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SUMMARY Custody transfer in delay tolerant net-
works (DTNs) provides reliable end-to-end data delivery by del-
egating the responsibility of data transfer among special nodes
(custodians) in a hop-by-hop manner. However, storage conges-
tion occurs when data increases and/or the network is partitioned
into multiple sub-networks for a long time. The storage conges-
tion can be alleviated by message ferries which move around the
network and proactively collect data from the custodians. In
such a scenario, data should be aggregated to some custodians
so that message ferries can collect them effectively. In this paper,
we propose a scheme to aggregate data into selected custodians,
called aggregators, in a fully distributed and autonomous manner
with the help of evolutionary game theoretic approach. Through
theoretical analysis and several simulation experiments, taking
account of the uncooperative behavior of nodes, we show that
aggregators can be selected in a self-organized manner and the
number of aggregators can be controlled to a desired value.
key words: delay tolerant networks (DTNs), evolutionary game
theory, custody transfer, self-organized, aggregators, message
ferry.

1. Introduction

With the development of networking technologies,
many researchers and developers have tried to achieve
data communications in challenged networks, called de-
lay tolerant networks (DTNs) [2, 6], e.g., deep space,
battle fields, disaster areas, underwater fields, etc.
DTNs cause data communications with long delay,
asymmetric data rates, and long queueing delay due to
lack of continuous end-to-end connectivity. This class
of challenged networks may not well match with the
current end-to-end TCP/IP model.

In DTNs, a store-carry-forward [2] message deliv-
ery mechanism is used. A source node combines mul-
tiple data into a bundle and transmits it to the des-
tination node in a hop-by-hop manner. However, in-
stantaneous acknowledgment cannot be obtained due
to lack of permanent end-to-end connectivity. Custody
transfer [5] ensures reliable data transfer among nodes
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in DTNs. It offers that a bundle with custody must
be perfectly delivered from a source to the correspond-
ing destination by delegating the responsibility of reli-
able transfer with the bundle in a hop-by-hop manner.
Intermediate nodes keeping bundles with custody are
called custodians. Note here that to be a custodian, a
node must reserve a sufficient amount of storage and
energy to receive bundles with custody and hold them
until successful delivery or the expiration of the bun-
dle’s delivery time. Custodians sometimes face storage
congestion when they must refuse to receive a new bun-
dle with custody due to lack of their storages or their
sufficient energy to keep awake. An increase of bun-
dles with custody and long-term network partitioning
accelerate the storage congestion.

To solve the storage congestion problem, some spe-
cial mobile nodes, called message ferries [29] can be in-
troduced to proactively travel the network and gather
bundles from custodians before the congestion occurs.
If the network is divided into several isolated networks
(clusters), message ferries move around the deployment
area and deliver bundles among the clusters. However,
if the requests from the storage congested nodes in-
crease, sometimes it is hard for message ferries to visit
all of them in a certain period of time.

Any custodian cannot predict how long it should
keep bundles with custody. Note that each node in
DTNs is basically powered by a battery and it has to
be always awake when holding the bundles. Since each
custodian also generates its own bundles with custody,
it may be selfish and reject requests for custody trans-
fer from other nodes to save its storage as well as its
energy. This means that the custody transfer mecha-
nism fails without taking the selfishness of custodians
into account.

In summary, we face two challenges: a) It is very
difficult for message ferries to communicate all storage-
congested nodes in a given period of time and b) nodes
are potentially selfish and are not willing to store oth-
ers’ bundles. To tackle these challenges, we propose a
system that can a) gather all bundles in a partitioned
network to some selected nodes in the network so that
message ferries can collect them effectively and b) take
the nodes’ selfishness into account.

To accomplish such a system, evolutionary game
theoretic approach becomes one of the most appropri-
ate mechanisms, which originally explores the dynam-
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ics of a population of players under the influence of
natural selection [19,25]. In evolutionary game theory,
we assume that fitness (payoff) of a species is deter-
mined by not only its own behavior (strategy), which
is programmed by genes, but also the behavior of sur-
rounding individuals: the more the fitness is acquired,
the larger the population of the corresponding species
is [20]. With the help of this scheme, we can finally se-
lect some special custodians referred to as aggregators,
which are cooperative in nature and willingly hold bun-
dles with custody of other nodes.

The rest of this paper is organized as follows. In
Sect. 2 we review the related works. We described our
proposed aggregators scheme and the selection proce-
dures of aggregators in Sect. 3. Sections 4 and 5 give the
analytical and simulation-based results based on evolu-
tionary game theory, respectively. Finally we conclude
in Sect. 6.

