2 t0 cos t0)(t− t0) (t ∈ R)

である. ここで,

l(t) = (x, y)

とおくと, {
x = a cos3 t0 + (−3a cos2 t0 sin t0)(t− t0),

y = a sin3 t0 + (3a sin2 t0 cos t0)(t− t0)

である. tを消去すると, 陰関数表示

{(x, y) ∈ R2 | (sin t0)x+ (cos t0)y = a cos t0 sin t0}

を得る.

(4) 接線の陰関数表示の式に y = 0を代入すると, x = a cos t0だから, Aの座標は (a cos t0, 0)

である. また, x = 0を代入すると, y = a sin t0 だから, Bの座標は (0, a sin t0)である.

よって, 線分ABの長さは√
(a cos t0)2 + (a sin t0)2 = a

である.

3. (1) まず,

γ′(t) = (a(1− cos t), a sin t)

である. よって, γ′(t) = 0とすると,

1− cos t = sin t = 0

である. これを解くと,

t = 0, 2π

である.

(2) γの長さは ∫ 2π

0

∥γ′(t)∥ dt =
∫ 2π

0

√
{a(1− cos t)}2 + (a sin t)2 dt

= a

∫ 2π

0

√
2(1− cos t) dt

= 2a

∫ 2π

0

sin
t

2
dt

= 2a

[
−2 cos

t

2

]2π
0

= 2a(2 + 2)

= 8a

である.


