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Abstract. This paper considers a delay tolerant network, where a mes-
sage ferry travels multiple isolated clusters, collects data from nodes in
the clusters, and finally delivers the data to a sink node. In our previ-
ous work, we proposed a self-organized data aggregation technique for
collecting data from nodes efficiently, which can automatically accumu-
late data from cluster members to a limited number of cluster members
called aggregators. The proposed scheme was developed based on the
evolutionary game theoretic approach, in order to take account of the
inherent selfishness of the nodes for saving their own battery life. The
number of aggregators can be controlled to a desired value by adjust-
ing the energy that the message ferry supplies to the aggregators. In
this paper, we further examine the proposed system in terms of success
of data transmission and system survivability. We first introduce a new
type of game model with retransmissions. Through both theoretic and
simulation approaches, we then reveal feasible parameter settings which
can achieve a system with desirable characteristics: Stability, survival,
and successful data transfer.

Key words: delay tolerant networks (DTNs), evolutionary game theory,
self-organized, aggregators, message ferry.

1 Introduction

In ambient information society, it is expected that each user can automatically
obtain its desired information from environments equipped with a numerous
number of devices. The underlying network supporting the ambient information
society can be regarded as a kind of delay tolerant networks (DTNs) [1, 2] due
to lack of reliable continuous end-to-end connectivity. In DTNs, a store-carry-
forward [1] message delivery scheme and custody transfer [3] mechanism are used
to confirm reliable transfer of data (bundle) with custody among nodes (devices)
by delegating the responsibility of custody-bundle transfer through intermediate
nodes in a hop-by-hop manner. The intermediate nodes keeping custody bundles
are called custodians. Each custodian must reserve a sufficient amount of storage
and energy to receive and hold the custody bundles until successful delivery or
delivery expiration of the custody bundles. Due to the lack of the storages,
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2 Self-Organized Data Aggregation

custodians sometimes face storage congestion where they must refuse to receive
any custody bundle from other nodes. In addition, each battery powered node
must be awake while holding the bundles. Since each custodian also generates
its own custody bundles, it is naturally selfish in behavior and rejects requests
of custody transfer from other nodes to save its storage as well as its energy.
Intuitively, this problem increases in long-term isolated networks.

In such a situation, some movable vehicles referred to as message ferries
[9, 10] can solve the storage congestion problem by actively visiting the network
and gather bundles from the custodians. Note that the message ferry has a suf-
ficient amount of storages and energy to carry the bundles to the corresponding
destination, i.e., a base station referred to as sink node, and it can also supply
energy to the nodes if required. When there are several isolated networks re-
ferred to as clusters, the message ferry must visit each of the cluster and collects
bundles from the custodians.

In such kind of scenarios, however, sometimes it is difficult for the message
ferry to visit all of the nodes in a certain period of time. Taking account of the
challenges, we developed a self-organized data aggregation technique in [4]. With
the help of the evolutionary game theoretic approach [6, 7, 8], our system can
automatically select some special custodians referred to as aggregators, which are
cooperative in nature and willingly hold custody bundles of other nodes referred
to as senders. Therefore, the message ferry needs to collect the bundles only
from the aggregators. Note here that in this scheme, each aggregator must keep
awake to receive and hold the bundles until transferring them to the message
ferry, while each sender awakes only when generating and sending the bundles. In
addition, each aggregator can obtain energy supply from the message ferry only
when it finds a sender as its neighbor. In our scheme, each node appropriately
selects strategy, i.e., sending or aggregating, depending on neighbors’ strategies.
This interaction among nodes is modeled as a game in game theory. The detail
will be given in succeeding sections.

In this paper, we further examine the characteristics of the proposed scheme
by focusing on unevaluated viewpoints in our previous work. We first introduce a
new type of game model taking account of bundle retransmission when a sender
cannot find an aggregator as its neighbor. Then, we evaluate the system stabil-
ity through theoretic analysis based on replicator dynamics. Since the replicator
dynamics only focuses on the strategy distribution, we further consider condi-
tion for system survivability. To grasp the node-level behavior, we also apply
agent-based dynamics which is a simulation-based approach. Through simula-
tion experiments, we evaluate the validity of the theoretic analysis and reveal
feasible parameter settings to achieve successful bundle transfer.