2. Related Works

Data aggregation has been studied in wireless sensor
networks. In past few years, several researchers pro-
posed LEACH (low energy adaptive clustering hierar-
chy) [8] and its extended versions [3, 27] for clustering-
based data aggregation. In these schemes, sensor nodes
play two kinds of roles to achieve data aggregation:
Cluster head and regular node. Each node is initially
a regular node. Then, it communicates with physically
close nodes and elects a cluster head. The cluster head
collects data from the regular nodes and forward it to
a sink node through multi-hop communication among
cluster heads. Here, the cluster head selection follows
a stochastic algorithm taking account of nodes’ energy
consumption.

The aims of these schemes and the proposed
scheme are almost the same but LEACH and its ex-
tended versions assume that all nodes cooperatively
behave each other. On the other hand, in the pro-
posed scheme, aggregator selection totally depends on
the nodes’ mutual interactions by taking account of self-
ishness of each node. Thus, the proposed scheme is also
applicable to the cluster head selection in a more robust
manner.

Inter-cluster communication is also required in
DTNs. If the network is partitioned for a long time,
the storage congestion frequently occurs in custodi-
ans. To alleviate the storage congestion, Zhao et al.
proposed message ferry schemes which provide nodes
with opportunities of communications among clusters
[23, 28, 30]. There are two message ferry schemes [29]:
Node-initiated message ferry scheme and ferry-initiated
message ferry scheme. In the node-initiated message
ferry scheme, nodes know the route of the message
ferry in advance and move close to the ferry to trans-
fer bundles on demand. On the other hand, in the
ferry-initiated message ferry scheme, the message ferry

takes proactive movement to meet the custodians. Af-
ter receiving the service request from a custodian, the
message ferry proceeds to the custodian and collects
bundles. It can also supply energy to the custodian if
required.

In our research, we use ferry-initiated message
ferry scheme to collect bundles proactively from cus-
todians. Sometimes it is difficult for message ferries
to visit all custodians because of route limitations and
traveling costs. In such a case, aggregating bundles
to some selected nodes results in reducing the points
where message ferries should visit.

3. Proposed Scheme

3.1 Overview

In this paper, we aim to achieve a system that period-
ically collects information from multiple isolated net-
works, e.g., several sensing areas in sensor networks,
many evacuation sites in disaster areas, etc. We can
model these scenarios as follows. The system consists
of one or more sink nodes and lots of clusters. Each
node can directly communicate only with other nodes
in the transmission range. To collect bundles from the
clusters to the sink node, we apply the ferry-initiated
message ferry scheme [29], where the message ferry de-
parts from the sink node, visits each cluster to gather
bundles, and then brings them back to the sink node as
shown in Fig. 1(a). The duration of this cycle should
be as short as possible so that the sink node can grasp
the current conditions of all the clusters. When there
are so many clusters and/or nodes, the duration tends
to be longer. In that situation, we may divide clus-
ters into several groups, based on their locations and
the expected amount of generated bundles, and assign
a single message ferry to each of those groups. Note
that the scheme considered in this paper is applicable
to such a case because each group of clusters behaves
independently.

The duration of the cycle of the message ferry is
mainly determined by two factors: The path length of
the message ferry and the time for collecting bundles
from the clusters and supplying energy to them. In our
proposed system, the ferry path is calculated in a hier-
archical manner: Inter-cluster path as in Fig. 1(a) and
intra-cluster path as in Fig. 1(b). We assume that the
length of the intra-cluster path is negligible compared
to that of the inter-cluster path because the distance be-
tween nodes in an identical cluster is sufficiently shorter
than that between clusters. The sink node can calcu-
late the inter-cluster path in advance by obtaining the
information on the physical locations of all clusters and
solving traveling salesman problem (TSP) [18].

In a cluster, the path length of the message ferry
is negligible but the time for collecting bundles from
nodes and supplying energy to them linearly increases
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(a) Message ferry visits each cluster and delivers collected bundles to the sink 

     node. Sink node calculates an inter-cluster path for the message ferry.

(b) Message ferry visits a limited number of aggregators in a cluster. On arrival 

      at a cluster, it calculates an intra-cluster path in an ad hoc manner.

Fig. 1 Proposed scenario.

with the number of nodes to be visited. To shorten
this time, we propose a scheme to aggregate bundles in
each cluster to some nodes referred to as aggregators.
In each cluster, the aggregators are autonomously se-
lected from nodes, called cluster members, by local in-
teractions among them. Each non-aggregator (sender)
sends its bundles to the aggregators so that the message
ferry requires to visit only the aggregators as illustrated
in Fig. 1(b).

