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Analysis of Optimal Scheduling in Tit-for-Tat-based P2P
File Distribution
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SUMMARY Peer-to-Peer (P2P) file distribution systems can
efficiently disseminate massive contents, such as disk images of
operating systems, from a server to many users in a piece-by-piece
manner. In particular, the BitTorrent protocol optimizes each
peer’s download speed by applying the tit-for-tat (TFT) strat-
egy, where each peer preferentially uploads piece(s) to peer(s)
from which it can download missing pieces faster. To the best of
our knowledge, however, the optimality of TFT-based P2P file
distribution has not been studied sufficiently. In this paper, we
aim to understand the optimal scheduling in TFT-based P2P file
distribution. First, we develop a discrete-time model of TFT-
based P2P file distribution and formulate its optimal scheduling
as a two-step integer linear programming problem. The first step
is to minimize the average file retrieval time among peers, and the
second step is to improve fairness among peers. We analyze the
optimal solution obtained by the existing solver and reveal the
characteristics of the optimal scheduling. Specifically, we show
that it is crucial to distribute pieces from the server indirectly
to peers with large upload capacity via those with small upload
capacity.
key words: P2P file distribution, tit-for-tat strategy, analysis
of optimal scheduling, integer linear programming (ILP)

1. Introduction

Distribution of massive contents, e.g., disk images of
operating systems (Linux, FreeBSD, etc.) and vir-
tual machines, in the Internet has been attracting
many users. The conventional client-server architec-
ture, where a small number of servers serve the contents
to clients, potentially has a drawback of scalability to
the number of clients, due to the bottleneck of the up-
load capacity of the servers. P2P (Peer-to-Peer) file
distribution systems have been expected to solve such
scalability problems [1].

In P2P file distribution systems, a file is divided
into small fragments called pieces. Clients not only
retrieve those pieces from servers but also transfers
them to other clients. Because clients also fill the role
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of servers, they are called peers. Compared with the
client-server architecture, the P2P architecture is scal-
able to the number of peers because it can utilize the
upload capacity of peers in addition to that of servers.
This is attractive to the content distributors because
they do not need to reinforce the upload capacity of
their own servers.

In P2P file distribution systems, however, there
still remains a significant problem: How to encourage
peers to transfer pieces to other peers. Because the
transfer of large files requires a high-rate and/or long-
term communication, peers may suffer from the deterio-
ration of their quality of other network services, which
they want to enjoy at the same time. As a result, it
was pointed out that many peers are negative about
uploading pieces they retrieved to other peers in actual
systems [2].

To tackle this problem, the Tit-for-Tat (TFT)
strategy in game theory is known to be effective [3].
Under the TFT strategy, a player takes a cooperative
action initially and then mimics the action taken by
the opponent. Therefore, unless the opponent defects,
the cooperative relationship between them is sustained.
BitTorrent [1] first introduced the TFT strategy into
P2P file distribution systems. Note that in P2P file
distribution systems, cooperation corresponds to the
transfer of pieces to other peers in response to their re-
quests and noncooperation corresponds to the refusal
to respond other peers’ requests. As a result, each peer
has to upload pieces to others so as to retrieve his/her
demanded files from them.

There are many studies on examining the effective-
ness of the TFT strategy in BitTorrent: Mathematical
analyses [4–6], simulation-based approaches [3,7], and
measurement-based approaches [8]. Most of those stud-
ies discuss the performance of the original mechanism
of BitTorrent and its improvement. To the best of our
knowledge, the optimality of such TFT-based P2P file
distribution has not been studied sufficiently.

In this paper, we analyze an optimal scheduling
in TFT-based P2P file distribution. Specifically, we
develop a discrete-time model of TFT-based P2P file
distribution and formulate its optimal scheduling as a
two-step integer linear programming (ILP). In the two-
step ILP, we first minimize the average file retrieving
time among peers, and then improve fairness among
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them under a constraint that the average file retrieving
time is minimum. We analyze the optimal solution,
which is obtained by an existing solver, and reveal the
characteristics of the optimal scheduling.

