
Media Streaming on P2P Networks with

Bio-inspired Cache Replacement Algorithm

Masahiro Sasabe1, Naoki Wakamiya1, Masayuki Murata2, and
Hideo Miyahara1

1 Graduate School of Information Science and Technology, Osaka University
Toyonaka, Osaka 560-8531, Japan

{m-sasabe, wakamiya, miyahara}@ist.osaka-u.ac.jp
2 Cybermedia Center, Osaka University

Toyonaka, Osaka 560-0043, Japan
murata@cmc.osaka-u.ac.jp

Abstract. With the growth of computing power and the proliferation
of broadband access to the Internet, the use of media streaming has
become widely diffused. By using the P2P communication architecture,
media streaming can be expected to smoothly react to changes in network
conditions and user demands for media streams. To achieve continuous
and scalable media streaming, we proposed scalable media search and
retrieval methods in our previous work. However, through several simu-
lation experiments, we have shown that an LRU (Least Recently Used)
cache replacement algorithm cannot provide users with continuous me-
dia play-out for unpopular media streams. In this paper, inspired by
biological systems, we propose a new algorithm that considers the bal-
ance between supply and demand for media streams. Through several
simulation experiments, it has been shown that our proposed algorithm
could improve the completeness of media play-out compared with LRU.

1 Introduction

With the growth of computing power and the proliferation of broadband access
to the Internet, such as ADSL and FTTH, the use of media streaming has become
widely diffused. A user receives a media stream from an original media server
through the Internet and plays it out on his/her client system as it gradually
arrives. However, on the current Internet, the major transport mechanism is still
only the best effort service, which offers no guarantee on bandwidth, delay, and
packet loss probability. Consequently, such a media streaming system cannot
provide users with media streams in a continuous way. As a result, the perceived
quality of media streams played out at the client system cannot satisfy the user’s
demand because he or she experiences freezes, flickers, and long pauses.

The proxy mechanism widely used in WWW systems offers low-delay deliv-
ery of data by means of a “proxy server,” which is located near clients. The proxy
server deposits multimedia data that have passed through it in its local buffer,
called the “cached buffer.” Then it provides cached data to users on demand in

Submitted version



Masahiro Sasabe, Naoki Wakamiya, Masayuki Murata, and Hideo Miyahara

place of the original content server. By applying the proxy mechanism to stream-
ing services, we believe that high-quality and low-delay streaming services can
be accomplished without introducing extra load on the system [1]. However, the
media servers and proxy servers are statically located in the network. Users dis-
tant from those servers are still forced to retrieve a media stream over a long and
unreliable connection to a server. If user demands on media and their locations
in the network are known in advance, those servers can be deployed in appropri-
ate locations. However, they cannot flexibly react to dynamic system changes,
such as user movements and user demands for media streams. Furthermore, as
the number of users increases, load concentration at the servers is unavoidable.

Peer-to-Peer (P2P) is a new network paradigm designed to solve these prob-
lems. In a P2P network, hosts, called peers, directly communicate with each other
and exchange information without the mediation of servers. One typical exam-
ple of P2P applications is a file-sharing system, such as Napster and Gnutella.
Napster is one of the hybrid P2P applications. A consumer peer finds a desired
file by sending an inquiry to a server that maintains the file information of peers.
On the other hand, Gnutella is one of the pure P2P applications. Since there is
no server, a consumer peer broadcasts a query message over the network to find
a file. If a peer successfully finds a file, it retrieves the file directly from a peer
holding the file. Thus, concentration of load on a specific point of the network
can be avoided if files are well distributed in a P2P network. In addition, by
selecting a peer nearby from a set of file holders, a peer can retrieve a file faster
than a conventional client-server based file sharing.

By using the P2P communication technique, media streaming can be ex-
pected to flexibly react to network conditions. There have been several re-
search works on P2P media streaming [2-7]. Most of them have constructed
an application-level multicast tree whose root is an original media server while
the peers are intermediate nodes and leaves. Their schemes were designed for use
in live broadcasting. Thus, they are effective when user demands are simultane-
ous and concentrated on a specific media stream. However, when demands arise
intermittently and peers request a variety of media streams, as in on-demand
media streaming services, an efficient distribution tree cannot be constructed.
Furthermore, the root of the tree, that is, a media server, is a single point of
failure because such systems are based on the client-server architecture.