In the above scenarios, we assume that each node
is equipped with a long range radio and a short range
radio. While the message ferry is approaching a clus-
ter, it broadcasts its availability to all members of the
cluster. Only aggregators with a specific amount of
bundles are allowed to transmit service requests to the
message ferry by their long range radio. These service
request messages contain the information of each aggre-
gator’s location and the amount of bundles it wants to
transfer. To guide the message ferry, aggregators occa-
sionally transmit location update messages. On recep-
tion of each information, the message ferry calculates
the intra-cluster path in an ad hoc manner. When the
message ferry and one aggregator are close enough, the
aggregator transfers bundles by its short range radio to
the message ferry. At the same time, it obtains energy
supply from the message ferry. Wireless energy trans-
fer [10] will reduce the overhead and time for energy
supply. Note that the range of long range radio trans-
mission of each aggregator may not necessarily cover
the whole deployment area due to power constraints.
On the other hand, each sender sends its bundles to
the aggregators within the transmission range by its
short range radio.

At the initial stage, none of cluster members have
any bundles, so they act as senders. While some cluster
members generate their own initial bundles, they seek
for aggregators within the transmission range. If no
aggregator is available, the initial bundle’s generators
become aggregators. Under cluster members’ mutual
interactions, aggregators in the next round are selected
with the help of evolutionary game theory. We describe
the selection procedure of a limited number of aggrega-
tors in the next sub-section.

We can summarize the above scenario in each clus-
ter as the repetition of the following three phases:

1. Aggregator selecting phase - Each node selects to
be an aggregator or a sender based on local inter-
actions with the neighboring nodes.

2. Bundle aggregating phase - When each sender gen-
erates its own bundles, it transmits them to one of
the aggregators in the transmission range.

3. Bundle collecting phase - Each aggregator trans-
mits its service request to the message ferry and
sends all bundles to the ferry. The message ferry
supplies energy to aggregators.

We define a round as the unit of this repetition as shown
in Fig. 2. During each round, each node performs these
three phases. We presume that all nodes synchronize
each other and know the length of the round. The
length of the round is pre-determined by the sink node
which can also be updated through the communication
between the ferry and nodes if needed.

This scenario not only shortens the duration of the
round but also gives all nodes benefits in terms of long
battery life. There are two ways to keep their batter-
ies in high levels: 1) Obtaining the battery supply from
the message ferry at the phase 3 of the round and 2) re-
ducing the battery consumption by sleeping as long as
possible in the round. The former (latter) case can be
regarded as being an aggregator (a sender). Aggrega-
tors should be awake all the time in the round to receive
bundles from senders as shown in Fig. 2. As a result,
they consume much energy than senders but can also
obtain the battery supply from the message ferry. On
the other hand, senders cannot obtain the battery sup-
ply but can reduce the battery consumption by waking
up only when it needs to generate and transmit its own
bundle to the aggregators as shown in Fig. 2. We will
give more detailed discussion about the battery life in
Sect. 5.3.5.

Taking account of these characteristics, we expect
that the system works well under the conditions: 1)
There exist a small number of aggregators and many
senders, and 2) the role of a node should change per
round as shown in Fig. 2. These challenges can be di-
vided into two problems: 1) How to select aggregators
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Fig. 2 Intra-cluster timing chart of cluster 1 with awaking period and role of each node,
and inter-cluster timing chart for clusters 1, 2, and 3.

autonomously under situations where all nodes are po-
tentially selfish and 2) how to control the number of
aggregators. To cope with these problems, we apply
evolutionary game theoretic approach.

3.2 Selection of the Aggregators

Since it is difficult to achieve a centralized control in
DTNs due to lack of persistent connectivity among ar-
bitrary nodes, the selection of aggregators should be
realized in a decentralized way. We assume that each
node communicates only with its neighbors and deter-
mines to be an aggregator or a sender based on its own
benefit depending on the surrounding conditions.

We assume that each node loses energy propor-
tional to the length of time it keeps awake. As men-
tioned above and illustrated in Fig. 2, aggregators are
always awake during a round while senders only wake
up when generating and transmitting their bundles.
Let c and s denote the amount of energy consumption
for aggregators and senders, respectively, per round. s
increases with the rate of generating bundles but never
exceeds c, i.e., c > s > 0. The energy supplied by the
message ferry to each aggregator is represented by b.
Intuitively, the larger b is, the more the aggregators in-
crease. b > c should also be satisfied to suppress the
number of senders.

