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Abstract—The large-scale and trustless nature of the Internet
of Things (IoT) calls for distributed and trustworthy access con-
trol schemes to prevent unauthorized resource access. This paper
proposes a Capability-Based Access Control (CapBAC) scheme
by applying the emerging Ethereum blockchain technology. This
scheme uses Ethereum smart contracts, i.e., executable codes
residing in the blockchain, to store and manage the capability
tokens, i.e., special data structures that maintain the allowed
actions of a user (i.e., subject) on a certain resource (i.e., object).
To provide more fine-grained access control and more flexible
token management, this scheme defines capability tokens in
units of actions, i.e., by dividing a conventional capability token
containing multiple actions into multiple ones with each being
associated with a certain action. In addition, this scheme uses a
delegation graph instead of the delegation tree in existing smart
contract-based CapBAC schemes to store the token delegation
relationship among the subjects. By storing the tokens and the
delegation graph in smart contracts, this scheme allows object
owners to verify the ownership and validity of the capability
tokens of the subjects. To demonstrate the feasibility of the
scheme, we constructed a local Ethereum blockchain network
and conducted extensive experiments.

Index Terms—Ethereum Blockchain, Internet of Things,
Capability-Based Access Control (CapBAC).

I. INTRODUCTION

Thanks to the rapid maturation and commercialization of the
Internet of Things (IoT), the number of devices connected to
the Internet is increasing at an unprecedented speed. It was
reported that over 30 billion IoT devices (e.g., appliances,
wearables and industrial equipment) will be deployed to
form a extremely huge IoT network by 2020 [1]. Despite
the convenience and intelligence brought by these devices
to our life, they are vulnerable to unauthorized access by
malicious users, posing significant threats to our personal and
property safety [2]. For example, malicious users may know
the current situations or the contents of private conversations
inside a home by illegally accessing some appliances [3]–
[5]. In addition, malicious users may also be able to gain
illegal access to the control unit (e.g. brake, accelerator) of
a self-driving car to cause severe accidents intentionally [6].
Therefore, access control, which prevents unauthorized access
by explicitly or implicitly specifying who (subjects) can access
what resources (i.e., objects) under what conditions, has been
a crucial research issue [7]–[9].

Conventional access control schemes are mainly centralized
[10], [11], i.e., relying on a central server for all the access
control-related processing including access right assignment,
management (e.g., update, revocation) and verification. Al-
though such schemes are easier to manage, the server becomes
a single point of failure and may destroy the access control
system once it suffers from man-made/natural disasters or is
compromised by adversaries. Besides, the large-scale and dis-
tributed nature of IoT systems makes it difficult to control the
resource access requests by centralized schemes. Distributed
access control schemes are expected to address the above
limitations of the centralized ones. In distributed access control
schemes, the access control-related processing is conducted
by the majority of the nodes instead of a single server. All
these nodes must reach a consensus on the assigned rights,
access policies and verification results to ensure robust and
trustworthy access control that is resistant to the tampering
of malicious users. This is why there is an increasing interest
in applying the emerging blockchain technology to achieve
distributed and trustworthy access control.

Blockchain was originally invented as a distributed and
tamper-resistant ledger to store financial transfer data (i.e.,
transactions) of cryptocurrency systems, like the Bitcoin [12].
The most appealing feature of the blockchain is its ability
to reach consensuses on its states (e.g., transaction history
and balances) among its participants by using cryptographic
hash functions, even in the presence of attackers. In addition
to transactions, current blockchains, like the Ethereum [13],
can also store executable programs called smart contracts on
the blockchain to provide a distributed storage and computing
platform. A smart contract usually consists of some variables
as its state and several functions called Application Binary
Interfaces (ABIs) to view and change the states. To execute
an ABI to change the state, a transaction must be sent to the
smart contract. Once this transaction is mined and included in
the blockchain, the ABI will be executed by the majority of
the participants to reach a consensus on the latest state.

The goal of this paper is to implement distributed and
trustworthy access control for the IoT using Ethereum smart
contracts. In particular, we focus on the Capability-Based
Access Control (CapBAC) model, because this model can
ensure that each subject uses the least amount of privilege (i.e.,
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TABLE I
SYMBOLS IN ICAP AND IDC TOKENS.

Variable meaning
O The associated object.

V IDS 　 Identifier (ID) of the subject S.
OP A set of authorized actions (e.g., read, write, execute).
C Context information (e.g., time, place, IP address).

V IDP
ID of the parent subject that delegated
the authorized actions to V IDs.

{V IDC} ID of descendant subjects that the V IDs delegates
part or all of the authorized actions to.