We have proposed several methods for on-demand media streaming on pure
P2P networks where there is no server [8]. There are several issues to resolve in
accomplishing effective media streaming on pure P2P networks. Scalability is the
most important among them. Since there is no server that manages information
on peer and media locations, a peer has to find the desired media stream by itself
by emitting a query message into the network. Other peers in the network reply
to the query with a response message and relay the query to the neighboring
peers. Flooding, in which a peer relays a query to every neighboring peer, is a
powerful scheme for finding a desired media stream in a P2P network. However,
it has been pointed out that the flooding scheme lacks scalability because the
number of queries that a peer receives significantly increases with the growth in

Submitted version



P2P Media Streaming with Bio-inspired Cache Replacement Algorithm

the number of peers [9]. Especially when a media stream is divided into blocks
for efficient use of network bandwidth and cache buffer [10-13], a block-by-block
search by flooding queries apparently introduces much load on the network and
causes congestion. To tackle this problem, we proposed two scalable per-block
search methods. Taking into account the temporal order of reference to video
blocks, a peer sends a query message for a group of consecutive blocks. The
range of search is dynamically regulated based on the preceding search result
using two different algorithms.

Another problem in P2P streaming is continuity of media play-out. In media
streaming services, continuous media play-out is the most important factor for
users. To accomplish the continuity of media play-out, we have to consider a
deadline of retrieval for each block. To retrieve a block by its corresponding play-
out time, we have proposed methods to determine an appropriate provider peer
(i.e., a peer having a cached block) from search results by taking into account the
network conditions, such as the available bandwidth and the transfer delay. By
retrieving a block as fast as possible, the remaining time can be used to retrieve
the succeeding blocks from distant peers.

Through several simulation experiments, we have shown that our mechanisms
can accomplish continuous media play-out for popular media streams without
introducing extra load on the system. However, we also have found that the
completeness of media play-out deteriorates as the media popularity decreases.
The main reason for the deterioration is the cache replacement algorithm. In our
media streaming system, a peer stores retrieved media data into its cache buffer.
If there is no room to store the media data, the peer has to perform a replacement
on cached media data with the newly retrieved media data. Although LRU is a
simple and widely used cache replacement algorithm, it has been proved to fail
in continuous media play-out [8]. The reason is that popular media streams are
cached excessively while unpopular media streams eventually disappear from the
network. To improve the continuity of media play-out, in this paper, we propose
an effective cache replacement algorithm that considers the supply and demand
for media streams. Since there is no server, a peer has to conjecture the behavior
of other peers by itself. We expect that each peer can assign an appropriate
media stream to be replaced based on its local information and, as a result, that
each media stream can be cached according to its corresponding popularity in
the network. Thus, our proposed media streaming is one of distributed systems
constructed by peers.

In biology, social insects, such as ants, also construct a distributed sys-
tem [14]. In spite of the simplicity of their individuals, the social insect society
presents a highly structured organization. As a result, the organization can ac-
complish complex tasks that in some cases far exceed the individual capacities of
a single insect. It has been pointed out that the study of social insect societies’ be-
haviors and their self-organizing capacities is interesting for computer scientists
because it provides models of distributed organization that are useful to solve
difficult optimization and distributed control problems. Therefore, we can ex-
pect that a bio-inspired mechanism would be applicable to our media-streaming

Submitted version



Masahiro Sasabe, Naoki Wakamiya, Masayuki Murata, and Hideo Miyahara

system by regarding the peer as insect. In particular, a recently proposed model
of division of labor in a colony of primitively eusocial wasps, based on a simple
reinforcement of response thresholds, can be transformed into a decentralized
adaptive algorithm of task allocation [15].

In the model of the division of labor, the ratio of individuals that perform a
task is adjusted in a fully-distributed and self-organizing manner. The demand
to perform a task increases as time passes and decreases when it is performed.
The probability that an individual i performs a task is given by the demand, i.e.,
stimulus s, and the response threshold θi as s2

s2+θ2
i

, for example. When individual
i performs the task, the threshold to the task is decreased and thus this individ-
ual tends to devote itself to the task. After performing the task several times, it
becomes a specialist of the task. Otherwise, the threshold is increased. Through
threshold adaptation without direct interactions among individuals, the ratio of
individuals that perform a specific task is eventually adjusted to some appro-
priate level. As a result, there would be two distinct groups that show different
behaviors toward the task, i.e., one performing the task and the other hesitating
to perform the task. When individuals performing the task are withdrawn, the
associated demand increases and so does the intensity of the stimulus. Eventu-
ally, the stimulus reaches the response thresholds of the individuals of the other
group, i.e., those that are not specialized for that task. Some of these individuals
are stimulated to perform the task, their thresholds decrease, and finally they
become specialized for the task. Finally, the ratio of individuals with regard to
task allocations reaches the appropriate level again.

