
Proxy Caching Mechanisms with Video Quality Adjustment

Masahiro Sasabe, Naoki Wakamiya, Masayuki Murata, and Hideo Miyahara

Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka,
Osaka 560-8531, Japan

ABSTRACT

The proxy mechanisms widely used in WWW systems offer low-delay data delivery by a means of “proxy server”. By
applying the proxy mechanism to the video transfer, we expect a real-time and interactive video streaming without
introducing extra load on the system. In addition, if the proxy appropriately adjusts the quality of cached video data
to the user’s demand, video streams can be delivered to users considering their heterogeneous QoS requirements.
In this paper, we propose proxy caching mechanisms that can achieve a high-quality video transfer considering the
user’s demand and the available bandwidth. In our system, a video stream is divided into pieces. The proxy caches
them in local buffer, adjusts their quality if necessary, transmits them to users, replaces them with cached data,
and retrieves them from the video server, considering user’s requirement. We evaluate the proposed video caching
mechanisms and compare their performance in terms of the required buffer size, the play-out delay and the video
quality. Consequently, the validity of the video quality adjustment in the proxy is confirmed.

Keywords: proxy cache, video streaming, QoS, quality adjustment

1. INTRODUCTION

With the growth of computing power and the proliferation of the Internet, many distributed multimedia applications
have been introduced to users. However, those applications inject considerable multimedia traffic into the Internet
and cause serious congestions. As a result of congestion, the performance of conventional data applications deterio-
rates due to the congestion control mechanism such as TCP’s. In addition, multimedia applications also suffer from
increased transfer delay and frequent packet loss that affect timeliness, interactivity and media quality.

The proxy mechanisms widely used in WWW (World Wide Web) systems offer low-delay data delivery by a
means of “proxy server”. By applying the proxy mechanisms to the video transfer, we expect that a real-time and
interactive video streaming can be performed without introducing extra load on the system. However, a current
proxy system cannot be employed because it only handles multimedia files whereas a single video stream sometimes
amounts to several tens of giga-bytes. Furthermore, in the case of video delivery service, the client’s request on
the video quality considerably differs due to heterogeneity in the available bandwidth, end-system performance and
user’s preference on the perceived video quality. Considering those facts, there have been several research works on
video proxy caching mechanisms.1–4 For example, a multimedia proxy caching mechanism is proposed by Rejaie
et al.1 It uses layered video data to satisfy heterogeneous quality requests . The proxy retrieves the video data
layer by layer and segment by segment, considering the availability of bandwidth among the server, the proxy and
the clients. They claim the effectiveness of their algorithm in term of the “completeness”, which stands for the
percentage of cached data, and the “continuity”, which represents the smoothness of cached data. However, both
of these metrics are only related to the efficiency of cached data and user’s impression on the video quality is not
considered.

In this paper, we propose proxy caching mechanisms which accomplish a high-quality and low-delay video stream-
ing service while meeting user’s demands and available bandwidth. The proxy in our system can adjust cached or
retrieved video data to the user’s request by means of QoS filtering techniques such as frame dropping, low-pass and
re-quantization filters.5 The video data are divided into segments, each of which corresponds to a set of pictures,
intending an efficient use of the cache buffer. Cached data are helpful to reduce response time and accelerate the
video playout. However, careful considerations on several issues related to video caching are indispensable to avoid

Further author information: (Send correspondence to m-sasabe@ics.es.osaka-u.ac.jp)
E-mail: {m-sasabe,wakamiya,murata,miyahara}@ics.es.osaka-u.ac.jp
URL: http://www.nal.ics.es.osaka-u.ac.jp

Submitted version

� � � � � �

� � � � � 	

� � � � � 	
 � 	 � � �

� � � � � � � �

� � � � �
� � � � � � � � � 	 �

� � � � � � � � � � � 	 � �

� � � � � � � 	 � �

! " # � � 	 $ � � 	

� � � � � � % � & & � �

' � () * � �

� � " � � � � 	 � � � $

� � � "

