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Abstract. In delay tolerant networks (DTNs), the opportunity of communi-
cation among isolated networks (clusters) can be provided by a message ferry
which moves around the network to proactively collect bundles and deliver

them to a sink node. When there are lots of distant static clusters, the mes-
sage ferry should visit them efficiently to minimize the mean delivery delay of
bundles. In this paper, we propose an algorithm for determining the optimal
visiting order of isolated static clusters in DTNs. We show that the minimiza-

tion problem of the overall mean delivery delay in our system is reduced to
that of the weighted mean waiting time in the conventional polling model. We
then solve the problem with the help of an existing approach to the polling
model and obtain a quasi-optimal balanced sequence representing the visiting

order. Through numerical examples, we show that the proposed visiting order
is effective when arrival rates at clusters and/or distances between clusters and
the sink are heterogeneous.

1. Introduction. Challenged networks in delay tolerant networks (DTNs) [7,9] do
not well match with the current end-to-end TCP/IP model. A store-carry-forward
message delivery scheme [7] and custody transfer mechanism [10] are used in such
kind of networks to assure reliable bundle transfers among nodes, where a bundle is
the protocol data unit in DTNs. They perform a hop-by-hop reliable bundle transfer
from a source node to the corresponding destination. To provide the opportunity
of communication among isolated networks called clusters, Zhao et al. proposed
message ferry schemes [25, 26], where a special mobile node proactively visits each
cluster.

This kind of networks can be applied to sensor networking among physically
distant regions and communications among rural areas without infrastructure. In
such situations, the system periodically collects information from multiple isolated
clusters. Note that each node in a cluster can directly/indirectly communicate with
other cluster members through multi-hop communication but cannot communicate
with nodes in other clusters due to long distances among them. It is usually assumed
that there exists a fixed base station called sink node, which serves as a connector
to the Internet or to other sink nodes. In such a scenario, a message ferry helps the
inter-cluster communication by acting as a mediator between each cluster and the
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a) TSP scheme which visits clusters along 

with the shortest path that starts from 

and ends at sink node.
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b) Proposed scheme which visits clusters according 

to arrival rates, service time, and distances. The 

line’s thickness implies frequency of visits.

Cluster Sink node

Figure 1. Example of message ferry’s visiting sequence in TSP-
based routing and the proposed scheme. Each arrow indicates the
movement of message ferry and the size of each cluster is propor-
tional to the arrival rate of bundles.

outer world through the sink node as shown in Figure 1. Thus the problem is to
find an efficient route along which the message ferry visits isolated clusters and the
sink node.

Suppose service times (i.e., times needed for collecting bundles from clusters
and unloading them to the sink node) are negligible. In such a case, the shortest
cyclic route seems to be a natural solution, which can be obtained by solving the
traveling salesman problem (TSP) [18]. The shortest cyclic route starts from the
sink node, passes through each cluster at once, and finally returns the sink node
as shown in Figure 1(a). Therefore in terms of the mean waiting time, all clusters
are treated fairly in this strategy. In practice, however, arrival rates of bundles are
different among clusters and service times are not negligible. In such situations, the
TSP-based shortest cyclic route strategy potentially has two drawbacks: 1) The
time spent for one cycle increases with the number of clusters, and 2) if the arrival
rates of bundles at clusters are different from each other and service times are not
negligible, bundles in clusters with high arrival rate have to wait for long time to be
delivered to the sink node while less important visits to clusters with a few bundles
also take place.

For the first issue, the whole system can be divided into multiple groups such
that each group consists of a sink node, clusters, and at least one message ferry.
In what follows, we briefly introduce the guidelines for making groups. Suppose
that the number and positions of clusters are fixed and the number of sink nodes
and message ferries are limited in order to lower the expenses of the system. To
reduce the traveling distance, a group should consist of physically-close clusters.
The adequate place of the sink node depends on the route-setup strategy and the
sink node can be shared by multiple groups. Note here that in any system, the
overall traffic intensity should be less than one, i.e., the total arrival rate of bundles
in the system should be less than the overall collection rate of bundles. Therefore
the number of clusters in a group and the number of message ferries to visit them
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OPTIMAL VISITING ORDER OF ISOLATED CLUSTERS IN DTNS 3

are determined depending on the system scale and the traffic intensity: the number
of message ferries required for a group should be at least larger than the total offered
load in that group.