By regarding the replacement of media streams as a task, we propose a bio-
inspired cache replacement algorithm based on the division of labor and task
allocation. We employ the ratio of supply to demand for a media stream as
stimulus. Since each peer relays the query and response messages to its neigh-
boring peers, it can passively obtain information on supply and demand without
introducing extra signaling traffic on the system. It estimates the demand for a
media stream from the number of queries for the media stream received from
other peers and the supply for a media stream from the number of them included
in the response messages. Then, based on the stimulus, it assigns a media stream
to be replaced in a probabilistic way. The selected media stream is replaced in
a block-by-block basis from the end of the media stream. Since the threshold
of the victim is decreased, a media stream tends to be discarded often and se-
quentially once it is chosen as a victim. Although a deterministic approach can
also be applicable to this problem, it can not perform effectively without com-
plex parameter settings. On the other hand, our proposed cache replacement
algorithm is parameter-insensitive since each peer dynamically changes the re-
sponse threshold in accordance with the information obtained from the network
environment.

Through several simulation experiments, we evaluated the proposed cache
replacement algorithm in terms of the completeness of media play-out and the
insensitivity to parameter setting.

Submitted version



P2P Media Streaming with Bio-inspired Cache Replacement Algorithm

The rest of the paper is organized as follows. In Section 2, we discuss our
media streaming on P2P networks. We give an overview of our streaming sys-
tem on P2P networks, that is, per-group based search and retrieval of media
streams in Subsection 2.1. Then, we introduce search and retrieval methods to
accomplish scalable and continuous media streaming in Subsections 2.2 and 2.3.
Furthermore, we propose a bio-inspired cache replacement algorithm in Subsec-
tion 2.4. Next, in Section 3, we evaluate our proposed cache replacement algo-
rithm through several simulation experiments. Finally, we conclude the paper
and describe future works in Section 4.

2 Media Streaming on P2P Networks

A peer participating in our system first joins a logical P2P network for the
media streaming. For efficient use of network bandwidth and cache buffer, a
media stream is divided into blocks. A peer searches, retrieves, and stores a
media stream in a block-by-block basis. In this section, we introduce scalable
search methods to find desired blocks and algorithms to determine an optimum
provider peer from the search results. Finally, a bio-inspired cache replacement
algorithm that takes into account the balance between supply and demand for
media streams is given.

2.1 Per-group Based Block Search

In our system, a peer retrieves a media stream and plays it out in a block-by-
block basis. However, a block-by-block search apparently increases the number
of queries that are transferred on the network and causes network congestion.
To tackle this problem, taking into account the temporal order of reference in
a media stream, our mechanism employs a per-group search to accomplish a
scalable media search based on the number of peers.

A peer sends out a query message for every N consecutive blocks, called a
round. Figure 1 illustrates an example of N = 4. PA, PB, PC , and PD, which
indicate peers within the range of the propagation of query messages. Numbers
in parentheses next to peers stand for identifiers of the blocks that a peer has.
At time Ts(1), a query message for blocks from 1 to 4 is sent out from P to the
closest peer PA. Since PA has the second block out of four requested blocks, it
returns a response message. It also relays the query to the neighboring peers PB

and PC . PB also replies with a response message to P . Since PC does not have
any of the four blocks, it only relays the query to PD. Finally, PD sends back a
response message. P determines a provider peer for each block in the round from
the search results obtained by the query. It takes two RTT (Round Trip Time)
from the beginning of the search to the start of reception of the first block of the
round. To accomplish continuous media play-out, P sends a query for the next
round at a time that is 2RTTworst earlier than the start time of the next round.
RTTworst is the RTT to the most distant peer among the peers that returned
response messages in the current round.

Submitted version



Masahiro Sasabe, Naoki Wakamiya, Masayuki Murata, and Hideo Miyahara

AP

BP

CP

DP (1, 4, 5)

(6)

(1,3)

(2)

)1(pT )2(
p

T )3(pT )4(pT

Block1 Block2 Block3 Block4

)1(rT )2(rT )3(rT )4(rT

PP

AP

BP

CP

DP

Query (upward) and Response (donward)

Request (upward) and Transmit (downward)

Logical topology
Round1

)1(sT

Waiting Time

Play-out
)1(fT )2(fT )3(fT )4(fT

Fig. 1. Example of scheduling for search and retrieval

2.2 Block Search Methods Based on Search Results

Since each peer retrieves a media stream sequentially from the beginning to
the end, we can expect that a peer that sent back a responses message for the
current round has some blocks of the next round. In our mechanisms, a peer
tries flooding at the first round. However, in the following rounds, it searches
blocks in a scalable way based on the search results of the previous round.