We first model the bargain among nodes as a game
between two neighboring nodes in evolutionary game
theory. There are two roles (strategies) for each node:
Aggregator (aggregate) and sender (send). There are
four possible combinations of the strategies of the two

Table 1 Payoff matrix.
XXXXXXXXnode 1

node 2
send aggregate

send −s,−s −s, b− c

aggregate b− c,−s −c,−c

Table 2 Abstracted payoff matrix.
XXXXXXXXnode 1

node 2
send aggregate

send R,R S, T

aggregate T, S P, P

nodes as in Table 1. The resulting payoffs for each com-
bination can be modeled by taking the energy supply
and energy consumption into account. If both nodes
select to be aggregators, they lose the largest energy c
without any energy supply from the message ferry, be-
cause they are not be able to collect a sufficient number
of bundles to request the ferry to visit. An aggregator
paired with a sender obtains the largest energy b − c;
it loses c but obtains b from the message ferry, while
the corresponding sender loses the smallest energy s.
When both nodes select to be senders, they consume s.

We can abstract Table 1 into Table 2, where T >
S = R > P . Every node not only has a temptation
to be an aggregator (T > R) but also a fear to be an
aggregator (S > P ). The larger b is, the more the temp-
tation is. This indicates that the sink node can control
the number of aggregators (senders) by changing b. We
show the detail in Sect. 4. The condition T > R and
S > P also has another significant characteristic; tak-
ing a strategy different from the opponent is better than
taking the same strategy as the opponent. As a result,
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both aggregating and sending strategies stably coex-
ist [13]. Thus, with the help of the payoff-matrix and
evolutionary game theory, when each node undertakes
suitable strategies to optimize its own payoff, then the
system converges to a fully stable situation where both
senders and aggregators stably coexist.

In the next sections, we clarify the relationship be-
tween the parameters in Table 1 and the number of
aggregators using evolutionary game theory.

4. Analytical Results

In this section, we discuss the relationship between the
ratio of aggregators and the parameters of the payoff
matrix through replicator equation on graphs in evo-
lutionary game theory [14, 17]. The basic concept of
replicator dynamics is that the growth rate of nodes
taking a specific strategy is proportional to the payoff
acquired by the strategy. Thus the strategy that yields
more payoff than the average payoff of the whole system
increases. Replicator dynamics on graphs additionally
takes account of the effect of the topological structure
of the network which is suitable for our system. We
give the details of evolutionary game theory and the
replicator equation on graphs in Appendix A.

4.1 Replicator Equation on Graphs

We first consider the replicator equation on graphs [14].
Let x denote the ratio of the number of aggregators
to the total number of cluster members. Note that
1 − x represents the ratio of the number of senders.
The expected payoff (fitness) f1 and f2 of aggregators
and senders are given by

f1 = (1− x)(b− c)− cx, f2 = −s, (1)

respectively.
Let k denote the number of neighbors of each node,

called degree [15]. Although we will present the analysis
based on the k-regular graphs in [14], the result is also
applicable to non-regular graphs, e.g., unit disk graph,
random networks, scale free networks, etc [14, 15]. In
such a case, k represents the average degree. The
modified payoff matrix for evolutionary game theory
on graphs is defined as the sum of the original pay-
off matrix and a modifier matrix [14]. Table 3 shows
the modifier matrix, where m describes the local com-
petition between the strategies [14]. The gain of one
strategy is the loss of another and local competition
between the same strategies results in zero. It follows
from Eq. (A· 5) that m becomes

m =
3b− (k + 6)(c− s)

(k + 3)(k − 2)
, k > 2. (2)

The expected payoff for the local competition g1 and
g2 of aggregators and senders are obtained to be

g1 = (1− x)m, g2 = −xm, (3)

Table 3 Modifier matrix.
XXXXXXXXnode 1

node 2
send aggregate

send 0, 0 −m,m

aggregate m,−m 0, 0

respectively, where m is given by Eq. (2). The average
payoff ϕ of two strategies is then given by

ϕ = x(f1 + g1) + (1− x)(f2 + g2)

= (1− x)(bx− s)− cx. (4)

From Eqs. (1), (3), and (4), we obtain the replica-
tor equation on graphs [14] for k > 2 to be

ẋ =x(f1 + g1 − ϕ)

=x(1−x)

[
b(k2+k−3)−(c−s)(k2+2k)

(k+3)(k−2)
−bx

]
. (5)