The rest of the paper is organized as follows. We introduce our self-organized
data aggregation scheme in section 2. Section 3 gives theoretic analysis of the
system dynamics and the stable condition with the help of replicator equation
on graphs. We also discuss the system survivability in section 3. After a brief
introduction of agent-based dynamics, we evaluate the validity of the theoretic
analysis and reveal feasible parameter settings achieving high successful prob-
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Fig. 1. Model scenario: Message ferry visits a limited number of aggregators in each
cluster and delivers collected bundles to the sink node.

ability of bundle transfer through simulation experiments in section 4. Finally,
section 5 concludes this paper.

2 Self-Organized Data Aggregation

We assume that a fixed sink node collects bundles from nodes in isolated clusters
with the help of the message ferry as shown in Fig. 1. Each node in a cluster can
directly/indirectly communicate with other cluster members (neighbors) within
the transmission range but cannot communicate with the sink node and/or nodes
in other clusters due to the long distances among the clusters. The message
ferry serves the inter-cluster communication and visits only a limited number of
aggregators in each cluster.

In this paper, we focus on bundle aggregation in a cluster. The bundle ag-
gregation is conducted through three phases: a) Aggregator selecting phase, b)
bundle aggregating phase, and c) bundle collecting phase. These three phases
are repeated at each node and the unit of the repetition is referred to as round.
Initially, each node randomly chooses to be an aggregator or a sender because
it cannot know the neighbors’ behavior. In the succeeding rounds, each node
selects their role depending on the results of the previous round with the help of
evolutionary game theory. During bundle aggregating phase, each sender trans-
mits its bundles to one of the aggregators within the transmission range. Then,
in bundle collecting phase, each aggregator allows to transmit its service request
to the message ferry, transfers all bundles, and obtains energy supply from the
ferry.

Due to the lack of reliable connectivity among arbitrary nodes, it is difficult
to achieve a centralized control in DTNs. Therefore, the selection of aggregators
should be performed in a decentralized way. Note that each node communicates
only with its neighbors within the transmission range and is synchronized with
each other. It determines to be an aggregator or a sender by mutual interac-
tion based on its own benefit depending on the surrounding conditions. Since
aggregators are always awake during a round while senders only wake up when
generating and transmitting their bundles, it is assumed that each node loses
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Table 1. Abstracted payoff matrix. 

energy proportional to the length of time it keeps awake. Let c and s denote
the amount of energy consumption for aggregators and senders, respectively, per
round. s increases with retransmissions times but never exceeds c, i.e., c ≥ s > 0.
The energy supplied by the message ferry to each aggregator is represented by
b. Intuitively, the larger b is, the more the aggregators increases. b > c should be
satisfied to keep battery of nodes alive.

The interaction among nodes is modeled as a game between two neighbor-
ing nodes in evolutionary game theory and is summarized as a payoff matrix.
There are two roles (strategies) for each node: Aggregator (aggregate) and sender
(send). There are four possible combinations of the strategies of the two nodes
where each node obtains different payoff from each combination of strategy. Ta-
ble 1 illustrates the abstracted payoff matrix while Tables 2 and 3 illustrate
the payoff matrices for no-retransmission case and retransmission case, respec-
tively. Note that no-retransmission case is same as that proposed in our previous
work [4]. The resulting payoffs for each combination can be modeled by taking
the energy supply and energy consumption into account. If both nodes select to
be aggregators, they lose the largest energy P=c without any energy supply from
the message ferry, because they are not be able to collect a sufficient number of
bundles to request the message ferry to visit. An aggregator paired with a sender
obtains the largest energy T=b−c; it loses c but obtains b from the message ferry,
while the corresponding sender loses the smallest energy S=s. When both nodes
select to be senders, two possible cases can take place depending on the presence
of retransmission. For retransmission case, both of the senders consume R=c.
This is equivalent to the worst case where each sender spends all the period of a
round on achieving successful bundle transfer using retransmission mechanism.
Note that we assume failure of bundle transfer is mainly caused by mismatch of
waking time of sending and receiving nodes.

We obtain T > S > R = P and T > S = R > P for retransmission case
and no-retransmission case, respectively. Every node not only has a temptation
to be an aggregator (T > R) but also a fear to be an aggregator (S > P ). The
larger b is, the more the temptation is. This indicates that the sink node can
control the number of aggregators (senders) by changing b. On the other hand,
condition T > R and S > P indicate that taking a strategy different from the
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opponent is better than taking the same strategy as the opponent. As a result,
both aggregating and sending strategies stably coexist [6]. Thus, with the help
of the payoff-matrix and evolutionary game theory, when each node undertakes
suitable strategies to optimize its own payoff, then the system converges to a
fully stable situation where both senders and aggregators stably coexist.