+ � � � � � � � � 	 �

� � � � � � � � � � � 	 � �

, � � - � � � � � " �

� � � � � � � � � � � 	 � �

. � � � � � � � � 	 �

� � � � � � � � � � 	 � �

/ � � - � � � � � " �

� � � � � � � � � � 	 � �

0 � � - � � � � � " �

� � � � � � � � � � � 	 � �

1 � � � � � "

Figure 1. Video Streaming System

a waste of buffer capacity and bandwidth. Those include the data retrieval; how high the quality of video data to
retrieve from the server must be in order to satisfy the current and future demands, and the buffer management;
which cached data should be shrunk or thrown away to store the newly retrieved data. In addition, we should also
consider the effective use of network bandwidth and the heterogeneity of clients. Coping with those problems, we
propose several caching mechanisms for video proxy with quality adaptation capability, evaluate and compare them
through simulation experiments in terms of the required buffer size, the play-out delay and video quality.

The rest of the paper is organized as follows. In section 2, we describe our assumptions on a video streaming
system and propose proxy caching mechanisms with video quality adjustment. Next in section 3, we conduct
simulation experiments to evaluate our proposed mechanisms. Finally, we conclude this paper and introduce some
future research works.

2. VIDEO STREAMING SYSTEM WITH PROXY CACHE

Figure 1 illustrates our video streaming system. Each client is connected to the proxy cache server. The client begins
with establishing a connection to the proxy for the video streaming service, then requests the video data in a unit of
a set of pictures. The request on the quality of the video data reflects the user’s preference, the system constraints
and the available bandwidth. For example, a user with a high performance computer would prefer high resolution
and smooth video play out. However, such a demand cannot be satisfied if he is connected to the proxy via, e.g.,
33.6 Kbps telephone line. In our evaluations, available bandwidth dominates the video quality assuming that users
are tolerant of the quality distortion and the relatively high performance system are used as clients’ end-systems.

The available bandwidth for the video streaming corresponds to the allocated bandwidth among server, proxy
and client if the network offers a bandwidth reservation mechanism. Another possible case is that the underlying
transport protocol controls the sending rate. In most of the cases, multimedia applications prefer UDP than TCP
as a transport protocol to avoid the unacceptable delay introduced by the congestion control and the retransmission
mechanism of TCP. However, it has been pointed out that greedy and non-cooperative UDP traffic would dominate
network bandwidth and the performance of TCP connections considerably deteriorates. For multimedia video
transfer, several rate control algorithms such as MPEG-TFRCP (TCP-Friendly Rate Control Protocol for MPEG
video transfer)6,7 or TFRC (TCP Friendly Rate Control)8 have been proposed aiming at fairly sharing the network
bandwidth among conventional data applications and real-time multimedia applications. Considering the current
Internet environment, the underlying transport protocol must be “TCP-friendly” and regulate the sending rate
according to the network condition.

Submitted version

Table 1. cached data table

GoP size quality quality of receiving data
1 a A B
2 b C 0
3 0 0 D
...

...
...

...

2.1. Proxy Caching Mechanisms with Video Quality Adjustment

In our system, considering the data structure of MPEG-2 video and the re-usability of the cached data, the video
stream is divided into GoPs (Group of Pictures), each of which corresponds to a set of pictures. A client periodically
requests proxy to send a GoP. The quality of the GoP is determined based on the available bandwidth specified by an
underlying protocol, i.e, TFRC. However, TFRC determines sending rate independently of upper-layer applications.
Since it is not preferable to directly reflect the TFRC rate to the video quality, the TFRC rate observed at the
moment when the client issues a request is regarded as available bandwidth on a path between the proxy and
the client. Based on the available bandwidth, the quality of GoP which can be transferred within one GoP-time
is determined. The GoP-time is given by dividing the number of pictures in a GoP by the frame rate. In our
evaluations, the GoP has 30 pictures is played out at 30 frames per second. Thus, one GoP-time is equal to one
second.