The rest of the paper is organized as follows. In
section 2, we review the related work. After explain-
ing TFT-based P2P file distribution in section 3, sec-
tion 4 formulates an optimal scheduling in TFT-based
P2P file distribution as a two-step ILP. We show some
numerical results of the optimal scheduling in sec-
tion 5 and analyze the mechanism yielding the optimal
scheduling in section 6. Finally, we conclude this paper
in section 7.

2. Related Work

The evaluation of TFT-based P2P file distribution has
been conducted mainly on the BitTorrent system and
most of those are summarized in [9]. The TFT strat-
egy in the BitTorrent protocol is realized by combin-
ing several peer selection strategies and the rarest-first
piece selection strategy, which are summarized in sec-
tion 3. Legout et al. focus on peer selection strate-
gies [8]. Through several experiments, they observe
that those strategies eventually yield clusters of peers
with nearly the same upload capacity and within each
cluster, pieces are exchanged frequently, and some peers
with small upload capacity suffer extremely long file re-
trieving times. [7] shows that the rarest-first piece selec-
tion strategy contributes to achieving the stable system
performance, through several simulation experiments.

The fundamental characteristics of peer and piece
selection strategies are also studied based on mathe-
matical analyses. Piatek et al. [4] show that the op-
timistic unchoking (cf. section 3) deteriorates fairness
among peers, i.e., the ratio of the download speed to
the upload speed tends to be small for peers with large
upload capacity. Meulpolder et al. [8] analyze the dy-
namics generated by the peer selection strategies, us-
ing a fluid model. They find that the cluster structure
found is not complete and peers with large upload ca-
pacity partly provide pieces for those with small upload
capacity.

3. Tit-for-Tat-based P2P file distribution

This paper considers a P2P file distribution system
like BitTorrent. In what follows, we explain a part of
the BitTorrent protocol, which is related closely to the
TFT strategy. Every file is divided into small frag-
ments called pieces. A new peer tries to retrieve pieces
not only from a server but also from other peers. Af-
ter obtaining a piece, the peer can also transfer it to
other peers. In order to encourage peers to exchange
pieces with each other, the BitTorrent protocol adopts
the rarest-first strategy, where each peer preferentially
downloads the rarest piece in the system. Peers who do

not finish downloading of the whole file are called leech-
ers, while those who finish downloading it are called
seeders.

Leechers try to retrieve pieces by sending requests
to participants of the system, i.e., the server, seeders,
and leechers. On receiving requests, the server and
seeders altruistically provide the leechers with the re-
quested pieces. Note here that they may require select-
ing some of the requesting leechers to which they send
the pieces, due to the constraint of upload capacity of
their own. In the BitTorrent protocol, accepting (resp.
declining) requests is called unchoking (resp. choking).
In the current version of the BitTorrent protocol, the
sever and seeders adopt an unchoking strategy, where
they allocate part of their upload capacity to leechers
with high expected download speed and the remaining
to those chosen randomly. This is a strategy taking
account of the balance between efficiency and fairness.

On the other hand, leechers selfishly select peers
to which they upload their owned pieces, according to
the following unchoking strategies: Regular unchoking,
optimistic unchoking, and anti-snubbing. In the regu-
lar unchoking, each leecher unchokes K other leechers
who have recently reciprocated with the highest upload
speed, where K is a predefined number. The optimistic
unchoking is conducted every time interval of a fixed
length, e.g., 30 seconds, at which among leechers being
unchoked, the leecher with the least reciprocation of
the upload speed is choked. Instead, a leecher is cho-
sen randomly among from others and it is unchoked.
Finally, in the anti-snubbing, a leecher chokes an un-
choked leecher when it cannot download any pieces
from it during a time interval of a fixed length, e.g.,
60 seconds.

These strategies will eventually balance the num-
bers of sending and receiving pieces between leechers,
and in the framework of game theory, this can be re-
garded as the TFT strategy. Note, however, that it
has not been studied sufficiently on the optimality of
such TFT-based P2P file distribution. In this paper,
we assume that the TFT strategy is equivalent to main-
taining a balance of the numbers of sending and receiv-
ing pieces between leechers, and analyze the optimal
scheduling in TFT-based P2P file distribution.