3 Theoretical Analysis

In this section, we first analyse the relationship between the ratio of the num-
ber of aggregators and the parameters of the payoff matrix through replicator
dynamics of evolutionary game theory on graph [6, 7, 8]. The basic concept of
replicator dynamics is that the growth rate of nodes taking a specific strategy is
proportional to the payoff acquired by the strategy, and the strategy that yields
more payoff than the average payoff of the whole system increases. Replicator
dynamics on graphs additionally takes account of the effect of the topological
structure of the network which is suitable for DTNs. Moreover, we discuss a
condition for the system survivability, under which each node can permanently
be alive without battery shortage. Finally, some numerical results will be given.

3.1 Replicator Equation on Graphs

First, we introduce the replicator equation on graphs [7] for no-retransmission
case, which was originally obtained in [4]. Let x1 denote the ratio of the number of
aggregators to the total number of cluster members for no-retransmission case.
Note that 1 − x1 represents the ratio of the number of senders. Let k denote
the number of neighbors of each node, called degree. For non-regular graphs, k
represents the average degree. With the help of the payoff matrix in Table 2, the
replicator equation on graphs for no-retransmission case becomes

ẋ1 = x1(1− x1)

[
b(k2 + k − 3)− (c− s)(k2 + 2k)

(k + 3)(k − 2)
− bx1

]
, k > 2.

Substituting ẋ1 = 0 yields three equilibria: x∗
1 = 0, 1, and

x∗
1 =

b(k2 + k − 3)− (c− s)(k2 + 2k)

b(k + 3)(k − 2)
, k > 2. (1)

Note that the equilibrium in Eq. (1) is feasible if 0 < x∗
1 < 1, i.e.,

k2 + 2k

k2 + k − 3
<

b

(c− s)
<

k2 + 2k

3
, (2)

satisfies. We have for all k > 2, 0 < (k2+2k)/(k2+k−3) < (k2+2k)/3. Also
c−s > 0 always holds. As a result, for any c, s, and k, there exists b > 0 which
satisfies Eq. (2). Thus the equilibrium in Eq. (1) is controllable. Further, x∗

1 in
Eq. (1) is stable because ẋ1 > 0 if 0 < x1 < x∗

1, and otherwise, ẋ1 < 0.
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6 Self-Organized Data Aggregation

Similarly, for retransmission case, with the help of the payoff matrix in Ta-
ble 3, the stable and controllable equilibrium becomes

x∗
2 =

b(k2 + k − 3)− 3(c− s)

(b+ c− s)(k + 3)(k − 2)
, k > 2,

which is valid for

3

k2 + k − 3
<

b

(c− s)
<

k2 + k − 3

3
. (3)

In what follows, we call Eqs. (2) and (3) as stable conditions.
Note that at the equilibrium the ratio of the number of aggregators is fixed

but the role (strategy) of each node may change [4]. This feature is suitable for
our system such that each node can acquire opportunities to send bundles and
obtain energy supply by changing its role (strategy) round by round.

3.2 Valid Parameter Settings for Permanently Alive System

Although we mentioned that each node has a chance to obtain energy supply
by changing its role round by round, careful parameter tuning is required to
achieve high system survivability. At the equilibrium, it is expected that each
sender (aggregator) can find at least one aggregator (resp. sender) as its neighbor.
Thus, expected payoff for each node becomes E[p] = (b−c)x∗

i−s(1−x∗
i ) (i = 1, 2).

If E[p] is positive, the system could survive without loss of any node. Therefore,
the valid combinations of b, c and s should satisfy the following condition for
positive payoff (referred to as running condition):

E[p] = (b− c)x∗
i − s(1− x∗

i ) > 0 (i = 1, 2). (4)

In practice, the sink node tries to find appropriate x∗
i (i = 1, 2) which satisfies

both the stability condition and the running condition. The amount of energy
supply from the message ferry, b, can be fully controlled by the sink node while
c and s seem to be partly controllable: They are proportional to the length of
waking period. The average node degree, k, is given from the environment. As
a result, the sink node achieve desirable x∗

i (i = 1, 2) by mainly controlling b.
In the next subsection, we show some numerical results to illustrate the feasible
parameter settings.

