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Abstract—Communication among isolated networks (clus-
ters) in delay tolerant networks (DTNs) can be supported
by a message ferry, which collects bundles from clusters and
delivers them to a sink node. When there are lots of distant
static clusters, multiple message ferries and sink nodes will
be required. In this paper, we aim to make groups each of
which consists of physically close clusters, a sink node, and
a message ferry. Our main objective is minimizing the overall
mean delivery delay of bundles in consideration of both offered
load of clusters and distance between clusters and their sink
nodes. We first model this problem as a nonlinear integer
programming, based on the knowledge obtained in our previous
work. Because it might be hard to solve this problem directly,
we take two-step optimization approach based on linear integer
programming, which yields an approximate solution of the
problem. Through numerical results, we show the two-step
optimization approach works well.

Keywords-ferry-assisted DTN; grouping clusters; integer pro-
gramming formulation;

I. INTRODUCTION

The current end-to-end TCP/IP model does not adequately
match with delay tolerant networks (DTNs) [2], [3], where
there are no permanent end-to-end connections. Alterna-
tively, a store-carry-forward message delivery scheme [2]
and custody transfer mechanism [4] are used in those
networks to assure reliable bundle transfers among nodes,
where a bundle is the protocol data unit in DTNs. They
perform a hop-by-hop reliable bundle transfer from a source
node to its destination. To provide the opportunity of com-
munication among isolated networks called clusters, Zhao
et al. proposed message ferry schemes [11], [12], where a
special mobile node proactively visits each cluster. This kind
of networks can be applicable to sensor networking among
physically distant regions and communications among rural
areas without network infrastructure. In such situations,
the system periodically collects information from isolated
multi-cluster DTNs, where nodes can only communicate
directly/indirectly with each other within a cluster through
multi-hop communication. It is usually assumed that there
exists a fixed base station called sink node, which serves
as a connector to the Internet or to other sink nodes. In
such a scenario, a message ferry helps the inter-cluster
communication by acting as a mediator between each cluster
and the outer world via the sink node. We call this scenario
ferry-assisted multi-cluster DTNs.

If the arrival rates of bundles at clusters are different from
each other and service times are not negligible, bundles in
clusters with high arrival rate must wait for a long time to
be delivered to the sink node, while less important visits to
clusters with a few bundles also take place. In [6], we have
already proposed a scheme to determine an optimal visiting
order of a message ferry for one group, which minimizes
the mean delivery delay of bundles, i.e., the average time
interval from the generation of a bundle in a cluster to the
completion of its delivery to the sink node. This optimization
problem can be reduced to the minimization problem of
the weighted mean waiting time in the conventional polling
model of queueing theory [10]. The proposed visiting order
is effective, especially when arrival rates of bundles in
clusters and/or distances between clusters and the sink node
are heterogeneous.

When there are lots of distant static clusters with het-
erogeneous offered load, there is potentially a drawback in
designing a route using only one message ferry: The time
spent for one cycle of the route increases with the number
of clusters. This issue is the main concern of this paper. The
whole system is divided into multiple groups, each of which
consists of a sink node, clusters, and one message ferry. We
assume that the sink node is constructed in one of clusters
in each group. In what follows, we call the cluster with
the sink node the base cluster and others group members.
We further assume that high speed channels are available at
the base cluster, so that the offered load of the base cluster
is assumed to be excluded from the total offered load in
each group. Note here that the total offered load handled by
a message ferry should be less than one, and a moderate
intensity, say 0.7 or less, is preferable. Moreover, for given
number and positions of clusters, the total number of sink
nodes (i.e., message ferries and groups) should be limited
in order to suppress the introduction cost of the system.

Our main goal is making groups to minimize the mean
delivery delay of bundles among groups. As mentioned
above, we have already obtained the solution in the case of
one group [6]: We have the explicit objective function that is
a nonlinear function composed of arrival rate of bundles in
clusters and distance between clusters and their sink nodes.
Based on this knowledge, we first model our problem as a
nonlinear integer programming. Due to the complexity of
the objective function, however, it might be hard to solve
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this problem directly. Furthermore, this formulation may
sacrifice the performance of lightly-loaded clusters with long
distances from their base clusters, in order to minimize the
overall mean delivery delay.