4. Modeling TFT-based P2P file distribution
and formulation of its optimal scheduling

In this section, we develop a discrete-time model of
TFT-based P2P file distribution and formulate its op-
timal scheduling as a two-step ILP.

4.1 Model

We model TFT-based P2P file distribution in discrete-
time. In the system, there are ND servers, labeled 1 to
ND, and NP peers, labeled ND + 1 to ND + NP. Let
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ND = {1, 2, . . . , ND} and NP = {ND + 1, . . . , ND +
NP} denote the set of server indices and that of peer
indices, respectively. We define N = ND∪NP and N =
ND + NP. In what follows, the servers and peers are
collectively called nodes. Note that peers are classified
into leechers and seeders, depending on whether file
retrieving is finished or not. We assume that all peers
try to download a specific file that is divided into M
pieces labeled 1 to M . Let M = {1, 2, . . . ,M} denote
the set of piece indices.

Let Ci (i = 1, 2, . . . , N) denote the upload capac-
ity of node i, where Ci < ∞. For simplicity, we assume
that Ci (i = 1, 2, . . . , N) is a natural number and the
maximum number of pieces that node i can transfer
at each time. On the other hand, we assume that the
download capacity of each peer is not limited. This
assumption is based on the asymmetry of uplink and
downlink channel speeds, e.g., ADSL and cable Inter-
net. Note that if the TFT strategy is adopted, peer i’s
download speed is bound by the total upload capacity of
servers and seeders. We model piece transfers between
nodes in discrete time. Specifically, piece transfers be-
tween nodes are assumed to be synchronized and to be
completed in a unit time. We define decision variables
xi,j,k(t) (i, j ∈ N , k ∈ M, t = 1, 2, . . . , T ) as

xi,j,k(t) =

⎧
⎪⎨

⎪⎩

1, if node i sends node j piece k

at time t,

0, otherwise,

where T denotes the maximum time that ensures the
file retrieval of all peers. In section 4.2, we will show
how to determine T . For simplicity in description, let
T and T + denote

T = {0, 1, . . . , T}, T + = {1, 2, . . . , T},

respectively.
Based on the capacity assumption, each node i can

transfer at most Ci pieces at each time. Each node can
transfer multiple, different pieces to a specific leecher,
under the constraint of the upload capacity. When all
peers retrieve all pieces, the file distribution finishes.

We define zi,k(t) (i ∈ N , k ∈ M, t ∈ T ) and yi(t)
(i ∈ N , t ∈ T ) as

zi,k(t) =

⎧
⎪⎨

⎪⎩

zi,k(0) +
t∑

s=1

∑

j∈N
xj,i,k(s), if i ∈ NP,

1, otherwise,

(1)

yi(t) =

⎧
⎨

⎩

1−
∏

k∈M
zi,k(t) if i ∈ NP,

0, otherwise,
(2)

respectively, where empty sum is defined to be zero.
Note that zi,k(t) represents the state of piece possession
of node i at time t, i.e., zi,k(t) = 1 if peer i has piece k
at time t, and otherwise zi,k(t) = 0. On the other hand,

Table 1 Notations in the model.

Notation Definition
ND The set of servers, {1, 2, . . . , ND}
NP The set of peers, {ND + 1, . . . , ND +NP}
N The set of nodes, {1, 2, . . . , N}

N=ND+NP, N =ND ∪NP

M The set of pieces, {1, 2, · · · ,M}
Ci Upload capacity of node i
xi,j,k(t) Decision variables of piece transfers
yi(t) Decision variables of peers’ roles

(1: leechers, 0: seeders)
zi,k(t) Decision variables of piece possession

(1: possession, 0: missing)

yi(t) represents the role of peer i at time t, i.e., yi(t) = 1
if peer i is a leecher at time t, and otherwise yi(t) = 0,
which indicates that peer i is a seeder. Note that servers
(i ∈ ND) constantly have all pieces (zi,k(t) = 1, yi(t) =
0). Therefore we can keep track of the process of the
file distribution through xj,i,k(t). Table 1 summarizes
notations we introduced.