3.3 Numerical Results

In this section, we show some numerical examples of the adequate parameter
settings satisfying the stable and/or running conditions according to the theo-
retic analysis in sections 3.1 and 3.2. First, we clarify the impact of stable and/or
running conditions and the effect of retransmission mechanism. Fig. 2 depicts
the valid range of controllable benefit b as a function of k when c = 10 and
s = 0.1. Fig. 3 illustrates the corresponding range of x∗

i (i = 1, 2). Note that we

Submitted version



Self-Organized Data Aggregation 7

1

10

100

1000

10000

0 10 20 30 40 50

b

k

1

10

100

1000

10000

0 10 20 30 40 50

b

k

(b) Retransmission case.(a) No-retransmission case.

Supremum satisfying both conditions

Infmum satisfying both conditions

Infmum satisfying stable condition

Supremum satisfying both conditions

Infmum satisfying both conditions

Infmum satisfying stable condition

Fig. 2. The supremum and infimum of b satisfying stable and/or running conditions
(c=10, s=0.1).
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Fig. 3. The supremum and infimum of x∗
i (i=1,2) satisfying stable and/or running

conditions (c=10, s=0.1).

show the results for larger k to reveal the basic characteristics even though they
rarely occur in actual situations. We observe that the supremum of b increases
with k and its has the same characteristic for both conditions. On the contrary,
the infimum is almost constant while satisfying the two conditions. Although
the presence of retransmission does not almost affect the valid range of b, Fig. 3
indicates that the retransmission mechanism narrows the valid range of equi-
librium compared with no-retransmission case. Specifically, x∗

2 must be greater
than 0.505 to satisfy both conditions in retransmission case.

Next, we reveal how c and s affect the valid range of b and x∗
i (i = 1, 2).

Fig. 4 illustrates the supremum and infimum of b satisfying stable and/or running
conditions when c and s vary. We observe that for a specific k, the range of b shifts
up with c. This simply means that b − c should be positive. On the contrary,
increase of s decreases the supremum of b. This is because when senders lose
more energy, temptation b to become an aggregator can be smaller.

Fig. 5 presents the supremum and infimum of x∗
i (i = 1, 2) corresponding to

Fig. 4. We observe that s has more impact on infimum than c. This is mainly
caused by running condition. From Eq. (4), keeping low energy consumption
of a sender is important for prolonging the battery life. We also find that no-
retransmission case has wider feasible area than that with retransmission.
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4 Simulation Experiments by Agent-Based Dynamics

4.1 Agent-Based Dynamics

In evolutionary game theory, the replicator dynamics predicts the macro-level
system behavior which explains the effects of the corresponding parameters be-
haviors. On the other hand, the complementary method: The agent-based dy-
namics is used to understand the micro-level system behavior of the evolutionary
game theory. It explains that with mutual interactions among neighboring nodes
a superior strategy spreads over the network in a hop-by-hop manner.

In agent-based dynamics, in every round, each agent, i.e., node, first inter-
acts with neighboring nodes and determines its strategy for the next round by
comparing its own payoff with that of a randomly chosen neighboring node. The
strategy update of node is conducted in a probabilistic manner where the more
a strategy acquires the payoff, the more it spreads over the network through the
imitation process in a hop-by-hop manner [4].

In what follows, we conduct simulation experiments for two purposes: 1)
validation of analytical results, and 2) evaluations which are derived from micro-
level system behavior.
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Fig. 6. Validity of the theoretic analysis (c = 10, s = 0.1, k = 5).

4.2 Simulation Models

The simulation experiments were conducted with a multi-agent programmable
modeling simulator NetLogo [5] over unit disk graphs. The unit disk graphs are
suitable for abstracting wireless networks because they are generated by ran-
domly located nodes in 2-dimensional space where two nodes are adjacent if the
distance between them is equal or less than a certain threshold, i.e., transmission
range of each node. We set the number N of nodes to 100. The area size was set
to 1 x 1 [km2], and the transmission range of each node was set to 100 [m] in
default. We controlled the average degree k by adjusting the transmission range
of each node adequately. We assumed that the duration of a round was fixed and
each node periodically generated a fixed number of bundles per round. There-
fore, for simplicity, we set c = 10 and s = 0.1 in our simulation experiments. In
the following figures, the average of 100 independent simulation experiments are
plotted.

4.3 Validity of the Theoretic Analysis

Fig. 6 illustrates both analytical and simulation results for three examples se-
lected from the valid parameter settings satisfying both stable and running con-
ditions in the analysis. We observe that the analytical results slightly differ from
the simulation results in both cases. These differences come from the relatively
small system scale (N = 100) and the variance of node degree in the unit disk
graphs. Since these characteristics naturally exist in the real networks, we can
conclude that the analytical results can predict the system behavior with a cer-
tain degree of accuracy.