The second issue is the main topic of this paper. In general, the visiting order of
clusters by the message ferry should be determined based on arrival rates, service
times of bundles, and one-way traveling times between clusters and the sink node.
We assume that all the isolated clusters are significantly apart from each other, e.g.,
in kilometer range. As a result, the inter-visit time of a cluster (i.e., the interval
time between a departure of the message ferry from the cluster and the next return
of the message ferry to that cluster) naturally becomes long. In such a situation,
when the message ferry visits each cluster, it would find bundles that wait for a
long time with high probability. Therefore, in order to reduce the delivery delay, it
might be reasonable to deliver those bundles to the sink node directly, as shown in
Figure 1(b), rather than to visit other clusters while carrying them.

This inter-cluster communication of the message ferry can be best studied using
a polling model [22,23], where the message ferry, clusters, and bundles are regarded
as the server, stations, and customers, respectively, and “service” means that the
message ferry collects (unloads) bundles from (to) the cluster (sink node). The
optimization of the polling order are studied in [3,5,19], which is equivalent to find
an optimal visiting order of stations, which minimizes the expected waiting time of
all customers.

In the study of polling models, the waiting time (i.e., the length of an interval
from the generation of a bundle to the instant at which its service starts) is a
primary performance measure of interest. On the other hand, in our system, we
are interested in the delivery delay, which is defined as the time interval from the
generation of a bundle to the completion of its delivery to the sink node. In this
paper, we show that the mean delivery delay of bundles is given in terms of the
weighted sum of the mean waiting times of bundles at respective clusters. We then
apply the optimization technique in [3,4,6] to our system and obtain a quasi-optimal
visiting order that minimizes the total mean delivery delay of the system. Roughly
speaking, clusters with high arrival rate and/or close to the sink node are visited
more frequently than others in the optimal visiting order.

Besides, the intra-cluster communication can also be minimized by accumulating
bundles to a limited number of aggregators, with the help of the self-organized
data aggregation technique, which is our previous work in [12–14]. The number
of aggregators can be controlled by the amount of energy supplied by the message
ferry. As a result, the message ferry needs to collect the bundles only from the
aggregators.

The rest of this paper is organized as follows. In Section 2. we review the related
work. We describe the mathematical model in Section 3. Sections 4 provides the
optimization problem formulation and its solution method. Section 5 shows the
result of simulation experiments and demonstrates the effectiveness of our scheme.
Finally we conclude the paper in Section 6.

2. Related Work. Zhao et al. first applied the TSP-based routing to highly-
partitioned ad hoc wireless networks [24, 25] by introducing a message ferry as
the traveling salesman. A single ferry is used to communications among fixed nodes
in partitioned networks [24,25] and a heuristic method for finding the visiting order
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4 OPTIMAL VISITING ORDER OF ISOLATED CLUSTERS IN DTNS

is shown. In [25], they also extended their message ferry scheme to that for systems
with mobile nodes.

In [2], Ammar et al. focused on the buffer size required for each node when the
message ferry travels along the shortest cyclic path. They presented an algorithm for
finding the visiting order that minimizes the maximum required buffer size among
nodes. This problem can be regarded as a variant of the TSP problem under the
assumptions of identical arrival rate and negligible service time, and minimizing the
buffer size is equivalent to minimizing the mean waiting time for the ferry visiting.
The objective is similar to ours but this approach is not suitable for scenarios with
heterogeneous arrival rate and non-negligible service time.