A query message consists of a query identifier, a media identifier, and a pair of
block identifiers to specify the range of blocks needed, i.e., (1, N), a time stamp,
and TTL (Time To Live). A peer that has any blocks in the specified range sends
back a response message. A response message reaches the querying peer through
the same path, but in the reversed direction, that the query message traversed.
The response message contains a list of all cached blocks, TTL values stored
in the received query, and sum of the time stamp in the query and processing
time of the query. Each entry of the block list consists of a media identifier, a
block number, and block size. If TTL is zero, the query message is discarded.
Otherwise, after decreasing the TTL by one, the query message is relayed to
neighboring peers except for the one from which it received the query. In the
case of Gnutella, a fixed TTL of seven is used. By regulating TTL, the load of
finding a file can be reduced. We have called the flooding scheme with a fixed
TTL of 7, which is used in Gnutella, full flooding, and that with a limited TTL
based on the search results, limited flooding.

In limited flooding, for the kth round, a peer obtains a set R of peers based
on response messages obtained at round k − 1. A peer in R is expected to have

Submitted version



P2P Media Streaming with Bio-inspired Cache Replacement Algorithm

at least one of the blocks from kN + 1 to (k + 1)N . Since time has passed from
the search at round k − 1, some blocks listed in a response message may be
already replaced by other blocks. Assuming that a peer is watching a media
stream without interactions such as rewinding, pausing, and fast-forwarding,
and that the cache buffer is filled with blocks, the number of blocks removed can
be estimated by dividing the elapsed time from the generation of the response
message by one block time Bt. We should note here that we do not take into
account blocks cached after a response message is generated. In limited flooding,
TTL is set to that of the most distant peer among the peers in R.

To attain an even more efficient search, we have also proposed another search
scheme called selective search. The purpose of flooding schemes is to find peers
that do not have any blocks of the current round but do have some blocks
of the next round. Flooding also finds peers that have newly joined our system.
However, in flooding, the number of queries relayed on the network exponentially
increases according to the TTL and the number of neighboring peers. As a simple
example, when a query is given a TTL whose value is H and a peer knows D
other peers, the total number of query messages relayed on the network becomes
H∑

i=1

(D − 1)i = O((D − 1)H+1). Therefore, when a sufficient number of peers are

expected to have blocks in the next round, it is effective for a peer to directly
send queries to those peers. We call this selective search.

By considering the pros and cons of full flooding, limited flooding, and selec-
tive search, we have proposed efficient methods based on combining them.

FL method
The FL method is a combination of full flooding and limited flooding. For
blocks of the next round, a peer conducts (1) limited flooding if the con-
jectured contents of cache buffers of peers in R satisfy every block of the
next round, or (2) full flooding if one or more blocks cannot be found in the
conjectured cache contents of peers in R.

FLS method
The FLS method is a combination of full flooding, limited flooding, and
selective search. For the next round’s blocks, a peer conducts (1) selective
search if the conjectured contents of cache buffers of peers in R contain every
block of the next round, (2) limited flooding if any one of the next round’s
blocks cannot be found in the conjectured cache contents of peers in R, or,
finally, (3) full flooding if none of the provider peers it knows is expected to
have any block of the next round, i.e., R = φ.

2.3 Block Retrieval Methods Considering the Continuity of Media
Play-out

The peer sends a request message for the first block of a media stream as soon
as it receives a response message from a peer that has the block. Then, it plays
it out immediately when the reception of the block starts. Consequently, the

Submitted version



Masahiro Sasabe, Naoki Wakamiya, Masayuki Murata, and Hideo Miyahara

deadlines for the retrieval of succeeding blocks j ≥ 2, Tp(j) are determined as
follows:

Tp(j) = Tp(1) + (j − 1)Bt, (1)

where Tp(1) corresponds to the time that the peer finishes playing out the first
block and Bt stands for one block time.