Substituting ẋ = 0 yields three equilibria: x∗ = 0, 1,
and

x∗ =
b(k2 + k − 3)− (c− s)(k2 + 2k)

b(k + 3)(k − 2)
, k > 2. (6)

Note that the equilibrium in Eq. (6) is feasible if 0 <
x∗ < 1, i.e.,

k2 + 2k

k2 + k − 3
<

b

c− s
<

k2 + 2k

3
, (7)

holds. As mentioned above, c−s > 0. We also have for
all k > 2, 0 < (k2 +2k)/(k2 + k− 3) < (k2 +2k)/3. As
a result, for any c, s, and k, there exists b > 0 which
satisfies Eq. (7). Thus the equilibrium in Eq. (6) is
controllable. Further, x∗ in Eq. (6) is stable because
ẋ > 0 if 0 < x < x∗, and otherwise, ẋ < 0. In the
next sub-section, we investigate the effects of system
parameters on the controllable equilibrium x∗.

4.2 Numerical Results

We have four independent variables, b, c, s and k, which
affect x. For simplicity, c−s is assumed to be one. Note
that this simplification does not lose generality. Note
here that the (average) degree k is a pre-determined pa-
rameter representing the density of nodes in the system
under consideration. As a result, the ratio of aggrega-
tors can be controlled only by b according to Eq. (6).
The expected number of aggregators can be obtained
by the product of x and the number of cluster members.

Figure 3 illustrates the range of b with the supre-
mum and infimum that satisfy Eq. (7), as a function of
k. We observe that the valid range of b widens with k,
while the infimum is almost constant. Figure 4 shows
the controllable equilibrium x∗ as a function of k. As
shown in Eq. (6), x∗ can take any value between 0 and
1 in both cases, depending on b and k. From those fig-
ures, we observe that for each b, x∗ does not change
when k becomes large, because the modifier m con-
verges to zero with an increase of k, as shown in Fig. 5.
We also observe that for a fixed k, the small b leads
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Fig. 4 The controllable equilibrium x∗ (c− s = 1).

to the small x∗, which can be shown analytically with
Eq. (6). When k is less than 20, the controllable equi-
librium x∗ shows different characteristics, depending on
b. Roughly speaking, if the modifier m is negative (i.e.,
b < 3), x∗ is a non-decreasing function of k, and other-
wise, x∗ is a non-increasing function of k.

Finally, for a given k, Fig. 6 shows appropriate
values of b to achieve a specific value of x, where x∗

is set to be 0.1, 0.3, and 0.5. We first find that b can
be less than 3.00. Note that this value of b is valid
under the assumption of c − s = 1. We do not need
much larger b to achieve our objective that is limiting
the ratio of aggregators. Furthermore, if k is larger than
20, b converges to a value, depending on the target level
of x∗.

5. Simulation Experiments

Replicator dynamics is a powerful mathematical tool
to predict the macro-level system behavior and it clar-
ifies the effect of parameters on it. However, we can
gain little insight into the micro-level system behavior
such as the influence of irregularity of the topology on
the system behavior, the geographical distribution of
strategies, transient phenomena (including the conver-
gence time to the equilibrium), and so on. Therefore we
conduct simulation experiments based on agent-based
dynamics, which is a complementary method to under-
stand the micro-level system behavior in the evolution-
ary game theory. It models such a phenomenon that
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Fig. 5 The modifier m (c− s = 1).
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Fig. 6 Appropriate b to achieve x∗.

a superior strategy spreads over the network in a hop-
by-hop manner, where local interactions among neigh-
boring nodes are defined explicitly. In what follows, we
first describe agent-based dynamics of our system and
then show the results of simulation experiments.

5.1 Agent-based Dynamics

In agent-based dynamics, each agent (i.e., node) in-
teracts only with physically-closed nodes, called neigh-
bors, rather than all other agents in replicator dynam-
ics. In DTNs, nodes within the transmission range of
a node can be regarded as neighbors of the node. Each
node decides its behavior (a strategy) in the next round
based on the information obtained in the preceding
round. Agent-based dynamics reveals how the strate-
gies, which are determined from local interactions, af-
fect the performance of the whole system.

In every round, each node determines its strategy
by comparing its own payoff with that of a randomly
chosen neighboring node at the preceding round. Note
that there is no assumption on the initial distribution
of strategies. As we will see later, the initial strat-
egy distribution almost does not have any influences
on the system performance, except that it slightly af-
fects the convergence time to the expected equilibrium
of x discussed in Sect. 5.3. The strategy update of
node u is conducted in the follow probabilistic manner,
called betters-possess-chance [7, 26]. At the beginning
of each round, node u randomly chooses one of neigh-
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boring nodes, say, node v. If the average payoff Qv of
node v is greater than the average payoff Qu of node
u, node u then imitates the strategy of node v with
probability H(u, v).