Some works tried to improve the scalability and robustness of the system with
the help of multiple message ferries, e.g., multiple ferries for a single route [2]
and multiple ferries for multiple routes [26]. They considered the message ferry
assignment to nodes and route making in such a way that the number of message
ferries is minimized when the number of nodes and the upper bound of the waiting
time are given. Miura et al. considered clustering of highly-partitioned wireless
networks [20]. They assume that there are several partitioned clusters in which
physically-close nodes exist; which is similar to our scenario in Figure 1. They
applied the TSP-based routing by setting the visiting point of the message ferry to
the center of each cluster.

All of the above mentioned studies assume that arrival rates are identical among
nodes and service times are negligible. In practical situations, however, these as-
sumptions do not necessarily hold. In such situations, finding the shortest cyclic
path is insufficient to achieve minimizing the overall mean delivery delay of bundles.
Kavitha et al. first tackled this problem by applying the polling model. In [15–17],
they assumed message ferry-based wireless LANs, where nodes are well scattered
over the area and designed an optimal route (among some given class of trajecto-
ries, e.g., circle and line) that minimizes the overall expected waiting times. The
message ferry can serve nodes within its transmission range at any point on the
path. Their approach can also support both uplink and downlink services.

Although our objective is similar to [15–17], the target scenario is totally different.
It is assumed in [15–17] that nodes can exist at any point in an area according to a
known probability distribution, while we assume that there are partitioned clusters,
each of which consists of physically-close nodes. If the approach in [15–17] is applied
to our scenario, it requires many paths to cover the whole area, each of which is a
circle/line trajectory supported by a single message ferry. In addition, in [15–17] a
cyclic policy is used: The server visits the stations in a predetermined cyclic order.
Hence, if clusters with high arrival rates and those with low arrival rates coexist in
the area, it will not be effective. On the other hand, our proposed scheme applies
a non-cyclic policy, taking account of the arrival rate and location of each cluster.

3. Model. Suppose the system consists of N clusters labeled 1 to N , the sink node,
and a message ferry, all of which have buffers of infinite capacity. The message
ferry periodically visits clusters according to a predefined visiting order (i.e., a
polling table). When the message ferry arrives at a cluster, it serves bundles under
the exhaustive service discipline, i.e., bundles are transmitted successively to the
message ferry, and when there are no waiting bundles, the message ferry leaves the
cluster. It is known that the exhaustive service discipline has the best performance
in terms of the overall mean waiting time [22]. After collecting all bundles at the
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cluster, the message ferry immediately returns to the sink node, unloads all bundles
it carries to the sink node, and goes to the next cluster.

We define Si (i ∈ N ) as the one-way traveling time between cluster i and the sink
node, where N = {1, 2, . . . , N}. We assume that Si (i ∈ N ) is constant because of
the fixed physical route and the constant speed of the message ferry. Bundles at
cluster i (i ∈ N ) are generated according to a Poisson process with rate λi and all of
them are stored at cluster i. Service times Xi (i ∈ N ) of bundles at cluster i follow
a general distribution with finite mean xi and second moment x

(2)
i . Note that Xi

corresponds to the transmission time of a randomly chosen bundle at cluster i. We
assume that high speed channels are available at the sink node, and therefore the
unloading time of bundles at the sink node is assumed to be negligible.

Let ρi = λixi (i ∈ N ) denote the traffic intensity at cluster i. The overall
generation rate of bundles and the overall traffic intensity are denoted by λ =∑

i∈N λi and ρ =
∑

i∈N ρi, respectively. We assume that ρ < 1, which ensures the
stability of the system [22]. In what follows, the system is assumed to be in steady
state.

4. Optimization problem formulation and its solution method. We define
the delivery delay of bundles as the time interval from the generation of the bundle
to the instant at which it is delivered to the sink node. Let Wdeliver,i (i ∈ N ) denote
the delivery time of a randomly chosen bundle generated at cluster i. The goal of
this section is to formulate and solve a mathematical program to find the optimal
visiting order of clusters, which minimizes the overall mean delivery delay E[Wtotal]:

E[Wtotal] =
∑
i∈N

λi

λ
E[Wdeliver,i]. (1)

As we will see, our problem is reduced to the minimization problem of a weighted
sum of mean waiting times of a polling model. Without loss of generality, we assume
that bundles at each cluster are served on an FCFS basis, because E[Wdeliver,i]
(i ∈ N ) is irrelevant to the service order of waiting bundles at cluster i in the
exhaustive service discipline.