The proxy maintains tables for each video stream and possesses informations on cached data (Table 1). Those
include the GoP number, the size and the quality of the cached GoP and the quality of GoP under transmission. On
receiving the request, the proxy compares it to a corresponding entry of the table. If the quality of cached data can
satisfy the request (cache hit), the proxy reads out and adjusts the cached data to the request and transmits it to the
client. Video quality adjustment is performed by means of the re-quantization filter5 which controls the quantizer
scale, that is, the degree of the quantization. An appropriate quantizer scale is easily derived using relationship
among quantizer scale, average rate and average video quality.9

Otherwise, the proxy retrieves a video data of suitable quality from the server. The data retrieval is performed on
a session established between the server and the proxy for the client whose available bandwidth is also determined by
the underlying protocol i.e., TFRC in our case. In determining the quality of the GoP, the proxy takes into account
the client’s request, the availability of bandwidth and re-usability of cached data. Then, the newly obtained GoP is
stored in the cache. If there is not enough room, one or more cached GoPs are replaced with the new GoP. Cached
data are useful to reduce the data transfer delay, but further reduction can be expected if the proxy aggressively
retrieves GoPs in advance using the residual bandwidth. In the following subsections, we propose several algorithms
for quality determination, prefetching and replacement.

2.2. Data Retrieval with Consideration on Client’s Request

When the cache cannot supply the client with the GoP of the requested quality, the proxy should retrieve the data
whose quality reflects the re-usability of cached data, client’s request and available bandwidth. Since the available
bandwidth for the data retrieval from the server is determined regardless of that between the proxy and client, the
proxy cannot always satisfy the client’s demand even if it retrieves video data from the server. We introduce a
parameter α, which is given as the ratio of the quality that the proxy can provide to the request.

α =
max(Qsp(i, j), Qcache(i, j))

Qpc(i, j)
(1)

where j is the GoP number that the client i requires. Qsp(i, j) stands for the quality of GoPj that can be transfered
from the server to the proxy within a GoP time and is given as a reciprocal of a quantizer scale determined from
the available bandwidth between the server and proxy. The quality affordable on the path between the proxy and
the client is expressed as Qpc(i, j) and is regarded as the clienti’s request on GoPj . If exists, the quality of a cached
GoPj , Qcache(i, j), is obtained from a corresponding entry of the cached data table. Otherwise, Qcache(i, j) is zero.
In this subsection, since we consider a case of the cache miss, Qcache(i, j) < Qpc(i, j) holds.

Submitted version

When α ≥ 1, that is, the proxy can provide the client with the GoP of the desired quality, we have three
alternatives of determining the quality of GoP to request, Qreq(i, j).

method1: A possible greedy way is to request the server to send GoPj of as high quality as possible. This
strategy seems reasonable because cached GoPs can satisfy the most of the future requests and probability of cache
misses becomes small. Then, the request Qreq(i, j) becomes

Qreq(i, j) = Qsp(i, j) (2)

method2: When the available bandwidth between the server and proxy is extremely larger than that between
the proxy and client, method 1 cannot accomplish at effective use of bandwidth and cache buffer. Thus, we propose
an alternative which determines the quality Qreq(i, j) based on prediction of demands on GoPj .

Qreq(i, j) = min(max
k∈S,0≤l≤j

(Qpc(k, l), Qsp(i, j))) (3)

where S is a set of clients which are going to require GoPj in the future. The clienti is also in S.

method3: To accomplish a further efficient use of the cache, it is possible to request GoPj of the same quality
that the client requests.

Qreq(i, j) = Qpc(i, j) (4)

With this strategy, the number of cached GoPs increases and the probability of cache misses is expected to be
suppressed as far as the future requests can be satisfied with them.