H(u, v) =
Qv −Qu

T − P
, (8)

where, T −P (= b) represents the maximum payoff dif-
ference. Otherwise, node u does not change its strat-
egy. Thus, the more a strategy acquires the payoff, the
more it spreads over the network through the imitation
process in a hop-by-hop manner.

5.2 Simulation Model

Simulation experiments were conducted with NetLogo
[12], a multi-agent programmable modeling simulator.
Although we assume that the system consists of mul-
tiple clusters, we focus on the intra-cluster behavior,
and inter-cluster behavior remains as a future work.
For simplicity, we assume that the duration of a round
is fixed and each node periodically generates a fixed
number of bundles per round. Therefore c and s are
constant and let c−s = 1 as in Sect. 4.2. In the follow-
ing figures, the average of 100 independent simulation
experiments are plotted.

5.3 Simulation Results

We first confirm the range of the number N of clus-
ter members to which the prediction through replicator
dynamics is applicable. After that, we discuss system
characteristics in detail: The transient behavior, the
role transitions of nodes, the effect of topological struc-
tures, and the battery life of nodes.

5.3.1 System size valid for replicator dynamics

Figure 7 compares the analytical results of replica-
tor dynamics on graphs with the simulation results of
agent-based dynamics, where graphs are regular and b
is set to be 1.67. When both the number N of nodes
and the degree k are large enough, agent-based dy-
namics attains the same equilibrium as predicted by
replicator dynamics on graphs, because replicator dy-
namics on graphs assumes that N = ∞ and k is suffi-
ciently large. When k is small, however, we observe a
slight difference even for a large N . For example, when
N = 100, the equilibrium in the agent-based dynamics
is at most 0.079 greater than that in the replicator dy-
namics. Contrarily, the results of agent-based dynam-
ics for N = 10 totally differ from those of replicator
dynamics. Thus the number N of cluster members is
essential in applying replicator dynamics to predicting
the ratio of aggregators in equilibrium. In what follows,
N is set to be 100.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50

x*

k

Agent-based dynamic, N=10

Agent-based dynamic, N=100

Agent-based dynamic, N=1000

Replicator dynamics on graph

Fig. 7 Equilibrium x∗ in k-regular graphs (b = 1.67).
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Fig. 8 Transient behavior of ratio x in k-regular graphs (N =
100).

5.3.2 Transient behavior

Figure 8 shows how the ratio x of aggregators converges
to the equilibrium, where graphs are regular. We ob-
serve that x converges after 20 rounds for all cases. This
quick convergence property is suitable for achieving a
stable system. The resulting equilibrium is not greater
than the predicted x∗ in general and it coincides with
x∗ in the full mesh case, as shown in Fig. 7.

Next, we investigate the influence of the initial
strategy distribution on the convergence property. Re-
call that the predicted equilibrium x∗ by the replicator
dynamics is almost globally stable, i.e., if the initial
value of x is in (0, 1), the replicator equation in (5)
converges to the equilibrium x∗ in Eq. (6). Therefore
we expect that the agent-based dynamics inherits the
stable convergence property. Although the convergence
time depends on the initial value of x, we found that x
converges to the same equilibrium at most 20 rounds.

5.3.3 Role transition of nodes

We showed that the ratio of aggregators quickly con-
verges to the equilibrium. The role of each node,
however, is not fixed but it alternates dynamically
over rounds, because each node selects its own strat-
egy in a probabilistic manner. Figure 9 illustrates
the probability of being an aggregator of node i, pi
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(i = 1, 2, . . . , 100), in 3,000 rounds, where nodes are
sorted in ascending order of pi. Note that the average
p of pi is equal to 0.2508 and the standard deviation of
that is equal to 0.2000. The role transition contributes
to load balancing and robustness against node failures.

5.3.4 Effect of topological structures

So far we have shown the simulation results with k-
regular graphs. We now consider unit disk graphs as
more realistic networks. The unit disk graphs are gener-
ated by randomly located nodes in 2-dimentional space
where two nodes are adjacent if the transmission ranges
of the nodes mutually cover each other. We additionally
produce two famous network topologies: Scale-free net-
works and random networks with Barabasi-Albert (BA)
model [1] and Erdos-Renyi (ER) model [4], respectively.
Note that we can control the average degree kavg by ad-
justing parameters in those models adequately. With
those network models, we discuss the influence of topo-
logical structures on the system performance.