We do not wait for the completion of the reception of the preceding block
before issuing a request for the next block because it introduces an extra delay of
at least one RTT, and the cumulative delay affects the timeliness and continuity
of media play-out. In our block retrieval mechanism, the peer sends a request
message for block j at Tr(j). As a result, the peer can start to receive block j
just after finishing the retrieval of block j − 1, as shown in Fig. 1. Equation (1)
guarantees that the completion time of a block retrieval is earlier than that of
the block play-out. Furthermore, the retrieval of the next block starts after the
completion of the retrieval of the previous block. As a result, our block retrieval
mechanism can maintain the continuity of media play-out. By observing the
way that the response message is received in regard to the query message, the
peer estimates the available bandwidth and the transfer delay from the provider
peer. The estimates are updated through reception of media data. For more
precise estimation, we can use any other measurement tool as long as it does not
disturb media streaming. Every time the peer receives a response message, it
derives the estimated completion time of retrieval of block j, that is Tf (j), from
the block size and the estimated bandwidth and delay, for each block for which
it has not sent a request message yet. Then, it determines an appropriate peer
in accordance with deadline Tp(j) and calculates time Tr(j) at which it sends a
request.

In the provider determination algorithm, the peer calculates set Sj , a set
of peers having block j. Next, based on the estimation of available bandwidth
and transfer delay, it derives set S

′
j , a set of peers from which it can retrieve

block j by deadline Tp(j), from Sj . If S
′
j = φ, the peer waits for the arrival of

the next response message. However, it gives up retrieving and playing block j
when the deadline Tp(j) passes without finding any appropriate peer. To achieve
continuous media play-out, it is desirable to shorten the block retrieval time. The
SF (Select Fastest) method selects a peer whose estimated completion time is
the smallest among those in S

′
j . By retrieving block j as fast as possible, the

remainder of Tp(j) − Tf (j) can be used to retrieve the succeeding blocks from
distant peers. On the other hand, an unexpected cache miss introduces extra
delay on the client system. The SR (Select Reliable) method selects the peer
with the lowest possibility of block disappearance among those in S

′
j . As a result,

this suppresses block disappearance before a request for block j arrives at the
provider peer.

2.4 Bio-inspired Cache Replacement Algorithm

Since the cache buffer size is limited, there may be no room to store a newly
retrieved block into the cache. Although LRU is a simple and widely used scheme,

Submitted version



P2P Media Streaming with Bio-inspired Cache Replacement Algorithm

it has been shown that LRU cannot accomplish continuous media play-out under
a heterogeneous media popularity [8]. This is because popular media streams are
cached excessively while unpopular media streams eventually disappear from the
P2P network.

In this paper, to solve this problem, we propose a bio-inspired cache re-
placement algorithm that considers the balance between supply and demand for
media streams. Since there is no server in a pure P2P network, a peer has to
conjecture the behavior of other peers by itself. It is disadvantageous for the peer
to aggressively collect information about supply and demand by communicating
with other peers, since this brings extra load on the system and deteriorates
the system scalability. Therefore, in our scheme, a peer estimates the supply
and demand based on locally available and passively obtained information. This
information consists of search results it obtained and messages it relayed. We
expect that each peer can determine an appropriate media stream to be re-
placed based on its local information, and, as a result, each media stream can
be cached according to the media popularity in the network. Thus, our proposed
media streaming is a distributed system constructed by peers. In biology, social
insects, such as ants, also form a decentralized system. Furthermore, it has been
pointed out that social insects provide us with a powerful metaphor for cre-
ating decentralized systems of simple interacting [14]. In particular, a recently
proposed model of division of labor in a colony of primitively eusocial wasps,
based on a simple reinforcement of response thresholds, can be transformed into
a decentralized adaptive algorithm of task allocation [15].

In the model of the division of labor, the ratio of individuals that perform a
task is adjusted in a fully-distributed and self-organizing manner. The demand
to perform a task increases as time passes and decreases when it is performed.
The probability that an individual i performs a task is given by the demand,
i.e., stimulus s, and the response threshold θi as s2

s2+θ2
i

, for example. When the
individual i performs the task, the threshold to the task is decreased and thus
it tends to devote itself to the task. After performing the task several times, it
becomes a specialist of the task. Otherwise, the threshold is increased. Through
threshold adaptation without direct interactions among individuals, the ratio of
individuals that perform a specific task is eventually adjusted to some appropri-
ate level. As a result, there are two distinct groups that show different behaviors
toward the task, i.e., one performing the task and the other hesitating to perform
the task. When individuals performing the task are withdrawn, the associated
demand increases and so does the intensity of the stimulus. Eventually, the stim-
ulus reaches the response thresholds of the individuals in the other group, i.e.,
those not specialized for that task. Some individuals are stimulated to perform
the task, their thresholds decrease, and finally they become specialized for the
task. Finally, the ratio of individuals with regard to task allocations reaches the
appropriate level again.