In some cases, both cached and retrieved GoP cannot meet the demand (α < 1). One way is to request the
server to send GoP of the desired quality, but it may cause undesirable delay. The other is to be tolerant the quality
degradation and accept the GoP whose quality is lower than the request. We introduce another parameter β to tackle
the problem. β is defined as the ratio of the acceptable quality to the demand and expresses the client’s insistence
on the video quality. Clients with β close to one want to receive the video data in accordance with the request
at the risk of unacceptable transfer delay. On the other hand, those who emphasis timeliness and interactivity of
applications will choose β close to zero.

First we consider the case that the quality of a cached GoP can satisfy the client, but is still lower than the
request (β ≤ Qcache(i,j)

Qpc(i,j) ≤ α < 1). In such a case, in order to effectively reuse the cached data, the proxy only sends
the cached GoP to the client regardless of the quality of the GoP the server can provide, Qsp(i, j). When the quality
of the cached GoP is not high enough (Qcache(i,j)

Qpc(i,j) < β ≤ Qsp(i,j)
Qpc(i,j) = α < 1), the proxy requests the server to send

GoPj whose quality is equal to Qsp(i, j).

Qreq(i, j) = Qsp(i, j) (5)

Finally, if the proxy cannot provide the client with a GoP of satisfactory quality, that is, α < β, it requests the
server to send the GoP of the minimum quality which is expected not to cause a cache miss.

Qreq(i, j) = β · Qpc(i, j) (6)

2.3. Prefetching Mechanism

To reduce the possibility of cache misses and avoid the delay in obtaining missing data from the server, the proxy
prefetches data that clients are going to require in the future. On receiving a request on GoPj from the clienti, after
checking the cache table for GoPj , the proxy first compares the minimum requirement β ·Qpc(i, j) to the quality of
cached GoPs Qcache(i, k) and that of receiving GoPs Qrec(i, k) (j + 1 ≤ k ≤ j + P). Here, P is the size of a sliding
window called a prefetching window, which determines the range of examination for prefetching. If there exists any
GoP whose quality is lower than the minimum, a data retrieval mechanism is triggered. The mechanism is the same
as one explained in subsection 2.2 except that the available bandwidth to prefetching is the remainder of bandwidth
between the server and the proxy.

Submitted version

� � � � � " �) � � � � 	 � � 	 � � � � � � � � � 	 � 2 � � � � � 	 �

� � � � � " �) � � � � 	 � � 	 � � � � � � � � " � � � � � � � 	 � 2 � � � � � 	 �

� 	 � � 	 (� "

3 � � � 4 � �

� � � � � 	 � 0 � � � � � 	 � � � � � � � 	 � +

� � � � � � 	 �

� � � � � " �) � � � � 	 � � � 	 � 2 � � � � � 	 �

Figure 2. Priorities of cached data

2.4. Replacement Algorithm

When the cache has a limited capacity, a replacement of cached data should be considered to accomplish the effective
use of storage. In storing a newly arrived GoP into the cache whose residual capacity is not sufficient, some cached
GoPs must be thrown away. We propose a replacement algorithm of cached data with consideration of size, quality
and re-usability of data.

First, the proxy assigns priority to cached data. GoPs requested by clients at the moment of the replacement
have the highest priority and are never be thrown away from the cache. The GoP resides at the beginning of
the stream is also assigned the highest priority to provide potential clients with a low-latency service. The second
important GoPs are those in the prefetching windows following the most important GoPs. The other GoPs are with
no priority.

The candidate GoPs for replacement are chosen one by one until the sufficient capacity becomes available. In
Fig. 2, we show an example of candidate selection. A cached GoP, which locates at the end of longest succession of
un-prioritized GoPs, is regarded as the least important and becomes the first candidate as indicated as “1” in the
figure. Among successions of the same length, one closer to the end of the stream has a lower priority. The proxy
first tries the quality adjustment to decrease the size of the candidate if it is larger than the retrieved GoP. Since
it is meaningless to hold GoP whose quality is smaller than Qreq(i, j) determined by Eq.(3), no further adjustment
is performed and the GoP is thrown away from the cache. If it is insufficient, the proxy chooses the next candidate
and applies the same techniques. Finally, the capacity for the newly arrived GoP is sufficient and the proxy caches
it in local buffer.