Figure 10 shows the equilibrium x∗ as a function
of average degree kavg in networks with different topo-
logical structures, where N = 100 and b = 1.67. The
variance in the degree of nodes for k-regular, unit disk
graph, random networks, and scale-free networks are
4.00, 4.73, 5.62 and 9.02, respectively. We observe that
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Fig. 11 Probability of each node being an aggregator in a unit
disk graph (kavg = 3.96, b = 1.67).
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Fig. 12 Degree vs. probability of each node being an aggrega-
tor in a unit disk graph (kavg = 3.96, b = 1.67) (log scale).

the large variance in the degree of nodes leads to the
small ratio of aggregators x∗ in equilibrium.

To investigate this phenomenon more closely, we
observe two figures. Figure 11 shows pi over 3,000
rounds in a unit disk graph, where nodes are sorted
in ascending order of pi. p is equal to 0.2112 and the
standard deviation of pi is equal to 0.1247. Compared
with Fig. 9 in a k-regular graph, we observe that p
becomes small in the unit disk graph. Figure 12 is a
scatter graph showing the degree di and pi of node i
(i = 1, 2, . . . , 100) in a unit disk graph. We observe
that the positive correlation between those two quan-
tities; nodes with high degrees are likely to have large
probabilities. In fact, the overall average probability
pW of being an aggregator weighted by node degree is
equal to 0.2933, where

pW =

∑N
i=1 dipi
Nkavg

,

which is greater than the un-weighted average probabil-
ity p. Thus we conclude that nodes with large degrees
have a stronger impact in playing games than those
with small degrees.

Finally, we investigate the speed of the convergence
to the equilibrium. Figure 13 shows the transient be-
havior of the ratio x of aggregators in k-regular graph,
unit disk graph, random, and scale-free network with
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N = 100 and b = 1.67, where the average degree kavg
is set to be almost the same. We observe that it takes
a longer time for networks with high degree variation,
compared with networks with low degree variation, yet
100 rounds is enough to converge to the equilibrium in
all cases. In summary, the proposed scheme works well
in those kinds of non-regular networks.

5.3.5 Battery life

We expect that all nodes can survive forever under ap-
propriate values of the parameters b, c, and s. As men-
tioned in Sect. 3.2, b > c > s > 0 should be satisfied
and we suppose that c− s = 1 without loss of general-
ity. In steady state, the expectation of payoffs acquired
at each node becomes E[p] = (b − c)x∗ − s(1 − x∗). If
E[p] is positive, the system could survive without loss
of any node. x∗ can be numerically obtained by setting
b under c − s = 1. After obtaining b and x∗, we can
determine the valid combinations of c and s which sat-
isfy E[p] > 0. In actual situations, the desirable c and s
can be obtained by controlling the awaking time of ag-
gregators and the generation rate of bundles of senders,
respectively.

Figure 14 shows the transition of the number of
nodes with positive cumulative payoff. Note that ev-

ery node initially has no payoff. We observe that every
node acquires positive cumulative payoffs after 535th
round. This indicates that every node can work forever
using the proposed scheme if it has a sufficient amount
of initial battery which depends on the parameter set-
tings.

6. Conclusion

This paper considered data aggregation for message fer-
ries in delay tolerant networks. Contrary to existing
works, we assumed that nodes were selfish and non-
cooperative in nature. Applying evolutionary game
theory, we proposed the self-organized data aggrega-
tion scheme in such an environment. In this scheme,
the selection of aggregators is conducted through de-
centralized processes with the help of strategic decisions
of evolutionary game theory. The proposed scheme was
evaluated through replicator dynamics and agent-based
dynamics, and we showed the excellent performance of
the proposed scheme. In particular, we can control the
numbers of the aggregators by setting parameters ade-
quately.

Note that the controllable and stable equilibrium
of the ratio of aggregators follows from the fact that
a strategy different from the opponent yields a larger
payoff (i.e., T > R and S > P in Table 2). There-
fore our proposed scheme also works well under such a
situation that senders need to retransmit bundles when
their transmissions fail and therefore they should awake
until their successful transmissions. In this case, the
payoff matrix should be changed accordingly, yet the
overall characteristics of the proposed scheme remain
the same.
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Appendix A: Replicator Equation in Evolu-
tionary Game Theory

The replicator equation [9, 21, 24, 25] is one of the fun-
damental equations in evolutionary game theory. Evo-
lutionary game theory assumes that the population of a
group (e.g., species) is proportional to the fitness (i.e.,
payoff) of the strategy that the group selects. Since
each group is under mutual dependency with other
groups, the superiority of the strategy is determined
relatively by the strategy distribution.