By regarding the replacement of media streams as a task, we propose a cache
replacement algorithm based on the division of labor and task allocation model.
Compared with LRU, our proposed cache replacement algorithm can flexibly

Submitted version



Masahiro Sasabe, Naoki Wakamiya, Masayuki Murata, and Hideo Miyahara

adapt to the temporal changes of supply and demand for media streams. The
proposed algorithm is organized by following two steps.

Step1 Estimate the supply and demand for media streams per round. A peer
calculates supply S(i) and demand D(i) for media stream i from search
results it received and query and response messages it relayed at the previous
round. S(i) is the number of fully cached stream i in response messages that
it received and relayed. Here, to avoid the overlap of calculation, S(i) includes
only the response messages for media stream i as search results. D(i) is the
number of the query messages for media stream i, which the peer emitted
by itself. To adapt to the temporal changes of supply and demand for media
streams, we use the moving average as follows.

S(i) = wsS(i) + (1 − ws)S(i), (0 ≤ ws ≤ 1) (2)
D(i) = wdD(i) + (1 − wd)D(i), (0 ≤ wd ≤ 1) (3)

Step2 Determine a candidate media stream for replacement. Based on the “divi-
sion of labor and task allocation”, we define probability Pr(i) of replacement
of media stream i as follows:

Pr(i) =
s2(i)

s2(i) + θ2(i)
, (4)

where s(i) indicates the ratio of supply to demand for media stream i after

replacement of media stream i, that is, max
(

S(i)−1

D(i)
, 0

)
. s(i) means how

excessively media stream i exists in the network if it was replaced. Therefore,
by discarding a media stream whose s(i) is large, we can expect that the
supply and demand becomes the same among streams in a P2P network.
A peer does not discard the media stream that it is currently watching. To
shorten the waiting time for media play-out, it is better if mostly the former
part of a media stream exists. Therefore, a peer replaces a media stream
in a block-by-block basis from the end of the media stream. As in [16], the
threshold of a media stream that a peer works on is decreased. As a result, a
media stream tends to be discarded often and sequentially once it is chosen
as a victim.

θ(j) =
{

θ(j) − ξ if j = i
θ(j) + ϕ if j �= i

(5)

By sequentially replacing blocks of the same media stream, fragmentation of
media streams can be avoided. Since our mechanism replaces a media stream
from the end of the media stream, the increase in the fragmentation leads
to the disappearance of the latter part of media streams from the network.
We expect that controlling the threshold is one way to solve this problem.

3 Simulation Evaluation

We have already evaluated our proposed search and retrieval methods and have
shown that the FLS method can accomplish continuous media play-out with a

Submitted version



P2P Media Streaming with Bio-inspired Cache Replacement Algorithm

34

33

32

31

30

29

28

99

27

9

98

26

8

97

25

7

96

24

6

95

23

5

94

22

4

93

21

3

92

20

19

2

91

18

1

89

90

17

0

88

16

87

15

86

14

85

13

84

12

83

11

82

10

81

79

80

78

77
76

75

74

73

72

71

69

70

68

67

66

65

64

63

62

61

59

60

58

57

56

55

54

53

52

51

49

50

48

47

46

45

44

43

42

41

40

39

38

37

36

35

Fig. 2. Random network with 100 peers

smaller amount of search traffic compared with full flooding in [8]. In this section,
we conduct simulation experiments to evaluate our proposed cache replacement
algorithm in terms of the completeness of media play-out and insensitivity to
parameter setting.

3.1 Simulation Model

We use P2P logical networks with 100 peers randomly generated by the Waxman
algorithm [17] with parameters α = 0.15 and β = 0.3. An example of generated
networks is shown in Fig. 2. The round trip time between two contiguous peers is
also determined by the Waxman algorithm and ranges from 10 ms to 660 ms. To
investigate the ideal characteristics of our proposed mechanisms, the available
bandwidth between two arbitrary peers does not change during a simulation
experiment. The bandwidth is given at random between 500 kbps and 600 kbps,
which is larger than the media coding rate of CBR 500 kbps.

At first, all 100 peers participate in the system, but no peer watches a media
stream. One peer begins to request a media stream at a randomly determined
time. The inter-arrival time between two successive requests for the first media
stream follows an exponential distribution whose average is 20 minutes. Forty
media streams of 60-minute length are available. Media streams are numbered
from 1 (the most popular) to 40 (the least popular), where popularity follows
a Zipf-like distribution with α = 1.0. Therefore, media stream 1 is forty times
more popular than media stream 40. Each peer watches a media stream without

Submitted version



Masahiro Sasabe, Naoki Wakamiya, Masayuki Murata, and Hideo Miyahara

interactions such as rewinding, pausing, and fast-forwarding. When a peer fin-
ishes watching a media stream, it becomes idle during the waiting time, which
also follows an exponential distribution whose average is 20 minutes.