3. SIMULATION EXPERIMENTS

In this section, we conduct simulation experiments to evaluate performance of the proposed caching mechanisms in
terms of the required buffer size, the playout delay and the video quality. For comparison purpose, we also consider
a traditional caching mechanism without quality adjustment capability.

Figure 3 illustrates our simulation system model. The simulation runs for 29,000 seconds in simulation time
unit. Video stream is two hours long (7,200 seconds). Ten clients are connected to the proxy on the same path
and watch the same video stream from the beginning to the end without interactions such as rewinding, pausing
and fastforwarding. The inter-arrival time between two successive client participations follows the exponential
distribution whose average is 1,800 seconds. The size of entire video stream ranges from 8.6 Gbits to 194.5 Gbits
according to the applied quantizer scale. The propagation delay between the server and the proxy is 200 msec and
that between the proxy and the client is 50 msec. An enlarged view of the available bandwidth between the server
and the proxy is shown in Fig. 4(a) and that between the proxy and the client is shown in Fig. 4(b). They are
obtained from simulation results on TFRC with ns-2.10

Submitted version

� � � � � � � � � 	 � � � � � 	 � � � � � 	 � � � � � 	 � �� � � � �

� � � � � 	

+ , 5 � ' % 2 � , 5 � ' % 2 �

6 � � � � � � � � � � � 6 � � � � � � � � � � �

7 8 � � � � � � � � � �7 8 � � � � � � � � � �

Figure 3. Simulation system model

0

2

4

6

8

10

12

10000 10200 10400 10600 10800 11000

ra
te

 [M
bp

s]

time [sec]

(a) between server and proxy

0

2

4

6

8

10

12

10000 10200 10400 10600 10800 11000

ra
te

 [M
bp

s]

time [sec]

(b) between proxy and client

 client0
 client1
 client2
 client3
 client4
 client5
 client6
 client7
 client8
 client9

Figure 4. Available bandwidth

Although requests are sent to the proxy at the regular interval of a GoP-time, inter arrival times of GoPs at
the client fluctuate due to cache hit, cache miss and available bandwidth. In any types of streaming services, it is
necessary for a client to defer the playout and buffer some amount of video data preparing for expected delay jitter.
We define the time that the clienti waits and buffers received video data at the beginning of the session in order to
ensure regularity and smoothness of video playout as the playout delay W (i). W (i) is derived as:

W (i) = max
1≤j≤GoPend

(T (i, j) − I(i, j)) (7)

where j stands for the GoP number and GoPend is the number of GoPs in the stream. The arrival time of GoPj

at clienti is denoted as T (i, j). I(i, j) corresponds to the ideal arrival time of GoPj and those conditions hold that
I(i, j) − I(i, j − 1) = 1 GoP-time and I(i, 1) = T (i, 1).

Next, we define the degree of user’s satisfaction with video quality as

S(i) =
1

GoPend

GoPend∑

j=1

Qact(i, j)
Qpc(i, j)

(8)

where Qact(i, j) is the quality of GoPj provided to clienti whose request on the GoP is Qpc(i, j).

In Figs. 5 through 7, we summarize simulation results on the playout delay W (i), the amount of cached data
and the degree of satisfaction in the system with infinite cache. Those results labeled “traditional” correspond to
the case that the proxy does not have capability of neither quality adjustment or prefetching. The traditional proxy
requires the server to send video data of the same quality that the client requests if there is not an identical GoP
in the cache, and it caches all received GoPs. Even if clients insist on the quality (β = 1), the playout delay is

Submitted version

suppressed by introducing the quality adjustment and the prefetching mechanism as shown in Fig. 5. In addition,
the required buffer size is down to one forth of the traditional method while providing clients with the video data as
requested. In the case of method3, the prefetching mechanism is not so effective compared with the others because
the proxy retrieves and caches GoPs of the minimum quality.