Next, we evaluate the validity of running condition, Eq. (4). As discussed
in Section 3.2, all nodes can survive forever under appropriate values of the
parameters b, c, and s. Fig. 7 shows the transition of the number of nodes with
positive cumulative payoffs for different x∗

i (i = 1, 2). Note that every node
initially has no payoff. Each node obtains energy supply from the message ferry
only when it acts as aggregator and has at least one sender as its neighbor.
Our aim is to achieve all nodes having positive cumulative payoffs such that

Submitted version



10 Self-Organized Data Aggregation

0

20

40

60

80

100

0 200 400 600 800 1000 1200 1400

N
o

d
es

 w
it

h
 p

o
si

ti
v

e 
cu

m
u

la
ti

v
e 

p
ay

o
ff

s
 

round 

0

20

40

60

80

100

0 200 400 600 800 1000 1200 1400

N
o

d
es

 w
it

h
 p

o
si

ti
v

e 
cu

m
u

la
ti

v
e 

p
ay

o
ff

s
 

round 

x
1
*=0.12, b=12.5

x
1
*=0.0, b=10 x

2
*=0.0, b=10 

x
1
*=0.25, b=16 

x
1
*=0.52, b=24 

(a) No-retransmission case ( The minimum value 

of b satisfying E[p] > 0 is 12.09).

x
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x
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*=0.53, b=12

x
2
*=0.65, b=20

(b) Retransmission case ( The minimum value of b 

satisfying E[p] > 0 is 10.02).

Fig. 7. Transition of the number of nodes with positive cumulative payoffs (c = 10,
s = 0.1, k=5).

they can work permanently if they have a sufficient amount of initial battery
which depends on the parameter settings. Given c = 10, s = 0.1, k = 5, through
theoretic analysis, minimum b, bmin, satisfying Eq. (4), becomes 12.09 for no-
retransmission case and 10.02 for retransmission case, respectively. As shown in
Fig. 7, we observe that these theoretical predictions approximately accord with
the simulation results except for b close to bmin.

4.4 Successful Bundle Transfer

For senders (aggregators), it is desirable that at least one aggregator (resp.
sender) exists as a neighbor for successful bundles transferring. We define the
probability of senders (aggregators) that have at least one aggregator (resp.
sender) in their neighbors as sender (resp. aggregator) success probability. These
probabilities are affected not only by b, c, and s but also by k. Fig. 8 depicts
the probabilities as a function of k. At first, Figs. 8 (a) and 8 (b) show that as
k increases, the probabilities almost become one. This is because each node has
more neighbors in average if k increases. Note that we omit the sender successful
probability in Fig. 8(a) because senders always success in bundle transfer inde-
pendent of neighbors’ strategies with the help of the retransmission mechanism.

Next, comparing Figs. 8 (b) and 8 (c), we observe that small x∗
1 decreases

the probabilities when k is small. Note that we want to keep x∗
1 relatively low as

mentioned above but these results indicates that small x∗
1 and k do not neces-

sarily satisfy the probabilities close to one. To clarify this, Fig. 9 illustrates the
minimum k which satisfies both probabilities ≥ 0.9 as a function of x∗

i (i = 1, 2)
where b is set adequately. We observe that the minimum k increases when x∗

i

(i = 1, 2) decrease but is kept relatively low. This can be confirmed from the
fact that k should be greater than 1/x∗

i (i = 1, 2) for senders to have at least
one aggregator in their neighbors.
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Fig. 8. Sender and aggregator successful probabilities satisfying stable and running
conditions (c = 10, s = 0.1).
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Fig. 9. Minimum k which satisfies sender and aggregator successful probabilities equal
or greater than 0.9, and stable and running conditions (c = 10, s = 0.1).

5 Conclusion

In this paper, we further examined the characteristics of the self-organized data
aggregation scheme proposed in [4]. We first introduced a new game model tak-
ing account of bundle retransmission when a sender cannot find an aggregator
as its neighbor. Then, we derived the stable conditions through theoretic anal-
ysis based on replicator dynamics on graphs. In addition, we discussed running
condition where all nodes can survive without battery outage. To evaluate the
validity of theoretic analysis and reveal feasible parameter settings achieving
successful bundle transfer, we conducted simulation experiments using agent-
based dynamics. Both theoretic and simulation results presented appropriate
parameter settings to achieve a system with desirable characteristics: Stability,
survivability, and success probability in bundle transfer.
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