A media stream is divided into blocks of 10-sec duration and amounts to
625 KBytes. Each peer sends a query message for a succession of six blocks,
i.e., N = 6, and retrieves blocks. Obtained blocks are deposited into a cache
buffer of 675 MB, which corresponds to three media streams. In the first run of
the simulation, each peer stores three whole media streams in its cache buffer.
The population of each media stream in the network also follows a Zipf-like
distribution whose parameter α is 1.0. We set the parameters of moving average,
ws and wd, to 0.9, respectively. Based on the values used in [14], we set the
parameters of the cache replacement algorithm as follows: ξ = 10, ϕ = 1, and the
initial value of θ(i) is set to 500 and θ(i) changes between 1 and 1000. To prevent
the initial condition of the cache buffer from influencing system performance, we
only use the results after the initially cached blocks are completely replaced with
newly retrieved blocks for all peers.

Since there is almost no difference in simulation results among the six com-
binations of search methods and block retrieval methods in our experiments, we
only show the results of the combination of the FLS and SF methods. We show
the average values of 60 set of simulations in the following figures. We define
the waiting time as the time between the emission of the first query message
for the media stream and the beginning of reception of the first block. Through
simulation experiments, we observe that, independent of method, the waiting
time decreases as the popularity increases. However, independent of popularity,
all media streams successfully found can be played out within 2.6 sec.

3.2 Evaluation of Completeness of Media Play-out

To evaluate the completeness of media play-out, we define completeness as the
ratio of the number of retrieved blocks in time to the number of blocks in a
media stream. Figures 3 and 4 illustrate the completeness with a 95% confi-
dence interval of each media stream. The horizontal axis indicates the media
popularity that decreases with the growth of the media identifier. Comparing
Fig. 3 with Fig. 4, we find that our proposed algorithm can reduce the decrease
in completeness to the deterioration of the media popularity. As a result, for
unpopular media streams, the completeness of the proposed algorithm is higher
than that of LRU by 0.2 at most. On the other hand, our proposed algorithm
slightly deteriorates the completeness for popular media streams compared with
the performance of LRU.

Since a media stream is selected based on the Zipf-like distribution, the com-
pleteness of popular media streams is more important than that of unpopular
media streams, in terms of the total degree of user satisfaction. Here, we define
weighted completeness, which means the completeness weighted with the media
popularity, as follows.

W (i) = C(i) × 1
i
, (6)

Submitted version



P2P Media Streaming with Bio-inspired Cache Replacement Algorithm

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40

C
om

pl
et

en
es

s

Media

FLS method SF method

Fig. 3. Completeness (LRU)

Table 1. Degree of user satisfaction

FLS method

LRU 3.870

Proposed algorithm 3.855

where C(i) is completeness of media stream i. Furthermore, we define the user
satisfaction as

∑
i

W (i). Table 1 shows the user satisfaction of Figs. 3 and 4. As

shown in Tab. 1, there is almost no difference between LRU and the proposed
algorithm. Therefore, we can conclude that our proposed algorithm can accom-
plish high completeness even for unpopular media streams without deteriorating
the total of the degree of user satisfaction.

3.3 Evaluation of Insensitivity to Parameter Setting

Parameter setting is a common problem in network control mechanisms. It has
been pointed out that it is difficult to select an appropriate parameter statically.
To solve this problem, the division of labor and task allocation dynamically
changes the response threshold in accordance with the information obtained
from the network environment. As a result, it can flexibly adapt to diverse net-
work environments without a specific parameter setting. Figure 5 illustrates the
completeness of the proposed cache replacement algorithm with normalized pa-
rameters: ξ = 0.01, ϕ = 0.001. The initial value of θ(i) is set to 0.5, and θ(i)
changes between 0.001 to 1. Furthermore, to make the weight of s(i) and θ(i)
in Eq. (4) uniform, s(i) is normalized by dividing by

∑
i

s(i). Comparing Fig. 4

with Fig. 5, we find that there is almost no difference between them. Therefore,

Submitted version



Masahiro Sasabe, Naoki Wakamiya, Masayuki Murata, and Hideo Miyahara

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40

C
om

pl
et

en
es

s

Media

FLS method SF method

Fig. 4. Completeness (proposed cache replacement algorithm)

we can conclude that our proposed cache replacement algorithm is insensitive to
parameter setting.