We first formalize the general case for two players
with n strategies. An n × n payoff matrix, A = [aij ],
represents all possible strategy pairs of the two players.
The entries, aij , (i, j = 1, 2, . . . , n), denote the payoff
of strategy i competing with strategy j.

Let xi (i = 1, 2, . . . , n) denote the ratio (relative
frequency) of each strategy. All xi add up to 1, i.e.,

n∑
i=1

xi = 1. (A· 1)

The expected payoff fi of strategy i is given by

fi =
n∑

j=1

xjaij . (A· 2)

We can obtain the average payoff of the population to
be

ϕ =

n∑
i=1

xifi. (A· 3)

It then follows from Eqs. (A· 2) and (A· 3) that the stan-
dard replicator equation is given as

ẋi = xi(fi − ϕ), i = 1, . . . , n, (A· 4)
where a dot represents time derivative. Eq. (A· 4) in-
dicates that the number of players selecting strategy i
increases with the relative difference between the ex-
pected payoff of strategy i and the average payoff of all
strategies. Note that Eq. (A· 4) is applicable only to an
infinitely large and well-mixed population where each
player can equally play games with all other nodes [24].

Evolutionary game theory on graphs [11,13,14,16,
17, 22] is an extension of the original theory to a finite
size population. Members of a population are repre-
sented by vertices of a graph and interact with con-
nected individuals. It describes how the expected fre-
quency of each strategy in a game changes over time
within the graphs. The pair approximation [15] is ap-
plied to regular graphs of degree k > 2, i.e., each indi-
vidual is connected to k other individuals. Each node
represents a player with a selected strategy. Each player
derives a payoff from interactions with all of its neigh-
bors. Then, it compares the obtained payoff with a ran-
domly chosen neighbor. If it overcomes the opponent,
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it keeps the current strategy, and otherwise, it imitates
the strategy of the opponent. This kind of strategy
updating rule is called “imitation updating rule.”

By modifying the original payoff matrix A, the
evolutionary game dynamics in a well-mixed popula-
tion can be transformed into that on a k-regular graph.
The modified payoff matrix, A′ = [a′ij ], is defined by
the sum of the original n× n payoff matrix, A = [aij ],
and an n × n modifier matrix, M = [mij ], where, mij

describes the local competition between strategies i and
j [14]. The transformed entries a′ij of the modified pay-
off matrix, A′ becomes

a′ij = aij +mij .

In [14], mij for the imitation updating rule is defined
as for k > 2,

mij =
(k + 3)aii + 3aij − 3aji − (k + 3)ajj

(k + 3)(k − 2)
. (A· 5)

Note that off-diagonal elements of matrix M is anti
symmetric, i.e., mij = −mji, because the gain of one
strategy in local competition is the loss of another. Fur-
ther, diagonal elements mii are always zero, suggesting
that local competition between the same strategies re-
sults in zero. The expected payoff gi for the local com-
petition of strategy i is defined as

gi =

n∑
j=1

xjmij . (A· 6)

Note that the average payoff of the local competition
of strategy i sums to zero, i.e.,

n∑
i=1

xigi = 0. (A· 7)

We thus obtain the average payoff ϕ of the population
on graph to be

ϕ =
n∑

i=1

xi(fi + gi) =
n∑

i=1

xifi, (A· 8)

which is the same as Eq. (A· 3).
Let xi denote the frequency of strategy i on a k-

regular graph. Replicator equation on graphs can be
obtained as follows [14,15,17]:

ẋi = xi(fi + gi − ϕ), i = 1, . . . , n, (A· 9)
where fi, gi, and ϕ are given in Eqs. (A· 2), (A· 6), and
(A· 8), respectively.

It is interesting to observe that Eq. (A· 9) takes
the same form as the standard replicator equation in
Eq. (A· 4), where the payoff matrix [aij ] is replaced
by [aij + mij ]. Therefore, many aspects of evolution-
ary dynamics on graphs can be analyzed by studying
a standard replicator equation with the transformed
payoff matrix [aij + mij ]. Note that as k increases,
the relative contribution of gi decreases, compared to
fi, and in the limit of k → ∞, Eq. (A· 9) is reduced
to Eq. (A· 4). Therefore the replicator equation on a
highly connected graph converges to the standard repli-
cator equation [14].
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