4.2 First Step: Minimization of the average file re-
trieving time

From a viewpoint of the entire system (i.e., social op-
timum), an optimal scheduling in P2P file distribution
can be regarded as a scheduling that minimizes the av-
erage file retrieving time among peers. We thus for-
mulate a minimization problem P1 of the average file
retrieving time as follows.

min
1

NP

∑

i∈NP

τi, (3)

s.t. zi,k(0) = 1, ∀i ∈ ND, ∀k ∈ M, (4)

zi,k(0) = 0, ∀i ∈ NP, ∀k ∈ M, (5)

xi,i,k(t) = 0, ∀i ∈ N , ∀k ∈ M, t ∈ T +, (6)

xi,j,k(t) ∈ {0, 1},
∀i, j ∈ N , i ̸= j, ∀k ∈ M, t ∈ T +, (7)

xi,j,k(t) ≤ zi,k(t− 1),

∀i, j ∈ N , i ̸= j, ∀k ∈ M, t ∈ T +, (8)

xi,j,k(t) ≤ 1− zj,k(t− 1),

∀i, j ∈ N , i ̸= j, ∀k ∈ M, t ∈ T +, (9)
∑

j∈N

∑

k∈M
xi,j,k(t) ≤ Ci, ∀i ∈ N , t ∈ T +, (10)

∑

j∈N
xj,i,k(t) ≤ 1, ∀i ∈ N , ∀k ∈ M, t ∈ T +,

(11)
∑

i∈NP

yi(T ) = 0, (12)

∑

k∈M
xi,j,k(t)−

∑

k∈M
xj,i,k(t)

≤ M (1− yi(t− 1)yj(t− 1)) ,
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∀i, j ∈ N , t ∈ T +, (13)

τi ≤ τj , ∀i, j ∈ NP, Ci ≥ Cj . (14)

Note that τi (i ∈ NP) in (3) denotes peer i’s file
retrieving time, which is equal to the length of a time
interval during which peer i is a leecher:

τi =
T∑

t=0

yi(t). (15)

Note also that T should not be less than maxi∈NP τi.
We may set T to be, for example,

T =

⎡

⎢⎢⎢
MNP

(
∑

i∈ND

Ci

)−1
⎤

⎥⎥⎥
,

where the right hand side denotes the time required for
direct distribution from the servers to all peers.

(4) through (12) represent basic constraints in P2P
file distribution. (4) and (5) represent that each server
has all pieces at time zero and that each peer has no
pieces at time zero, respectively. (6) prohibits nodes
from sending any pieces to themselves at each time.
(7) permits every node to transfer pieces to others at
each time, and (8) is a constraint that at time t, each
node can transfer only pieces which the node has at
time t − 1. Furthermore, by (9), transferred pieces is
limited to ones which the receiver node do not have.
Note here that (7) and (9) ensure that receiver nodes
are always leechers. (10) represents the upload capacity
constraint. (11) implies that every node can receive a
specific piece from at most one node. (12) ensures that
all peers will finish downloading the file (i.e., become
seeders), by time T .

(13) represents the TFT strategy, under which the
numbers of pieces that any pair of leechers exchange
should be equal. Note that the left hand side of (13) de-
notes the difference of the numbers of pieces exchanged
between node i and node j at time t, and therefore it
ranges [−M,M ]. When both node i and node j are
leechers (i.e., yi(t− 1) = yj(t− 1) = 1), the right hand
side of (13) is equal to 0, so that the TFT strategy is
applied to the piece exchange between leechers. On the
other hand, if node i or node j is a server or a seeder
(i.e., yi(t − 1)yj(t − 1) = 0), this constraint is always
holds because the right hand side is equal to M .

(14) defines the order in which peers finish retriev-
ing the file. In this paper, we assume that the file re-
trieving should be finished in descending order of peers’
upload capacity. Note that there are many possibilities
in this regard. For example, the system may prioritize
accounting peers if they exist.