4 Conclusions

In this paper, to accomplish scalable and continuous media streaming on P2P
networks, we introduced two scalable search methods and two algorithms for
block retrieval and proposed a bio-inspired cache replacement algorithm that
considers the balance between supply and demand for media streams. Through
several simulation experiments, we have shown that our proposed cache replace-
ment algorithm can accomplish continuous media play-out independent of me-
dia popularity. Furthermore, our simulation results show that proposed cache
replacement algorithm is not sensitive to parameter setting.

As future research work, we should evaluate our proposed mechanisms in
more realistic situations where network conditions dynamically change and peers
randomly join and leave the system.

Acknowledgements

This research was supported in part by “The 21st Century Center of Excellence
Program” and Special Coordination Funds for promoting Science and Technol-
ogy of the Ministry of Education, Culture, Sports, Science and Technology of
Japan, and the Telecommunication Advancement Organization of Japan.

References

1. M. Sasabe, Y. Taniguchi, N. Wakamiya, M. Murata, and H. Miyahara, “Proxy
caching mechanisms with quality adjustment for video streaming services,” IE-

Submitted version



P2P Media Streaming with Bio-inspired Cache Replacement Algorithm

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40

C
om

pl
et

en
es

s

Media

FLS method SF method

Fig. 5. Completeness (proposed cache replacement algorithm with normalized param-
eters)

ICE Transactions on Communications Special Issue on Content Delivery Networks,
vol. E86-B, pp. 1849–1858, June 2003.

2. AllCast. available at http://www.allcast.com.
3. vTrails. available at http://www.vtrails.com.
4. Share Cast. available at http://www.scast.tv.
5. D. A. Tran, K. A. Hua, and T. T. Do, “ZIGZAG: An efficient peer-to-peer scheme

for media streaming,” in Proceedings of IEEE INFOCOM2003, (San Francisco),
Mar. 2003.

6. D. Xu, M. Hefeeda, S. Hambrusch, and B. Bhargava, “On peer-to-peer media
streaming,” in Proceedings of ICDCS2002, vol. 1, (Vienna), pp. 363–371, July 2002.

7. V. N. Padmanabhan, H. J. Wang, and P. A. Chou, “Resilient peer-to-peer stream-
ing,” Microsoft Research Technical Report MSR-TR-2003-11, Mar. 2003.

8. M. Sasabe, N. Wakamiya, M. Murata, and H. Miyahara, “Scalable and continuous
media streaming on peer-to-peer networks,” in Proceedings of P2P2003, (Linkop-
ing), pp. 92–99, Sept. 2003.

9. R. Schollmeier and G. Schollmeier, “Why peer-to-peer (P2P) does scale: An anal-
ysis of P2P traffic patterns,” in Proceedings of P2P2002, (Linkoping), Sept. 2002.

10. K.-L. Wu, P. S. Yu, and J. L. Wolf, “Segment-based proxy caching of multimedia
streams,” in Proceedings of the 10th International WWW Conference, pp. 36–44,
2001.

11. J. Shudong, B. Azer, and I. Arun, “Accelerating internet streaming media deliv-
ery using network-aware partial caching,” Technical Report BUCS-TR-2001-023,
October 2001.

12. B. Wang, S. Sen, M. Adler, and D. Towsley, “Optimal proxy cache allocation for
efficient streaming media distribution,” in Proceedings of IEEE INFOCOM 2002,
(New York), June 2002.

13. W. Jeon and K. Nahrstedt, “Peer-to-peer multimedia streaming and caching ser-
vice,” in Proceedings of ICME2002, (Lausanne), Aug. 2002.

14. E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, 1999.

Submitted version



Masahiro Sasabe, Naoki Wakamiya, Masayuki Murata, and Hideo Miyahara

15. E. Bonabeau, A. Sobkowski, G. Theraulaz, and J.-L. Deneubourg, “Adaptive task
allocation inspired by a model of division of labor in social insects,” in Proceedings
of BCEC1997, (Skovde), pp. 36–45, 1997.

16. M. Campos, E. Bonabeau, G. Theraulaz, and J.-L. Deneubourg, “Dynamic schedul-
ing and division of labor in social insects,” Adaptive Behavior, vol. 8, no. 2, pp. 83–
96, 2000.

17. B. M. Waxman, “Routing of multipoint connections,” IEEE Journal on Selected
Areas in Communications, vol. 6, pp. 1617–1622, Dec. 1988.

Submitted version