Next, we show simulation results for the case where the proxy is equipped with the cache of only 20 Gbits, which
is smaller than the half of that required (see Fig. 6). If the buffer capacity is limited, we must apply the replacement
algorithm proposed in subsection 2.4. Since we cannot expect an efficient use of cached data with obstinate clients,
we assume that they are tolerant of quality degradation (β = 0.6). As shown Figs. 8 through 10, regardless of
methods, the playout delay is small enough while the amount of cached data is strictly limited to 20 Gbits (Fig. 9).
Due to a limited cache buffer, the degree of satisfaction S(i) slightly decreases but is still higher than 0.6 as shown
in Fig. 10.

4. CONCLUSION

In this paper, we proposed several caching mechanisms for the video streaming system with the proxy server capable
of video quality adjustment. Simulation results show that our system is effective enough in suppressing the playout
delay and reducing the required cache size while providing users with a video stream of the desired quality. Especially
for the limited buffer, it is shown effective for clients to be tolerant in order to accomplish the low delay and efficient
video distribution service.

As future research works, we should examine further effective algorithms, which accomplish the comfortable
service with low delay and high quality, even if the cache buffer is limited, the available bandwidth between the server
and the proxy is smaller than that between the proxy and the clients, and the users insist on the quality. Moreover,
we should consider interactions such as rewinding, pausing and fastforwarding. Furthermore, it is necessary to take
into consideration the fairness between streams which shares cache buffer in the case where the proxy treats two or
more video stream.

REFERENCES
1. R. Rejaie, H. Yu, M. Handley, and D. Estrin, “Multimedia proxy caching mechanism for quality adaptive

streaming applications in the internet,” in Proceedings of IEEE INFOCOM 2000, March 2000.
2. M. Hofmann, T. S. E. Ng, K. Guo, S. Paul, and H. Zhang, “Caching techiniques for streaming multimedia over

the Internet,” Technical Report BL011345-990409-04TM, April 1999.
3. M. Andrews and K. Munagala, “Online algorithms for caching multimedia streams,” in Proceedings of European

Symposium on Algorithms, pp. 64–75, 2000.
4. M. R. F. Hartanto and K. W. Ross, “Interactive video streaming with proxy servers,” in Proceedings of First

International Workshop on Intelligent Multimedia Computing and Networking, vol. 2, pp. 588–591, February
2000.

5. N. Yeadon, F. Garćıa, D. Hutchinson, and D. Shepherd, “Filters: QoS support mechanisms for multipeer
communications,” IEEE Journal on Selected Areas in Communications, vol. 14, pp. 1245–1262, September
1996.

6. N. Wakamiya, M. Murata, and H. Miyahara, “TCP-friendly video transfer,” in Proceedings of SPIE Interna-
tional Symposium on Information Technologies 2000, November 2000.

7. M. Miyabayashi, N. Wakamiya, M. Murata, and H. Miyahara, “MPEG-TFRCP: Video transfer with TCP-
friendly rate control protocol,” to be presented at IEEE International Conference on Communications 2001
(ICC2001), June 2001.

8. S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based congestion control for unicast applications:
the extended version,” International Computer Science Institute technical report TR-00-03, March 2000.

9. K. Fukuda, N. Wakamiya, M. Murata, and H. Miyahara, “QoS mapping between user’s preference and band-
width control for video transport,” in Proceedings of IFIP IWQoS ’97, pp. 291–302, May 1997.

10. “UCB/LBNL/VINT Network Simulator - ns (version 2).” available at http://www-mash.cs.berkeley.edu/
ns/.