Note that yi(t) in (2) and (13) are nonlinear, but it
can be linearized, as shown in Appendix A. As a result,
problem P1 can be formulated as an ILP.

4.3 Second step: Fair file retrieving

In general, the optimal solution of problem P1 in sec-
tion 4.2 is not unique. Therefore there is room to
reduce peers’ dissatisfaction with their file retrieving
times. Therefore we formulate another problem P2 in
the following manner.

We assume that an ideal scheduling for peer i
(i ∈ NP) minimizes his/her file retrieving time under
the constraint that all peers finish retrieving the file in
descending order of their upload capacity. We define τ ′i
(i ∈ NP) as such an ideal file retrieving time of peer i.
Note that we can obtain τ ′i for a specific i (i ∈ NP) by
solving a modified problem P′

1, where only the objective
function is replaced with min τi.

We now define ui = τi − τ ′i (i ∈ NP) as a measure
of peer i’s dissatisfaction. To achieve fairness among all
peers, we consider the minimization of the maximum ui

among all peers. Specifically, we formulate problem P2

by slightly changing P1, i.e., the objective function is
replaced with

min max
i∈NP

ui,

and the following constraint is added.

1

NP

∑

i∈NP

τi = τ∗,

where τ∗ denotes the minimum average file retrieving
time obtained by solving problem P1.

4.4 Peers’ behavior after file retrieving

In sections 4.2 and 4.3, we assume that after finishing
the file retrieval, peers stay in the system and serve as
seeders. We call this a seeder sojourn scenario here-
after. When leechers finish retrieving files, however,
they may leave the system. In fact, it was pointed out
that in actual systems, many seeders leave the system
after a relatively short stay in the system and only a
limited number of peers altruistically serve as seeders
for a long time [10].

In order to examine the influence of peers’ behav-
ior after file retrieval, we consider another extreme sce-
nario that all peers leave the system immediately after
becoming seeders, which we call a seeder departure sce-
nario. To obtain an optimal scheduling in the seeder
departure scenario, we have to add the following con-
straint to P1 and P2.

xi,j,k(t) ≤ yi(t− 1), i ∈ NP, j ∈ N , k ∈ M, t ∈ T +,

which ensures that once peers becomes seeders, they do
not provide any pieces for others.

5. Numerical results of the optimal scheduling

In this section, we show some numerical results of the
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Table 2 The optimal file retrieving time.

seeders TFT A B C D E average
sojourn with 10 11 11 12 12 11.2
sojourn w/o 11 11 11 11 11 11.0
departure with 11 11 11 12 12 11.4
departure w/o 11 11 11 11 11 11.0

Table 3 Comparison of the average file retrieving times in the
optimal scheduling and random scheduling.

seeders TFT optimal random
sojourn with 11.2 13.7
sojourn w/o 11.0 11.7
departure with 11.4 14.1
departure w/o 11.0 11.8

optimal scheduling, which are obtained by solving the
two-step ILP with an existing solver CPLEX [12]. We
assume a kind of flash crowds [13], where leechers with
no pieces start retrieving files from a server at the same
time. Such a flash-crowd scenario is the severest situa-
tion when peers retrieve the file. Because our objective
is to analyze the optimal scheduling and to find the
mechanism yielding it, we consider a relatively small
system with ND = 1, NP = 5, and M = 20, i.e., one
server S tries to distribute twenty pieces to five peers A,
B, C, D, and E. We assume that the upload capacity of
the peers is heterogeneous, i.e., CS = 2, CA = CB = 3,
CC = 2, and CD = CE = 1. Note that the average up-
load capacity of peers is equal to that of the server. In
this scenario, the upload capacity of the server is bot-
tleneck because it is not enough to provide a piece for
every peer at every time. We use this scenario, unless
otherwise stated.