We first divide Wdeliver,i (i ∈ N ) into two disjoint parts T ∗
i and Si, where T ∗

i

denotes the sojourn time of a randomly chosen bundle at cluster i. See Figure 2. It
then follows that

E[Wdeliver,i] = E[T ∗
i ] + Si, i ∈ N . (2)

In the exhaustive service policy, the server has to stay at each cluster until it finishes
collecting all bundles. Therefore E[T ∗

i ] is considered as the mean delay cycle with
an initial delay Wwait,i + Xi, where Wwait,i denotes the waiting time of a randomly
chosen bundle at cluster i (see Figure 2). We then have [8]

E[T ∗
i ] =

E[Wwait,i] + xi

1 − ρi
. (3)

Note that Wwait,i is identical to the waiting time in the ordinary polling model.
It then follows from 1, 2, and 3 that

E[Wtotal] =
1
λ

∑
i∈N

λi

(
E[Wwait,i]

1 − ρi
+

xi

1 − ρi
+ Si

)
=
∑
i∈N

ciE[Wwait,i] + α, (4)
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Transmission time

Message ferry’s stay at cluster i
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next cluster j
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Figure 2. Timing chart (exhaustive service policy). When the
message ferry arrives at cluster i, there are already three bundles
waiting for the service. During the service for them, one bundle
is further generated. When there is no bundle to be served, the
message ferry leaves cluster i and visits the next cluster via the
sink node.

where

ci =
λi

(1 − ρi)λ
, i ∈ N , (5)

α =
1
λ

∑
i∈N

(
ρi

1 − ρi
+ λiSi

)
.

Because α is constant regardless of the visiting order of clusters, the minimization
of E[Wtotal] is equivalent to that of the weighted sum of the mean waiting times
E[Wwait,i] in the exhaustive-service polling model.

minimize
∑
i∈N

ciE[Wwait,i]. (6)

In the rest of this section, we follow the lower bound approach in [3,6], and obtain
an approximate solution of 6.

Under the exhaustive service discipline, the mean waiting time E[Wwait,i] (i ∈ N )
at cluster i takes a form: [3]

E[Wwait,i] =
λix

(2)
i

2(1 − ρi)
+

v
(2)
i

2vi
, i ∈ N , (7)

where vi and v
(2)
i (i ∈ N ) denote the first and second moments of interval lengths

from departures of the message ferry from cluster i to the next arrival instants.
Because v

(2)
i ≥ v2

i , the weighted sum of E[Wwait,i] is bounded from below:∑
i∈N

ciE[Wwait,i] ≥
1
2

∑
i∈N

ci

(
λix

(2)
i

1 − ρi
+ vi

)
. (8)

We adopt the approach of [3] minimizing the lower bound given by the right hand
side of 8, instead of

∑
i∈N ciE[Wwait,i].

Let qi (i ∈ N ) denote the mean number of visits at cluster i per unit time.
Because q−1

i (i ∈ N ) is equal to the mean cycle time E[Ci] = vi/(1 − ρi) [22], we
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OPTIMAL VISITING ORDER OF ISOLATED CLUSTERS IN DTNS 7

have

vi =
1 − ρi

qi
. i ∈ N . (9)

Substituting 9 into the right hand side of 8, rearranging terms with 5, and ignoring
constant factors and terms, we obtain the objective function f(q) of the minimiza-
tion problem.

f(q) =
∑
i∈N

λi

qi
, (10)

where q = (q1, q2, . . . , qN ).
The constraints on q are obtained as follows. First of all, qi > 0 for all i (i ∈ N ).

Furthermore
ρ + 2

∑
j∈N

Sjqj = 1,

should hold. Note that 2Sjqj (j ∈ N ) denote the time-average probability that the
message ferry is traveling between the sink node and cluster i. Because ρ represents
the probability of one of the clusters being served. Therefore the sum of them
should be equal to one. In summary, we have the following Problem P .