Dep Depth of the IDC in the delegation tree.

access rights) necessary to finish its job (i.e., the principle of
least privilege) [14]. In addition, the CapBAC model allows
subjects to delegate access rights from one to another for
flexible and spontaneous access control. Recently, some initial
attempts have been made to implement access control using the
blockchain technology [15]–[21]. Among these schemes, the
Blockchain-ENabled Decentralized Capability-based Access
Control (BlendCAC) scheme in [21] is mostly related to this
paper. We will introduce the BlendCAC scheme including
its main idea and limitations as well as our contributions in
Section II. For the introduction of other schemes, please refer
to the related work in Section V. The remainder of this paper
is organized as follows. Section III introduces the proposed
CapBAC scheme and Section IV presents the implementation
details of the proposed scheme. Finally, we conclude this paper
in Section VI.

II. BLENDCAC SCHEME

To manage the authorized actions (i.e., access rights) of
the subjects for each object, the BlendCAC scheme defines
two types of tokens, i.e., Identity-based Capability (ICap) and
Identity-based Delegation Certificate (IDC). An ICap token
records the authorized actions (e.g., read, write, execute) of a
subject and an IDC token records the delegation relationships
of the authorized actions among the subjects. The following
expressions illustrate the data structures of an ICap token and
an IDC token of a certain subject S, respectively.

ICapO[V IDS ] = {OP,C}, (1)

IDCO[V IDS ] = {V IDP , {V IDC}, Dep}, (2)

where the meanings of the symbols are described in Table I.
Using these tokens, the BlendCAC scheme manages the

capabilities of subjects and their delegation relationships for
each object by a delegation tree. Fig. 1 shows an example
of the delegation tree with three subjects A, B and C. This
tree shows that subject A, the owner of the object, delegates
its read and write rights to subject B and exe (i.e., execute)
right to subject C. The parent subjects of B and C are set
as A due to the delegation. Consider now the case where B
needs to delegate its read right to C. In this case, should A
or B be the parent subject of C? We can see that neither A
nor B as the parent subject cannot record all the delegation
information completely. A similar problem arises to the Dep
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Fig. 1. Delegation tree in the BlendCAC scheme.

information. As a result, a subject cannot obtain rights from
more than one subject due to the contradiction/ambiguity
about the delegation information. In addition, to complete a
delegation, the related ICap and IDC tokens must be updated
synchronously. However, this requirement cannot always been
satisfied in the blockchain system, due to the difference of the
times when the two transactions for updating the tokens are
included into the blockchain.

To address the above two main limitations of the BlendCAC
scheme, we propose a novel smart contract-based CapBAC
scheme with more fine-grained capability management and
more flexible capability delegation. More specifically, we first
define the capability tokens in units of authorized actions, i.e.,
in the manner of one token per action instead of one token
per subject as in the BlendCAC scheme. Second, we use one
type of token to summarize the information of capabilities
and delegation relationship so as to update these information
simultaneously. Finally, we manage the delegation relationship
of the subjects by a delegation graph instead of the delega-
tion tree in the BlendCAC scheme to enable more flexible
capability delegation. Compared with the BlendCAC scheme,
the proposed scheme also provides the functionality of adding
new authorized actions.

III. PROPOSED CAPBAC SCHEME

This section introduces the proposed CapBAC scheme in-
cluding the structure of the capability token, the delegation
graph and the main functions.
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Fig. 2. Delegation graph of the proposed CapBAC scheme.

A. Capability Token Structure and Delegation Graph

The idea of constructing capability tokens is to split the
capability tokens of the BlendCAC scheme into multiple ones
based on the authorized actions with each being associated
with an action. Thus, each token can be uniquely identified
by the ID of the subject V IDS and an action OP , as shown
in the following expression.

CAPSO[V IDS ][OP ]={C, V IDP , {V IDC}, Dep,DR,RR},
(3)

where the meaning of O, C, V IDP , {V IDC} and Dep is
described in Table I.

Note that this paper uses the Ethereum account addresses
as the ID information of both subjects and objects. The field
DR indicates whether the owner of the token (i.e., V IDS)
can further delegate it to other subjects. Similarly, the field
RR indicates whether the subject V IDS can revoke the
delegated tokens from the descendant subjects in {V IDC}.
This structure allows each subject to own multiple tokens and
to flexibly delegate authorized actions to and from multiple
subjects. In addition, we can use only one type of token
for each object to manage the capabilities of the subjects,
and construct a delegation graph for managing the delegation
relationships.

Fig. 2 illustrates a simple example of the delegation graph
for an object O with three subjects A, B and C. Subject
A, the owner of the object, has three tokens with authorized
actions read, write and exe, and delegates the read and write
tokens (resp. exe token) to subject B (resp. C). Again, we
consider the case where B needs to delegate its read token
to C. Because each token is independent of the others, the
delegation causes no contradiction or ambiguity about the
delegation information. After the delegation, C is appended
to the set of descendant subjects (i.e., {V IDC}) of the read
action of B, and B becomes the parent subject of C in terms of
the read action. Accordingly, the depth of the delegated read
token of C is increased by 1 compared with that of B. To
manage the tokens and delegation graph, we deploy a smart
contract on the Ethereum blockchain, the main functions of
which are described in the following subsection.