In the above setting, we consider the seeder so-
journ and seeder departure scenarios. Note here that
the TFT-based P2P file distribution may be inferior to
the file distribution without the TFT strategy, because
the TFT strategy imposes an additional constraint (13)
on piece exchanges. Therefore we also consider the cor-
responding systems without the TFT strategy. Table 2
presents the optimal file retrieving times of all peers
and their average τ∗. We observe that the performance
degradation caused by the TFT strategy is small, re-
gardless of the seeders’ behavior. We will discuss the
reason for this phenomenon in section 6.2.

Next, we consider the effectiveness of the optimal
scheduling. For this purpose, we randomly explore a
feasible solution of problem P1, which is called random
scheduling. Table 3 compares the average file retrieving
time of the optimal scheduling with that of the random
scheduling, where the latter is the average of 100 inde-
pendent simulation runs. We observe that the optimal
scheduling becomes more effective when the TFT strat-
egy is adopted.

Finally, we briefly discuss peers’ dissatisfaction un-
der the optimal scheduling. Table 4 shows peer i’s
(i ∈ NP) dissatisfaction ui and their average in the
optimal scheduling with the TFT strategy. We observe
that the social optimum slightly increases ui of some

Table 4 Dissatisfaction with file retrieving time.

seeders A B C D E average
sojourn 0 1 0 1 1 0.6
departure 1 1 0 1 1 0.8

peers, especially in the seeder departure scenario.

6. Analysis of mechanism yielding optimal
scheduling

In this section, we discuss the mechanism that yields
the optimal scheduling by analyzing the optimal solu-
tion.

6.1 Fundamental features

We first summarize fundamental features to be required
for minimizing the average file retrieving time. For
simplicity in explanation, we assume that there is one
server S and the number M of pieces is a multiple of
the upload capacity CS of server S. Note that the fol-
lowing discussion is also applicable to the case of multi-
ple servers by assuming that there is one virtual server
whose upload capacity is equal to the total upload ca-
pacity of those servers.

It is clear that the lower bound of the file retrieving
time of each leecher is given by M/CS, which does not
depend on the upload capacity of leechers. Therefore
the lower bound τlower of the average file retrieving time
is also given by

τlower = M/CS.

On the other hand, the average file retrieving time is
bounded above when server S directly distributes M
pieces to every leechers. In order to minimize the
average file retrieving time in the direct distribution,
server S has to complete file distribution to all peers
one by one. In this case, i-th peer’s file retrieval time
is i(M/CS), so that the upper bound τupper is given by

τupper = N−1
P

∑

i∈NP

i(M/CS) =
M(NP + 1)

2CS
.

Because this worst average file retrieving time in-
creases with the number NP of peers, it is essential
to encourage peers to exchange pieces each other. Note
here that piece exchanges have the following fundamen-
tal features.

(i) Nodes can upload pieces only to leechers without
those pieces, regardless of the TFT strategy. The
TFT strategy further requires this constraint in
both directions between two leechers.

(ii) Under the TFT strategy, leecher i with Ci > CS

has a good chance of achieving the average down-
load speed CS over his/her file retrieval even if
leecher i temporarily suffers from slower download
speed than CS. Note that if this is the case, the
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file retrieving time is minimized, i.e., τi = τlower.
(iii) Under the TFT constraint, leechers i with Ci ≤ CS

requires more piece transfers from server S than
those with Ci > CS because they can download at
most Ci pieces from other leechers at each time, in
order to achieve the minimum file retrieving time
τlower.

In what follows, we examine the desirable strategy for
piece transfers in consideration of the above fundamen-
tal features. As far as the behavior of seeders is con-
cerned, we mainly consider the seeder departure sce-
nario because the server plays the leading role in piece
transfers in this scenario and as stated, many seeders
leave the system after a relatively short stay in actual
systems [10].

6.2 Optimal strategy in the seeder departure scenario

To satisfy feature (i) between as many leechers as pos-
sible, the server has to provide rare piece(s) for each
of them, which is nothing but the rarest-first strategy
adopted in the BitTorrent protocol. Note here that rare
pieces that the server provides should be different for
different leechers so as to accelerate piece exchanges.