To tackle these problems, we introduce two-step optimiza-
tion technique based on linear integer programming. In the
first step, we find the minimum of longest distances between
group members and their base clusters under the constraint
that the offered load in each group is less than a predefined
threshold (e.g., 0.7). For this purpose, we use a variant of
the capacitated vertex p-center problem (CVPCP) in facility
location problems [7], [9]. CVPCP tries to find locations of
p capacitated facilities and assign customers to them in order
to minimize the longest distance between facilities and their
customers, when the locations and capacity of facilities, and
locations and demand of customers are given. The first step
optimization contributes to balancing the longest distance
between a base cluster and its group members among groups.

The second optimization reconfigures the groups in order
to minimize the overall mean delivery delay. Because the
objective function in the original problem is an increasing
function of the square root of the product of group member’s
arrival rates and distances from their base clusters, we
consider minimizing the sum of those products under the
constraint that the longest distance does not exceed the first
step optimization result. We will give some numerical results
to evaluate the characteristics of the obtained groups and
how to find the optimal solution.

Besides, the intra-cluster communication can be efficiently
handled by accumulating bundles from cluster members to a
limited number of nodes called aggregators, with the help of
the self-organized data aggregation technique in our previous
work [5]. As a result, the message ferry needs to collect
bundles only from the aggregators.

In summary, combining the current work with two of our
previous works, we can comprehensively achieve effective
data aggregation in ferry-assisted multi-clusters DTNs: 1)
Making groups and determining base clusters, i.e., sink
nodes according to the current work, 2) obtaining a visiting
order for each group using the visiting order scheme [6],
and 3) electing aggregators in each cluster based on the self-
organized data aggregation technique [5].

The rest of this paper is organized as follows. Section II
provides the problem formulation. In Section III, through
numerical results, we demonstrate the characteristics of
groups and explain how to find out the optimal grouping.
Finally we conclude the paper in Section IV.

II. PROBLEM FORMULATION

A. Overview

Our goal is the development of a method for dividing
clusters into several disjoint groups adequately in terms of
the introduction cost and the total mean delivery delay. For
each group, we select a base cluster, where a sink node is

located, and we assign a message ferry. Recall that the sink
node has a connection to the outer world and can directly
handle the traffic generated in its base cluster via high speed
channels, and the message ferry goes back and forth between
the base cluster and other clusters in order to collect bundles.
The optimal visiting order of clusters in a group, which
results in the minimization of the total mean delivery delay
is obtained according to [6].

In general, the total mean delivery delay of bundles
decreases with the increase of the number of message ferries
(which is equal to the number of groups). Therefore our
problem is multi-objective. In order to restrain the introduc-
tion cost, it is preferable that the number of message ferries
should be minimal within a range that the total mean delivery
delay is allowable. Note that the mean delivery delay in each
group of clusters has the following two features, because
each group of clusters can be viewed as a polling model [6].
1) The total offered load ρ handled by the message ferry
should be moderate (e.g., ρ ≤ 0.7) because the mean
delivery delay is a nonlinear function of the total offered
load ρ, which involves the factor (1− ρ)−1. 2) Travel times
between base cluster and group members linearly affect the
mean delivery delay because they correspond to switchover
times in the polling model.

Based on the above observation, we take the following
approach. We first set the maximum allowable θ of offered
load in each group and determine the lower bound K∗

lower of
the number K of groups. We then attempt to solve a min-
max integer program in order to minimize the total mean
delivery delay of bundles. Note here that the number K of
groups is first set to be K∗

lower, and if the program is not
feasible, we add one to K and solve the program again.
Repeating this procedure, we will have the solution with a
minimum feasible K = K∗

min eventually.

B. Nonlinear integer programming formulation

We assume that there are V clusters labeled 1 to V in
a certain geographical area. Let V = {1, 2, . . . , V } denote
the set of cluster indices. We define d = [di,j ] (i, j ∈ V) as
a matrix of the message ferry’s traveling time di,j between
cluster i and cluster j, where di,i (i ∈ V) is equal to zero.
Also, let ρ = [ρi] (i ∈ V) denote a vector of the offered
load ρi of cluster i. We assume that transmission times
of bundles at all clusters are independent and identically
distributed (i.i.d.) according to a general distribution with
mean hi. Let λi (i ∈ V) denote arrival rate of bundles of
cluster i.