P : minimize f(q),

subject to ρ + 2
∑
j∈N

Sjqj = 1, (11)

qi > 0, i ∈ N ,

Problem P is easy to solve with the Lagrange multipliers method. We define
L(q, θ) as

L(q, θ) = f(q) + θ(ρ + 2
∑
j∈N

Sjqj − 1),

where θ > 0 denotes the Lagrange multiplier. We then have

∂L

∂qi
= −λi

q2
i

+ 2θSi = 0, i ∈ N ,

from which, it follows that

qi =
√

λi

2θSi
> 0, i ∈ N . (12)

qi in 12 should satisfy 11, so that

ρ +

√
1
θ
·
∑
j∈N

√
2λjSj = 1,

from which, it follows that √
1
θ

=
1 − ρ∑

j∈N

√
2λjSj

,

and therefore we obtain from 12

qi =
1 − ρ∑

j∈N

√
2λjSj

·
√

λi

2Si
, i ∈ N . (13)

Submitted versionSubmitted versionSubmitted versionSubmitted version



8 OPTIMAL VISITING ORDER OF ISOLATED CLUSTERS IN DTNS

Let pi (i ∈ N ) denote the ratio of the message ferry’s visit to cluster i. It then
follows from 13 that

pi =
qi∑

j∈N
qj

=

√
λi/Si∑

j∈N

√
λj/Sj

(14)

14 indicates that the optimal frequency of visits to clusters is determined only by
the ratio of the arrival rate λi (i ∈ N ) to the one-way travel times Si (i ∈ N ),
and it is independent of service times xi (i ∈ N ). Thus, in our proposed scheme,
the message ferry frequently visits clusters with high arrival rates and/or small
distances to the sink node.

The next is to find the visiting order of clusters, whose frequency is given by
14. When non-periodic orders are allowed, this problem is called balanced se-
quence/words and examined in [1, 21], where each cluster is spaced as evenly as
possible in the sequence. In our system, however, the target frequency pi is an
approximate one and the frequency of visits to each cluster is not exactly identi-
cal to the target frequency. Taking account of it, we use the following procedure
for determining the visiting order of clusters, which is a combination of proposals
in [4, 6].
Step 1: Determination of the cycle length and the frequency of visits. We borrow
an idea in [6]. Let M denote an positive integer representing the cycle length in
terms of the number of visited clusters. Also, let mi (i ∈ N ) denote the number of
visits to cluster i in a cycle. We define int(x) (x > 0) as

int(x) =
{

bxc, x − bxc < 0.5,
dxe, otherwise.

For m = N, N + 1, . . ., we seek minimum m = m∗ such that

int(m∗pi) ≥ 1, i ∈ N ,

|m∗pi − int(m∗pi)| ≤ ε, i ∈ N ,

and ∑
i∈N

int(m∗pi) = m∗,

where ε is a predetermined parameter. We then set

M = m∗, mi = int(m∗pi) (i ∈ N ).

Step 2: Determination of the visiting order. We use the procedure given in Appendix
C of [4], which is summarized as follows. Let M = {mi; i ∈ N} denote the set
of the numbers of visits to respective nodes in a cycle. For r ∈ M, let I(r) =
{i ∈ N ; mi = r} denote the set of indices of clusters visited r times in a cycle.
Furthermore, let Q(r) (r ∈ M) denote a repeated string of symbols in I(r), where
each symbol appears r times with equal distance. For example, if I(3) = {2, 4},
Q(3) is given by 242424. For any string A, let |A| denote the length of string A.