B. Main Functions

The proposed CapBAC scheme provides the following main
functions including token creation, token delegation, token
revocation and token verification. Each function is introduced
as follows.

1) Token Creation: Different objects require different sets
of authorized actions. When the current set of actions is not
enough to support new applications, some new actions may
be needed. In this case, the function of token creation can
be used. The smart contract provides a createAction() ABI for
this function. Only the owner of the objects has permissions to
execute this ABI. When executing this ABI, the owner needs
to send a transaction containing the information defined in (3).

2) Token Delegation: Token delegation is a fundamental
and critical function of CapBAC schemes to support flexi-
ble and spontaneous access. Subjects can gain access rights
through the tokens delegated by other subjects without the in-
tervention of the owner, improving the scalability of the access
control scheme. The smart contract provides a delegation()
ABI to enable the token delegation. Only the owner of the
token can execute this ABI by sending a transaction with the
required information.

3) Token Revocation: When the delegator (i.e., the subject
that delegates the token) of a token decides that the current
owner has no access permissions any more, it can revoke the
token to avoid token abuse. The smart contract provides two
ABIs, i.e., singleRevocation() and allChildrenRevocation(), to
support the token revocation. The singleRevocation() ABI
revokes the tokens from the children of the delegator, while
the allChildrenRevocation() ABI revokes the tokens from all
the descendants.

4) Token Verification: When accessing an object, a subject
needs to hand the related token to the object’s owner, which
then performs the token verification to confirm that the subject
has the required access rights. The smart contract provides an
accessRequest() ABI for the token verification. Any subject
can execute this ABI by offering the required information like
the subject’s ID and the action to perform via a transaction.
The transaction will be mined, included into a block and
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Fig. 3. Experiment environment.

broadcasted to most of the nodes in the system. During this
process, each node that receives this transaction will execute
the ABI to confirm whether the subject has the required access
rights. This ensures that no nodes can deceive others with
wrong processing results, achieving robust and trustworthy
access control. After the verification of the token, the results
will be returned to both the subject and the object.

IV. IMPLEMENTATION

In this section, we implement the capability, delegation
graph and functions introduced in Section III to demonstrate
the feasibility of the proposed CapBAC scheme.

A. Ethereum Private Network

As shown in Fig. 3, we built a private Ethereum blockchain
network using one Macbook Pro (CPU: 3.1 GHz Intel Core i5,
Memory: 8 GB), one Macbook Air (CPU: 1.8 GHz Intel Core
i5, Memory: 8 GB) and two Raspberry Pis (CPU: 1.4 GHz
ARM Cortex-A, Memory: 1 GB). One Pi works as the object
and the other devices work as the subjects. Besides, the Mac-
book Pro also plays the role of the owner entity of the object.
To form a private Ethereum blockchain network, each device
maintains a local copy of the blockchain and interacts with
the blockchain (e.g., send transaction, obtain access result)
through a javaScript program based on the web3.js package
[22]. The Macbook Pro and Macbook Air serve as miners
in this private Ethereum blockchain network. We created
Ethereum accounts addressA, addressB and addressC for
the Macbook Pro, Macbook Air and the subject Raspberry Pi,
respectively, the information of which is summarized in Table
II.

B. Token Creation

At the beginning of the experiment, the owner entity with
address addressA registered a smart contract to store and
manage the capability tokens and the delegation graph. The
owner entity then created new tokens by executing the cre-
ateAction() ABI. Fig. 4(a) shows the information returned by

TABLE II
ETHEREUM ADDRESSES OF THE SUBJECTS.

Variable Address
addressA 0x9bE252cf45F6daa4680edeC081d7A1Bc1a92Cd6f
addressB 0xF59c4bf63FEB4ce4df4cD0E5facAE2eA95448e85
addressC 0x28bBa96539A24a98b3e0e3d00F4C02e201c3b080

(a) Token information for a newly-created read token.

(b) Token information for a non-existent write token.

Fig. 4. Token creation by the owner entity addressA.

calling the getCap() ABI via the javaScript program after
the owner entity created a new read token for the subject
addressA (i.e., the owner entity). The token states that the
subject addressA has read right to the object. It can also
delegate this token to other objects and revoke the token from
its descendants. At this point, the token has depth depth = 0
and maximum depth maxDepth = 5, which means that the
token can be further delegated to at most five generations.
Also, we can see that the token has no parents and no children.
Fig. 4(b) shows the result of calling the getCap() ABI to query
a token (i.e., the write token) that does not exist or has not
been created on the blockchain. We can see that all fields are
set as “empty,” since the javaScript program cannot fetch any
information from the blockchain.