We first find the lower bound K∗
lower of the number K

of groups. Suppose there exist K disjoint, non-empty group
partitions for a given maximum allowable offered load θ in
each group. Without loss of generality, we assume ρ1 ≥
ρ2 ≥ · · · ≥ ρN . If cluster i for some i > K is a base cluster
of group k, there exists a cluster j (j ≤ K) of group k′.
We then swap those two clusters; cluster j becomes a base
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cluster of group k and cluster i joins group k′ as a group
member. This swap yields another feasible group partition
because it decreases the total offered load of group k′ by
ρj − ρi, and when k 6= k′, the total offered load of group k
remains the same. Therefore, we consider only the case that
clusters 1 to K are base clusters in discussing K∗

lower for a
while. If a feasible partition of K groups is given, ρK+1 ≤ θ
and ρK+1 + ρK+2 + · · · + ρV ≤ Kθ. We thus have

K∗
lower = min

1≤K≤V
{K; ρK+1 ≤ θ,

V∑
i=K+1

ρi ≤ Kθ}.

Note that the minimum feasible number K∗
min of groups is

not less than K∗
lower, i.e., K∗

min ≥ K∗
lower.

We define the set of base clusters as K, where |K| = K.
Let V(k) denote the set of clusters in group k, where |V(k)| =
V (k). Let E[W (k)

total] denote the overall mean delivery delay
of bundles of group k. E[W (k)

total] is defined as follows:

E[W (k)
total] =

∑
i∈V(k)−{k}

λiE[W (k)
deliver,i]∑

i∈V(k)−{k}

λi

(k ∈ K),

where the delivery delay E[W (k)
deliver,i] is the average time

interval from the generation of a bundle of cluster i (i ∈
V(k) − {k}, k ∈ K) to the completion of its delivery to the
sink node in the base cluster at group k. The overall average
weighted sum of total mean delivery delay of bundles of all
groups becomes

E[Wtotal] =

∑
k∈K

λ
(k)
totalE[W (k)

total]∑
k∈K

λ
(k)
total

,

where λ
(k)
total =

∑
i∈V(k)−{k} λi.

Our main objective is to create groups of clusters in
order to minimize E[Wtotal]. Recall that minimization of
E[W (k)

total] can be obtained by optimizing the visiting order
of the message ferry in each group k. The optimal visiting
order of the message ferry can be achieved by adopting
the minimization problem of conventional polling model as
described in our previous work [6]. In [6], it is obtained
that by ignoring constant factors and terms, the objective
function of the minimization problem is reduced to

f (k)(q(k)) =
∑

i∈V(k)−{k}

λi

qi
, (1)

where q(k) is a vector of qi (i ∈ V(k) − {k}), which is the
mean number of visits at cluster i per unit time at group k

(k ∈ K), i.e.,

qi =
1 − ρ

(k)
total∑

j∈V(k)−{k}

√
2λjdk,j

·

√
λi

2dk,i
(i ∈ V(k) −{k}, k ∈ K),

where ρ
(k)
total =

∑
i∈V(k)−{k} ρi. Therefore f (k)(q(k)) in (1)

is rewritten to be

f (k)(q(k)) =

 ∑
i∈V(k)−{k}

√
2λidk,i

2

1 − ρ
(k)
total

. (2)

Based on the above discussion, in this paper the objective
function of the grouping problem can be reduced to the
minimization of weighted average of f (k)(q(k)) among all
groups:

A: minimize

∑
k∈K

λ
(k)
totalf

(k)(q(k))∑
k∈K

λ
(k)
total

(3)

subject to xi,j ∈ {0, 1}, ∀i, j ∈ V, (4)∑
i∈V

xi,j = 1, ∀j ∈ V, (5)∑
i∈V

xi,i = K, (6)

where xi,j (i, j ∈ V) are decision variables such that

xi,j =


1, if i = j and cluster i is a base cluster,
1, if clusters i and j are in the same group and

cluster i is a base cluster,
0, otherwise.

(4) and (5) ensure that cluster j is either a base cluster
(xj,j = 1) or a cluster member in the same group as base
cluster i (xi,j = 1 for i 6= j). (6) implies that there are K
base clusters. Therefore K and V(k) can be defined by xi,j :

K = {i; xi,i = 1}, V(k) = {j; xk,j = 1} (k ∈ K).

As (3) is a nonlinear function, it might be hard to solve
Problem A with a straightforward method. Furthermore, the
mean delivery delay of lightly-loaded group members with
long distances from their base clusters may get large because
the minimization of the overall mean delivery delay will be
achieved at the sacrifice of the bad performance of such
clusters.