1. Prepare Q(r) for all r ∈ M.
2. Choose r ∈ M and D = {r}. Let P = Q(r).
3. If M\D = ∅, stop the procedure, where P gives the visiting order of clusters.
4. Choose r ∈ M \ D and D := D ∪ {r}. We then merge Q(r) into P , and the

resulting string is denoted by P (r), where |P (r)| = |P | + |Q(r)|. The rule of
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Figure 3. Random layout model (N = 10, S1=600, S2=900,
S3=1,000, S4=1,100, S5=1,200, S6=1,300, S7=1,400, S8=1,500,
S9=1,600, S10=2,400, S = 1, 300, C = 13, 304.94). The cluster IDs
are assigned in an ascending order of the distance from the sink
node.

this merging operation is as follows. The kth symbol in Q(r) is identical to
the (k + d(k))th symbol in P (r), where

d(k) = int((k − 1)|P |/|Q(r)|), k = 1, 2, . . . , |Q(r)|.

The rest of symbols in P (r) is identical to those in P , and the order of those
symbols are identical in P and P (r).

5. Let P = P (r) and go to step 3.

5. Simulation results. In this section, we evaluate the performance of our pro-
posed scheme through simulation experiments.

5.1. Simulation setting. We consider a system composed of a sink node and ten
isolated clusters (N = 10). We use two kinds of cluster layouts: Circle-based layout
and random layout models. In the circle-based layout model, ten clusters are placed
equally dividing a circle with a radius of 13km, and the sink node is located at the
center of the circle. On the other hand, the random layout model is illustrated
in Figure 3. The circle-based layout and random layout models correspond to
the cases of identical and different one-way traveling times Si (i = 1, 2, . . . , 10),
respectively. We assume that the message ferry travels at a fixed speed of 10m/s
(i.e., 36km/h). We denote the mean one-way traveling time by S = N−1

∑
j∈N Sj ,

which is fixed to 1, 300 [s] in any case. Transmission times of bundles at all clusters
are independent and identically distributed according to an exponential distribution
with mean xi = 1 [s]. For the settings of λi (i = 1, 2, . . . , 10), we consider four cases,
one is the homogeneous case and other three cases are heterogeneous, as shown in
Table 1. In the following results, we mainly examine how λi and Si affect the mean
delivery delay E[Wtotal] (sec).

We compute the visiting order of clusters according to the procedure in Section 4,
where ε is set to be 0.4. Recall that in the proposed visiting order, the message ferry
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10 OPTIMAL VISITING ORDER OF ISOLATED CLUSTERS IN DTNS

Table 1. Scenarios of λi (N=10, λ=0.76 [1/s]).

Case λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

Hetero.
Descend. .30 .10 .08 .07 .06 .05 .04 .03 .02 .01
Random .02 .05 .30 .10 .08 .07 .04 .01 .03 .06
Ascend. .01 .02 .03 .04 .05 .06 .07 .08 .10 .30

Homogeneous .076

Table 2. Mean delivery delay E[Wtotal] in the circle-based layout
model with homogeneous arrival rates (N=10).

Visiting order E[Wtotal]
Proposal 1-2-3-4-5-6-7-8-9-10- 44,679.25±87.26
Cyclic 1-2-3-4-5-6-7-8-9-10- 44,679.25±87.26
TSP sink-1-2-3-4-5-6-7-8-9-10-sink- 38,290.08±49.84

returns to the sink node before visiting the next cluster, as shown in Figures 1 (b).
For the sake of comparison, we also consider a cyclic visiting order and a TSP-
based routing (cf. Figure 1 (a)). In the cyclic visiting order, the message ferry visits
clusters one by one through the sink node, i.e., 1–sink–2–sink–· · · . On the other
hand, in the TSP-based routing, the message ferry visits clusters according to the
shortest cyclic path that starts from and ends with the sink node. Let C denote the
traveling time of one cycle in the TSP-based routing. We then have C = 9830.92
and C = 13, 304.94 in the circle-based and random layout models, respectively.
For each simulation experiment, we discard the initial interval of 50,000 seconds as
transient period and collect data in the subsequent interval from 50,000 to 6,000,000
(sec). All simulation results are presented with 95% confidence intervals, based on
ten independent simulation runs.