C. Token Delegation

After creating new tokens, the owner entity addressA then
delegated the tokens to other subjects. Fig. 5(a) and Fig.
5(b) show the token information of the subject subjectB
before and after the owner entity delegates the read token
to it, respectively. We can see that the right field of the read
token changes from false to true after the delegation, which
means that the delegation successfully delivers the read right
to the subject addressB. In addition, the depth, maxDepth and
parent fields are changed accordingly. Note that the fields of
“delegationRight: true” and “revocationRight: true” indicate
that the subject addressB can delegate the token to other
subjects and revoke the token when necessary.
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(a) Token information of addressB before delegation.

(b) Token information of addressB after delegation.

Fig. 5. Delegation of read token from subjects addressA to addressB.

D. Token Revocation

Suppose that the subject addressB further delegated the
read token to another subject addressC. At this point, the
token information of the subjects addressB and addressC is
shown in Fig. 6(a). When the token delegator (i.e., subject
addressA) decides to revoke the token from the subject
addressB but allow the subject addressC to keep the token,
the delegator executes the singleRevocation() ABI. Fig. 6(b)
shows the token information after the execution of the ABI,
where only the token information of subject addressB is
deleted. Note that the parent of subject addressC is changed
from addressB to addressA, and thus the depth is also
decreased by one. On the other hand, if the delegator wants
to revoke the tokens from both subjects addressB and
addressC, the delegator executes the allChildrenRevocation()
ABI. Fig. 6(c) shows the token information after the execution
of the ABI, where the token information of both subjects is
deleted.

E. Token Verification

After receiving the read token, the subject addressB can
pass the token to the smart contract to verify that it has the
read right when it wants to read the object. Fig. 7(a) depicts
the result when the subject addressB sent the read request.
The result shows that the subject addressB is allowed to
read the object. For comparison, Fig. 7(b) depicts a rejected
execution request when the subject addressB does not own
the corresponding token.

V. RELATED WORK

In [15], a Bitcoin-like blockchain was implemented to
achieve access control in a smart home application based on
the Access Control List (ACL) model. The authors deployed a
local blockchain in each home to store the ACL that controls
the access requests from inside and outside of the home. Since
the blockchain is maintained only by a single miner and the
critical mining process is eliminated, the access control in each

(a) Token information of addressB and addressC
before revocation.

(b) Token information of addressB and addressC
after singleRevocation().

(c) Token information of addressB and addressC
after allChildrenRevocation().

Fig. 6. Revocation of read token.

home becomes centralized and untrustworthy. The authors in
[16] used the Bitcoin transactions to store access policies for
an existing Attribute-Based Access Control (ABAC) scheme.
In the ABAC model, each policy combines the attributes
of subjects, objects, actions and context to provide dynamic
and fine-grained access control. When receiving an access
request, the ABAC scheme retrieves the related policies from
the blockchain to perform the access control. Similar to [16],
the Bitcoin transactions were used to store the tokens of the
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(a) Read request.

(b) Execution request.

Fig. 7. Access result when subject addressB sends requests.

CapBAC model. By sending transactions among the subjects,
the capability tokens can be delegated from one subject to
another. When accessing an object, the subject passes its own
capability token to the object owner, who then performs the
access control by checking the validity of the token.

Recently, the Ethereum smart contract-based access control
schemes have attracted considerable attentions. In [18], an
ACL-based IoT access control framework was designed using
multiple smart contracts. Each contract stores an ACL and the
corresponding access control ABI for one subject-object pair.
The authors also provided implementations to demonstrate
the feasibility of the framework.In [19], a smart contract was
deployed to maintain the roles assigned to each user in a Role-
Based Access Control (RBAC) model, such that any service
provider can verify the users’ ownership of roles when provid-
ing services. An ABAC scheme was proposed in [20], which
stores the URL links of policies on the blockchain and also
deploys a smart contract for access control. When accessing
an object, a subject sends the link of the related policy to the
smart contract, which then retrieves the policy from external
databases to achieve the access control. However, adversaries
may be able to tamper with the polices without changing the
URL links, resulting in untrustworthy access control.

VI. CONCLUSION

This paper proposed a Capability-Based Access Control
(CapBAC) scheme by using Ethereum smart contracts to
store and manage the capability tokens. Compared with the
existing BLockchain-ENabled Decentralized Capability-based
Access Control (BlendCAC) scheme, this scheme is expected
to achieve more fine-grained access control and more flexible
token management by defining capability tokens in units
of actions and using a delegation graph to store the token
delegation relationship among the subjects. Experiments based
on a local Ethereum blockchain were conducted and the results
demonstrated the feasibility of the scheme.
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