To tackle these problems, we take a two-step approach
based on linear integer programming. From the original ob-
jective function (3), we expect that achieving the following
two characteristics leads to our objective: a) Reducing and
balancing total offered load among groups under certain
capacity limitation, and b) reducing and balancing the total
traveling distances among groups. In the next subsection,
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we show this can be realized by a two-step optimization
technique based on linear integer programming. Note that
total offered load among groups can be reduced by selecting
clusters with high offered load as base clusters.

C. Linear integer programming formulation for approximate
solution: Two-step optimization

From (2), we observe that the offered load ρ
(k)
total in each

group should be moderate, say, 0.7 or less. We then introduce
the upper bound threshold θ of the offered load in each
group. The first step in our approach is a relief of lightly
loaded clusters. More specifically, given V , K, d, and θ,
we first try to find grouping where the longest distance
between base clusters and their group members is minimized
under the constraint of K and θ. This can balance the
longest distance among groups. Note here that this kind of
problem can be best studied by the capacitated vertex p-
center problem in facility location problems [7], [9]. Hence,
we can formulate the first step optimization as the following
modified version of the capacitated vertex p-center problem.

B: minimize W

subject to xi,j ∈ {0, 1}, ∀i, j ∈ V,∑
i∈V

xi,j = 1, ∀j ∈ V,∑
i∈V

xi,i = K,∑
j∈V

ρjxi,j − ρixi,i ≤ θxi,i, ∀i ∈ V, (7)∑
i∈V

di,jxi,j − W ≤ 0, ∀j ∈ V . (8)

Constraint (7) implies that for a base cluster i, the total
offered load in its group is not greater than θ. Note here
that for i ∈ V such that xi,i = 0, both left and right hand
sides of (7) are equal to zero. Constraint (8) ensures that
the distance between a base cluster and group members in
each group is not greater than W . Note that other constraints
used in Problem B are the same as those used in Problem A.
Recall that the initial value of K is set to be K∗

lower and is
increased one by one to K∗

min, where a feasible solution
is found. The solution gives us base clusters and a group
partition of clusters, which minimize the maximum distance
between base clusters and their group members.

By solving Problem B, we obtain the minimum W = W ∗,
which provides the maximum allowable distance between
group members and their base clusters. Under this constraint,
we then try to minimize the mean delivery delay of bundles.
Unfortunately, however, the objective function of the original
problem is nonlinear and it might be difficult to solve it. We
thus employ the following heuristics. From (2), we observe
that the essential quantity in minimizing the mean delivery
delay is

√
λidk,i for group member i with base cluster k.

Therefore, we reconfigure the groups to minimize the sum of
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Figure 1. Random layout model with V = 50, where the numbers inside
circles imply the cluster IDs.

√
λidk,i under the constraint of K, θ, and W ∗, where W ∗ is

the solution of Problem B. The corresponding optimization
problem is as follows.

C: minimize
∑
j∈V

√
λj

∑
i∈V

√
di,jxi,j

subject to xi,j ∈ {0, 1}, ∀i, j ∈ V,∑
i∈V

xi,j = 1, ∀j ∈ V,∑
i∈V

xi,i = K,∑
j∈V

ρjxi,j − ρixi,i ≤ θxi,i, ∀i ∈ V,∑
i∈V

di,jxi,j − W ∗ ≤ 0, ∀j ∈ V .

Note that in Problem C, the constraints are the same as those
of Problem B except that W = W ∗ is constant.

The remaining problem is finding optimal θ that satisfies
(3). Given xi,j (i, j ∈ V) by solving the two-step optimiza-
tion problem, we can calculate (1) for each group. Therefore
we can find the optimal θ as follows:

1) Set θ to be a maximum allowable offered load, e.g.,
0.7.

2) Calculate the lower bound K∗
lower of the number K of

groups according to the procedure in section II-B.
3) Find the minimum feasible number K∗

min of groups
according to the procedure in section II-B.

4) With the help of line search technique [8], find the
optimal θ = θ∗ ≤ 0.7, which minimizes the value
of the objective function of Problem A. Note that the
finally obtained grouping also minimizes E[Wtotal].

III. NUMERICAL RESULTS

We consider an area of 40 [km] × 30 [km], where
fifty isolated clusters (V = 50) are randomly located, as
illustrated in Fig. 1 and we then set d = [dij ] (i, j ∈ V)
accordingly. For inter-cluster communications, we assume
that each message ferry travels at a fixed speed of 10 m/s
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Table I
SETTINGS OF ρi (V =50).