5.2. Performance evaluation. We first evaluate the performance of three schemes
in the circle-based layout, where Si are homogeneous. Table 2 shows the visiting
order and the mean delivery delay E[Wtotal] when λi’s are homogeneous. Note that
our proposed scheme is identical with the cyclic scheme in this case because λi/Si’s
(i ∈ N ) are identical. We observe that the TSP-based routing has the smallest
E[Wtotal] in this scenario.

Next, we examine the influence of the heterogeneity of λi. Table 3 shows the
result in the circle-based layout, where λi’s are set according to the descend-
ing/random/ascending arrival rate scenarios in Table 1. Note that the descending
and ascending scenarios are both extremes and therefore in each scheme, the ran-
dom arrival rate scenario yields the second best mean delivery delay. Even though
the TSP-based routing has the smallest delivery delay, the difference between our
proposed scheme and TSP-based routing becomes small, compared with the homo-
geneous case in Table 2.

The small difference of the results within our proposed scheme comes from a
specific implementation of the procedure for generating the visiting order, where
clusters are always arranged in an ascending order of their indices. If we arranged
clusters in the descending order of their indices in the case of the ascending arrival
rate scenario, we would have the visiting order of 10-9-8-7-10-6-5-9-4-10-3-2-1- and
the result would be identical to that in the descending arrival rate scenario. The
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OPTIMAL VISITING ORDER OF ISOLATED CLUSTERS IN DTNS 11

Table 3. Mean delivery delay E[Wtotal] in the circle-based layout
model with heterogeneous arrival rates (N=10).

λi Visiting order E[Wtotal]

Proposal
Descend. 1-2-3-4-1-5-6-2-7-1-8-9-10- 38,004.41±63.15
Random 3-4-1-2-3-5-6-4-7-3-8-9-10- 38,142.16±38.95
Ascend. 10-9-1-2-10-3-4-9-5-10-6-7-8- 38,246.43±55.56

Cyclic
Descend. 1-2-3-4-5-6-7-8-9-10- 45,353.64±61.46
Random 1-2-3-4-5-6-7-8-9-10- 45,434.70±63.28
Ascend. 1-2-3-4-5-6-7-8-9-10- 45,654.29±53.12

TSP
Descend. sink-1-2-3-4-5-6-7-8-9-10-sink- 36,983.58±82.62
Random sink-1-2-3-4-5-6-7-8-9-10-sink- 36,384.11±33.85
Ascend. sink-1-2-3-4-5-6-7-8-9-10-sink- 33,744.17±68.49

Table 4. Mean delivery delay E[Wtotal] in the circle-based layout
model with one heavily loaded cluster (N = 10, λ = 0.76, λ1 =
0.9λ, λi = 0.1λ/9 (i = 2, 3, . . . , 10)).

Visiting order E[Wtotal]
Proposal 1-2-1-3-1-4- · · · -1-9-1-10- 7072.23±39.45

TSP sink-1-2-3-4-5-6-7-8-9-10-sink- 14901.43±67.89
sink-10-9-8-7-6-5-4-3-2-1-sink- 8285.17±56.17

cyclic visiting order is essentially identical to the ordinary polling model, and the
mean waiting time in asymmetric polling models is known to depend on the visiting
order [11].

Recall that neither the TSP-based routing nor the cyclic visiting order take
account of arrival rates at clusters. Compared with the cyclic visiting order, the
difference between the mean delivery delay of the descending and ascending arrival
rate scenarios in TSP-based routing is significantly large by the following reason. In
the TSP-based routing, the message ferry visits clusters successively while carrying
collected bundles with it, before returning to the sink node. In the descending
arrival rate scenario, the message ferry tends to collect many bundles at clusters
with small indices (i.e., in the former part of the cycle), and it carries them while
visiting other lightly-loaded clusters with large indices. In this way, many bundles
suffer from long delay, which leads to a significant increase of the mean delivery
delay in the descending arrival rate scenario.