Submitted version

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9

W
ai

tin
g

T
im

e
W

 [s
ec

]

client

traditional
P = 0
P = 10
P = 30
P = 50

P = 0

(a) method1

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9

W
ai

tin
g

T
im

e
W

 [s
ec

]

client

traditional
P = 0
P = 10
P = 30
P = 50

P = 0
P = 10

P = 30, 50

(b) method2

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9

W
ai

tin
g

T
im

e
W

 [s
ec

]

client

traditional
P = 0
P = 10
P = 30
P = 50

P = 10, 30, 50

(c) method3

Figure 5. Playout delay with infinite cache (β = 1)

0

20

40

60

80

100

120

140

160

0 5000 10000 15000 20000 25000

am
ou

nt
 o

f c
ac

he
d

da
ta

 [G
bi

t]

time [sec]

traditional
P = 0
P = 10
P = 30
P = 50

(a) method1

0

20

40

60

80

100

120

140

160

0 5000 10000 15000 20000 25000

am
ou

nt
 o

f c
ac

he
d

da
ta

 [G
bi

t]

time [sec]

traditional
P = 0
P = 10
P = 30
P = 50

(b) method2

0

20

40

60

80

100

120

140

160

0 5000 10000 15000 20000 25000

am
ou

nt
 o

f c
ac

he
d

da
ta

 [G
bi

t]

time [sec]

traditional
P = 0
P = 10
P = 30
P = 50

(c) method3

Figure 6. Amount of cached data with infinite cache (β = 1)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

S
at

is
fa

ct
io

n
S

client

traditional
P = 0
P = 10
P = 30
P = 50

(a) method1

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

S
at

is
fa

ct
io

n
S

client

traditional
P = 0
P = 10
P = 30
P = 50

(b) method2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

S
at

is
fa

ct
io

n
S

client

traditional
P = 0
P = 10
P = 30
P = 50

(c) method3

Figure 7. Degree of satisfaction on delivered video with infinite cache (β = 1)

Submitted version

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9

W
ai

tin
g

T
im

e
W

 [s
ec

]

client

P = 0
P = 10
P = 30
P = 50

P = 0

(a) method1

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9

W
ai

tin
g

T
im

e
W

 [s
ec

]

client

P = 0
P = 10
P = 30
P = 50

P = 0

(b) method2

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9

W
ai

tin
g

T
im

e
W

 [s
ec

]

client

P = 0
P = 10
P = 30
P = 50

P = 0, 10

(c) method3

Figure 8. Playout delay with 20 Gbits cache (β = 0.6)

0

20

40

60

80

100

120

140

160

0 5000 10000 15000 20000 25000

am
ou

nt
 o

f c
ac

he
d

da
ta

 [G
bi

t]

time [sec]

P = 0
P = 10
P = 30
P = 50

(a) method1

0

20

40

60

80

100

120

140

160

0 5000 10000 15000 20000 25000

am
ou

nt
 o

f c
ac

he
d

da
ta

 [G
bi

t]

time [sec]

P = 0
P = 10
P = 30
P = 50

(b) method2

0

20

40

60

80

100

120

140

160

0 5000 10000 15000 20000 25000

am
ou

nt
 o

f c
ac

he
d

da
ta

 [G
bi

t]

time [sec]

P = 0
P = 10
P = 30
P = 50

(c) method3

Figure 9. Amount of cached data with 20 Gbits cache (β = 0.6)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

S
at

is
fa

ct
io

n
S

client

P = 0
P = 10
P = 30
P = 50

(a) method1

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

S
at

is
fa

ct
io

n
S

client

P = 0
P = 10
P = 30
P = 50

(b) method2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

S
at

is
fa

ct
io

n
S

client

P = 0
P = 10
P = 30
P = 50

(c) method3

Figure 10. Degree of satisfaction on delivered video with 20 Gbits cache (β = 0.6)

Submitted version