Case ρ1 ρ2 ρ3 · · · ρ50 ρ
Ascending 0.01 0.02 0.03 · · · 0.50 0.255
Descending 0.50 0.49 0.48 · · · 0.01 0.255

(i.e., 36 km/h). Table I illustrates two settings of ρ for
heterogeneous and moderately loaded cases where ρi is
assigned in an ascending order and a descending order with
cluster IDs, and ρ is 0.255 in both cases. We assume that
transmission times of bundles are i.i.d. according to an
exponential distribution with mean hi = 1 [s] (i ∈ V).
Since ρi = λihi (i ∈ V), the settings of λi (i ∈ V)
become identical to those of ρ in both cases. The total
distance between base cluster k and its group members
is denoted as d

(k)
total. By setting θ = 0.70, we obtained

K∗
lower = K∗

min = 12 according to the procedures in
section II-B. Therefore we fix K = 12 in the rest of this
section. We also found that the minimum feasible θlower of
θ is given by 0.62, so that we consider θ ∈ [0.62, 0.70].

We obtain the groups by solving the two-step optimization
technique using CPLEX [1]. Recall that Problem B provides
temporary groups by minimizing the longest distance W
between base clusters and their group members, while
Problem C reconfigures the groups and provides final results
by minimizing the sum of

√
λidk,i under the constraint

of the allowable longest distance W ∗. Next, we determine
the optimal visiting order of the message ferry in each
group according to [6]. Finally, we conduct the simulation
experiments to obtain E[W (k)

total] of group k and calculate
E[Wtotal].

First, we observe the characteristics of grouping for dif-
ferent settings of θ in Table II for ascending case. To grasp
how the grouping of clusters changes, we show the sum
dtotal of distances dk,i of group members from their base
clusters. As we expected, there is some room to improve
the performance, regardless of θ, and E[Wtotal] decreases
in Step 2. Next, when θ decreases, dtotal monotonically
increases while the weighted average of f (k)(q(k)), which
is the objective function in the original problem, initially
decreases but increases from a certain value of θ. This
suggests that there is an optimal θ∗ = 0.65. We also observe
that E[Wtotal] has the same tendency as the weighted aver-
age of f (k)(q(k)) and the minimum E[Wtotal] is achieved
at θ∗ = 0.65. Therefore, we can obtain the optimal θ
by examining the weighted average of f (k)(q(k)). Because
of the limited search space for θ, this search does not
require much computational overhead: θ should be not more
than a moderate value, e.g., 0.7, and there will be the
minimum feasible θ, θlower. Because we confirm the similar
characteristics in descending case (Table III), we only focus
on ascending case in what follows.

To examine the mean delivery delay in each group, we
show ρ

(k)
total, d

(k)
total, and E[W (k)

total] in Table IV (θ = 0.7),
Table V (θ = θ∗ = 0.65), and Table VI (θ = θlower = 0.62).

Table II
dtotal , E[Wtotal], AND WEIGHTED AVERAGE OF f (k)(q(k)) (K = 12,

ASCENDING CASE).

θ
dtotal [km] Weighted average E[Wtotal] [s]

Step 1 Step 2 of f (k)(q(k)) Step 1 Step 2
0.70 300.1 272.6 8,277.5 7,088.7 6,481.6
0.69 302.8 278.1 8,345.1 6,891.8 6,434.5
0.68 308.9 279.5 8,011.2 6,714.0 6,411.2
0.67 313.5 281.4 7,815.3 6,610.1 6,302.1
0.66 321.7 284.2 6,925.2 6,419.4 5,581.6
0.65 331.2 285.9 6,890.0 5,496.2 5,061.5
0.64 349.5 330.0 8,092.8 6,608.1 6,480.6
0.63 353.8 331.8 8,056.1 6,645.8 6,487.0
0.62 417.1 416.2 9,977.0 8,326.2 8,198.9

Table III
dtotal , E[Wtotal], AND WEIGHTED AVERAGE OF f (k)(q(k)) (K = 12,

DESCENDING CASE).