Considering features (ii) and (iii) in section 6.1, as
well as feature (i) of the rarest-first strategy, we can de-
duce a desirable piece distribution process that shortens
the average file retrieving time under the TFT strategy.
We define LL and LH as

LL = {l; l ∈ NP, Cl ≤ Cs}, LH = {l; l ∈ NP, Cl > Cs},

respectively.

(a) At an early stage of the file distribution, server S
sends pieces preferentially to leechers in LL. Those
pieces should be different so as to accelerate piece
exchanges between leechers. Meanwhile, leechers
in LH have no pieces.

(b) When leechers in LL have enough pieces through
step (a), server S sends new pieces to leechers in
LH, and then those leechers exchange their pieces
with those in LL. As a result, they can rapidly
retrieve pieces that the server distributed over the
system.

In what follows, we confirm the above process (a)
and (b) through the numerical results of the optimal
scheduling, where system parameters are identical to
those in section 5 unless otherwise stated, and leechers
and peers are used interchangeably.

Fig. 1 shows an optimal file retrieval process in the
seeder departure scenario with the TFT strategy. We
give the time step in x-axis and the amount of pieces
that each peer i retrieves by t, i.e.,

∑
k∈M zi,k(t), in

y-axis. From Fig. 1, we observe that leechers D and
E in LL have more pieces than others at the initial
stage and that leechers A and B in LH start acquiring
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Fig. 1 Optimal file retrieval process (seeder departure scenario
with TFT).

Table 5 The number of pieces retrieved from server S (seeder
departure scenario with TFT).
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Fig. 2 Optimal file retrieval process (seeder departure scenario
with TFT, CS = 2, CA = CB = CC = CD = 3, and CE = 1).

Table 6 The number of pieces retrieved from server S (seeder
departure scenario with TFT, CS = 2, CA = CB = CC = CD =
3, and CE = 1)).

A B C D E
3 3 3 3 10

pieces later, at a higher average download speed than
CS = 2. Table 5 shows the number of pieces that each
peer retrieves from server S. Peers D and E in LL receive
more pieces from server S than peers A and B in LH.
These results agrees with the above-mentioned process
(a) and (b), i.e., it is crucial to distribute pieces from
server S indirectly to leechers in LH via those in LL.

Next, we focus on the ratio |LH|/|LL| of the num-
ber of peers in LH to that in LL. Because the default
scenario satisfies |LH|/|LL| < 1, we further examine the
case of |LH|/|LL| > 1. Fig. 2 shows an optimal file re-
trieval process in the seeder departure scenario with the
TFT strategy and the capacity distribution: CS = 2,
CA = CB = CC = CD = 3, and CE = 1. Table 6
shows the number of pieces that each peer retrieves
from server S in that scenario. Fig. 2 and Table 6 show
that the above-mentioned process (a) and (b) is also
realized in this scenario.

Fig. 3 shows an optimal file retrieval process in the
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Fig. 3 Optimal file retrieval process (seeder departure scenario
without TFT).
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Fig. 4 Optimal file retrieval process (seeder departure scenario
with TFT), CS = 5).

seeder departure scenario without the TFT strategy.
We do not observe any significant differences among
file retrieval processes of five peers, regardless of their
upload capacity. The reason is that if the TFT strategy
is not adopted, any peers do not have to follow the
above-mentioned process (a) and (b). Recall that the
degradation of the average file retrieving time, which
is caused by the TFT strategy, is small as shown in
Table 2. Comparing Fig. 1 with Fig. 3, we observe
that the optimal scheduling with the TFT can recover
the average upload speed at the latter stage of the file
distribution, with the help of process (a) and (b).

Finally, we show a numerical example when the
upload capacity CS of server S is large enough to send
a piece to every peer at every time. Fig. 4 illustrates
an optimal file retrieval process, where CS = 5 and
all other parameters are identical to those in section 5.
Note that all leechers are in LL in this setting. Peers
are distinguished clearly according to their upload ca-
pacity. In the optimal scheduling of this scenario, each
leecher retrieves one piece from server S at time 1, and
at time 2, piece exchanges are performed between pairs
of leechers (A,B), (A,C), (A,D), (B,C), and (B,E), and
server S sends new pieces only to leechers A, B, and C.
Note that upload capacity of leechers is utilized fully at
time 2.