Note here that the TSP-based routing is not always superior to our proposed
scheme. For example, suppose 90% of traffic is generated at cluster 1 and the rest
is divided evenly among nine other clusters, while keeping the total traffic intensity
fixed to λ=0.76. Table 4 shows the result. The mean delivery delay in the TSP-
based routing is greater than that in our proposed scheme and in the TSP-based
routing, the direction at which the message ferry moves affects the performance
significantly.

We now turn our attention to the random layout model in Figure 3, where
distances between clusters and between the sink node and respective clusters are
different. Recall that cluster indices are set in the ascending order of Si (i ∈ N ).
Table 5 shows the result for the homogeneous arrival rate scenario. Our proposed
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Table 5. Mean delivery delay E[Wtotal] in the random layout
model with homogeneous arrival rates.

Visiting order E[Wtotal]
Proposal 1-2-7-3-4-5-8-6-1-2-9-3-4-5-10-6- 44,325.52±56.87

Cyclic 1-2-3-4-5-6-7-8-9-10- 49,357.16±49.41
10-9-8-7-6-5-4-3-2-1- 49,416.77±52.19

TSP sink-9-7-2-10-6-5-4-3-8-1-sink- 45,842.34±55.98
sink-1-8-3-4-5-6-10-2-7-9-sink- 45,896.17±78.30

Table 6. Mean delivery delay E[Wtotal] in the random layout
model with heterogeneous arrival rates.

λi Visiting order E[Wtotal]

Proposal
Descend. 1-2-3-7-1-4-5-1-2-8-6- 31,749.81±39.451-3-9-1-2-4-5-1-10-6-
Random 3-2-1-4-3-5-7-6-8-3-2-4-9-3-5-6-10- 33,748.28±45.10
Ascend. 10-1-2-3-4-5-10-6-7-8-9- 41,672.71±70.32

Cyclic

Descend. 1-2-3-4-5-6-7-8-9-10- 45,954.46±92.14
10-9-8-7-6-5-4-3-2-1- 45,922.72±53.58

Random 1-2-3-4-5-6-7-8-9-10- 46,237.65±48.98
10-9-8-7-6-5-4-3-2-1- 46,478.53±87.18

Ascend. 1-2-3-4-5-6-7-8-9-10- 46,961.42±37.85
10-9-8-7-6-5-4-3-2-1- 46,982.49±34.47

TSP

Descend. sink-9-7-2-10-6-5-4-3-8-1-sink- 45,053.78±69.97
sink-1-8-3-4-5-6-10-2-7-9-sink- 47,838.46±77.27

Random sink-9-7-2-10-6-5-4-3-8-1-sink- 45,176.45±78.48
sink-1-8-3-4-5-6-10-2-7-9-sink- 47,615.67±32.09

Ascend. sink-9-7-2-10-6-5-4-3-8-1-sink- 46,776.59±83.44
sink-1-8-3-4-5-6-10-2-7-9-sink- 45,298.15±32.95

scheme is superior to the TSP-based routing, which indicates that serving clusters
close to the sink node more frequently is beneficial to the reduction of the overall
mean delivery delay.

Finally, Tables 6 shows the results when both λi and Si are heterogeneous. In
all arrival rate scenarios, our proposed scheme shows the better performance than
the TSP-based routing, and the difference between the mean delivery delays in our
proposed scheme and the TSP-based routing depends on the scenarios. In general,
a large variation in

√
λi/Si (i ∈ N ) yields the large variance of pi (i ∈ N ), and

it leads to a long visiting order sequence. Performance of our scheme has a strong
correlation to the length of the visiting order sequence and scenarios yielding long
sequences are more preferable for our proposed scheme.

6. Conclusion. In this paper, we focused on a system where a message ferry col-
lects bundles from isolated clusters and delivers those to the sink node, where trans-
mission times of bundles are not negligible. To minimize the total mean delivery
delay of bundles, we proposed an algorithm for obtaining a quasi-optimal visiting
order of clusters, with the help of the optimization technique of the conventional
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polling model. Through simulation experiments, we showed that the proposed vis-
iting order can perform well, especially when the arrival rate and/or distances are
heterogeneous.
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