θ
dtotal [km] Weighted average E[Wtotal] [s]

Step 1 Step 2 of f (k)(q(k)) Step 1 Step 2
0.70 257.2 239.7 7,489.4 6,109.1 5,782.2
0.69 274.6 248.2 7,382.1 5,959.9 5,600.1
0.68 290.4 254.1 6,920.5 5,812.6 5,550.1
0.67 299.0 260.3 6,625.1 5,632.5 5,391.7
0.66 304.9 262.8 6,762.7 5,401.1 5,036.4
0.65 308.9 281.5 6,370.8 5,178.6 4,935.2
0.64 347.8 317.0 7,756.6 6,237.6 5,946.5
0.63 349.7 349.7 8,290.2 7,663.5 7,328.7
0.62 414.5 392.3 9,425.0 7,761.9 7,588.9

We also present the obtained grouping for the optimal case
(θ = 0.65) in Fig. 2. From Table IV, if θ > θ∗, clusters
with lower offered load, e.g., 14 and 32, can become base
clusters, which results in higher average of ρ

(k)
total, i.e, 0.66.

Note that the offered load of base cluster k is not included in
ρ
(k)
total. In addition, ρ

(k)
total is not well balanced: The maximum

difference of ρ
(k)
total among groups becomes 0.12. As a

result, groups with high ρ
(k)
total and large d

(k)
total suffers high

E[W (k)
total], e.g., groups 37 and 38. If θ = θ∗ (Table V), the

average and standard deviation of ρ
(k)
total is improved, i.e.,

0.64±0.02, with a small increase of dtotal: dtotal = 272.6
for θ = 0.7 and dtotal = 285.9 for θ = 0.65. This can
be achieved by selecting clusters with high ρ

(k)
total in the

dense region as in Fig. 2. If θ < θ∗ (Table VI), due to
the severe bound of θ, clusters with high ρ

(k)
total become

base clusters regardless of their locations. As a result, d
(k)
total

steeply increases and thus E[W (k)
total] becomes worse.

IV. CONCLUSION

In this paper, we focused on grouping clusters in ferry-
assisted DTNs in order to minimize the mean delivery delay
of bundles. We first modeled our problem as a nonlinear in-
teger programming for exact solution. Due to the complexity
of this problem, we further introduce two-step optimization
technique based on linear integer programming for approx-
imate solution. Through numerical results, we showed the
two-step optimization can obtain optimal solution by setting
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Table IV
RESULTS OF TWO-STEP OPTIMIZATION (K = 12, θ = 0.7, ASCENDING CASE).

Base cluster ID 14 32 37 38 39 42 43 45 46 47 49 50
ρ
(k)
total 0.64 0.64 0.69 0.69 0.68 0.70 0.69 0.62 0.63 0.69 0.68 0.58

d
(k)
total [km] 22.4 17.3 32.7 30.3 21.4 22.9 24.6 19.2 25.8 23.1 13.4 19.5

E[W
(k)
total] [s] 3,373.1 2,890.5 7,462.7 6,424.4 4,525.1 5,769.2 5,855.5 3,665.7 3,898.2 4,960.5 2,574.5 1,689.6

Table V
RESULTS OF TWO-STEP OPTIMIZATION (K = 12, θ = θ∗ = 0.65, ASCENDING CASE).

Base cluster ID 33 35 37 39 42 43 44 46 47 48 49 50
ρ
(k)
total 0.64 0.64 0.64 0.64 0.58 0.65 0.63 0.64 0.64 0.65 0.64 0.63

d
(k)
total [km] 34.9 35.2 20.9 18.8 24.4 28.2 17.7 26.6 15.7 15.9 8.5 39.1

E[W
(k)
total] [s] 5,373.8 4,568.3 3,036.2 2,414.4 3,091.9 4,272.5 3,015.2 3,385.0 2,353.2 2,929.5 1,001.2 3,128.1

Table VI
RESULTS OF TWO-STEP OPTIMIZATION (K = 12, θ = θlower = 0.62, ASCENDING CASE).

Base cluster ID 38 40 41 42 43 44 45 46 47 48 49 50
ρ
(k)
total 0.62 0.62 0.60 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62

d
(k)
total [km] 32.2 21.4 27.1 36.6 37.3 23.9 42.6 34.6 22.1 57.2 38.7 42.5

E[W
(k)
total] [s] 4,755.9 2,928.3 4,658.6 4,867.4 5,605.6 3,859.9 6,093.8 5,523.8 3,289.3 8,596.9 4,938.5 5,717.9
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Figure 2. Optimal grouping obtained by the two-step optimization with
K = 12 and θ = 0.65 for the ascending case, where rectangles are base
clusters and lines are drawn between base clusters and their group members.

θ adequately, which is realized using the original objective
function as the stopping criterion.
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