In actual systems, the upload capacity of the server
tends to be bottleneck due to the increase of the number

Table 7 The number of pieces retrieved from server S (with
TFT).

scenario A B C D E

CS = 2
departure 2 1 3 9 9
sojourn 6 4 3 7 4

CS = 5
departure 8 8 10 12 12
sojourn 11 8 6 8 7

of peers. Therefore, the case of CS = 2 is more impor-
tant than that of CS = 5. Recall that the conventional
piece transfer strategy of servers/seeders makes much
account of the download speed of leechers and fairness
among them (see section 3). Even though it is intu-
itively acceptable, but our results indicate that piece
flows from leechers with small upload capacity to those
with large capacity play an important role in minimiz-
ing the average file retrieving time.

6.3 Seeder sojourn scenario: Consideration of peers’
altruism

So far, we have examined only the seeder departure
scenario. In this section, we briefly discuss the seeder
sojourn scenario. Fig. 5 illustrates an optimal file re-
trieval process in the seeder sojourn scenario with the
TFT strategy. We observe that the piece retrieval pro-
cess at the early stage of the file distribution is similar
to that in Fig. 1, which indicates that process (a) and
(b) are conducted. On the other hand, we also observe
that peers in LH are preferentially treated at the latter
stage of the file distribution, compared with the seeder
departure scenario.

In this scenario, once a peer becomes a seeder, it
fills the role of servers. As stated, a group of the server
and seeders is regarded as a virtual server whose up-
load capacity is given by the sum of their capacity. In
our formulation, leechers in LH becomes seeders sooner
than those in LL do (cf. (14)), and leechers in LL can
retrieve files not only from server S but also seeders. By
doing so, the average file retrieving time is shortened.

We can recognize this phenomenon typically by
seeing the number of pieces retrieved directly from
server S, as shown in Table 7. Peers with large upload
capacity in the seeder sojourn scenario retrieve more
pieces from server S than those in the seeder departure
scenario. It should be noted that the preferential treat-
ment of altruistic peers leads the system to its social
optimum.

7. Conclusion

In this paper, we analyzed the optimal scheduling in
TFT-based P2P file distribution. We first formulated
the scheduling in the TFT-based P2P file distribution
as two-step ILP. We obtained the optimal solution by
an existing solver in several scenarios. From numeri-
cal results of the optimal scheduling, we observed that
the TFT strategy causes only a small increase in the
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Fig. 5 Optimal file retrieval process (seeder sojourn scenario
with TFT).

average file retrieval time.
An analysis of the optimal solutions revealed that

the following mechanism yielded the optimal schedul-
ing. First, the rarest-first strategy is effective, which
agrees with the past studies. In order to minimize the
average file retrieving time, however, the relationship
in size between the upload capacity of peers and of the
server is important; pieces should be distributed from
the server indirectly to peers with large upload capacity
via those with small upload capacity.

Finally, we should note that the optimal schedul-
ing can be achieved mainly by the above-mentioned
server’s piece transfer strategy. On the contrary, peers
only make their best effort to retrieve their demanded
pieces from others, under the TFT constraint. In other
words, this paper opens up a new vista of the control-
lable P2P file distribution systems where the server can
almost control the state of piece possession of peers with
the help of the TFT strategy and the above-mentioned
piece transfer strategy based on peers’ information, i.e.,
the state of piece possession, the upload capacity, and
altruism.

Appendix A: Linearization of products of bi-
nary variables

The product of variables are nonlinear but it can be
transformed into linear expressions if all variables are
binary [11]. In particular,

y = x1x2 · · ·xk, xi = {0, 1}, (i = 1, 2, . . . , k)

can be rewritten to be the following linear expressions:

(k − 1)−
k∑

i=1

xi + y ≥ 0,

xi − y ≥ 0, xi = {0, 1}, (i = 1, 2, . . . , k).

With this technique, nonlinear terms in (2) and (13)
can be linearized.
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