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Abstract In a Peer-to-Peer (P2P) file-sharing system, a node finds and retrieves its

desired file. If multiple nodes cache the same file to provide others, we can achieve a

dependable file-sharing system with low latency and high file availability. However, a

node has to spend costs, e.g., processing load or storage capacity, on caching a file.

Consequently, a node may selfishly behave and hesitate to cache a file. In such a

case, unpopular files are likely to disappear from the system. In this paper, we aim

to reveal whether effective caching in the whole system emerges from autonomous and

selfish node behavior. We discuss relationship between selfish node behavior and system

dynamics by using evolutionary game theory. As a result, we show that a file-sharing

system can be robust to file disappearance depending on a cost and demand model for

caching even if nodes behave selfishly.
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Fig. 1 Similarity between bio/human society and P2P file sharing system, and role of evolu-
tionary game theory.

1 Introduction

In a Peer-to-Peer (P2P) file-sharing system, a node exchanges information and files

with other nodes over a logical network, called an overlay network, which consists

of nodes and logical links established among them. Each node caches its original or

retrieved files into a local storage to share them with other nodes. If multiple nodes

cooperatively cache an identical file into their storages, a node can find it with higher

probability and retrieve it more quickly. This leads to enhance performance, availability,

and dependability of the system [2,3].

On the other hand, such a self-organizing characteristic also allows nodes to act

freely in the P2P file sharing system. Since each node participating in the system is a

user’s terminal, it is controlled by the user. In general, each user takes an interest in its

own benefit rather than the performance of the whole system [4]. If users hesitate to

cache files due to the cost required for caching, such as storage consumption, processing

load, and bandwidth consumption, unpopular files tend to disappear from the system. It

is difficult for the system to monitor and manage all nodes constantly so that the system

achieves effective caching, i.e., keeping availability for all files. Thus, it is desirable that

selfish and autonomous nodes’ behavior leads to the effective caching in the whole

system.

A society of organisms is also constructed by selfish and autonomous behavior of

lots of individuals. In such a biological society, superior genes with high fitness for

the environment are inherited from ancestors to offspring through competition among

individuals in the evolutionary process of organisms. Evolutionary game theory is a

framework to investigate what kinds of phenomena emerge from the mutual interaction

among individuals. In this paper, we focus on the similarity between the biological

society and the P2P file sharing system and reveal how the selfish nodes’ behavior

affects the performance of the whole system by using evolutionary game theory (Fig. 1).

We first model the bargain about caching among nodes as a caching game between

two nodes taking into account cost and demand for caching. Then, we evaluate the

relationship between the models and the system performance by using evolutionary
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game theory. Through theoretic analysis, we figure out basic characteristics of the

system. We further evaluate the system performance in detail by changing the models

and topological structure of the network.

The rest of the paper is organized as follows. Section 2 gives research backgrounds

and related works. In section 3, we describe models of caching games with which we deal

in this paper. Then, we introduce evolutionary game theory in section 4. We describe

theoretic analysis in section 5 and evaluate the system performance through simulation

experiments in section 6, respectively. Finally, section 7 gives conclusions and future

work.

2 Related works

Users who only download files without caching and sharing any files are referred to as

free-riders [4]. There are several studies on reducing the number of free-riders [5–7].

For example, in Ref. [5], each node is assumed to minimize its own costs for using a

file. The costs are storage capacity consumed by caching and latency to retrieve the file

from its corresponding file holder (provider). Under these assumptions, it was shown

that Nash equilibria, i.e., stable states of a system, exist in such a situation by game

theory. Furthermore, the authors show an optimum state of the system is equal to one

of the Nash equilibria by introducing a payment model in which a node can obtain

payments to cache a file from other nodes that retrieve the cache file.

On the other hand, in Ref. [6], the authors discuss cooperative node behavior in a

file-sharing system under the framework of Multi-Person Prisoner’s Dilemma. If there

is no incentive for caching a file, all nodes become free-riders in a Nash equilibrium.

Through analyses and simulation evaluations, they show that nodes intend to con-

tribute to caching if they can obtain payments or reputations from other nodes in

compensation for caching a file.

The above mentioned approaches in Refs. [5–7] are based on incentive mechanisms

in which payments or reputations from other nodes are essential to achieve cooperative

caching. However, such incentive mechanisms are not necessarily applicable to a file-

sharing system. For example, there is a file-sharing system that hides a provider from

nodes requesting the corresponding file so as to improve the anonymity among nodes [8].

In such a system, it is difficult for a provider to obtain payments from the requesting

nodes.

As approaches different from the above mentioned incentive mechanisms, there

are several studies on how the cooperative behavior emerges from interactions among

users using evolutionary game theory [9–12]. Refs [9, 11, 12] aim to investigate what

mechanisms lie behind the emergence of the cooperative behavior in the human society

where each individual has a temptation to be selfish. They insist that several factors

have impacts on the emergence of cooperative behavior, e.g., the topological structure

of the human society, users’ sense of value to cooperation, etc.

In recent years, several researchers have applied evolutionary game theory to achieve

cooperative network systems [10]. Hales proposed SLACER algorithm that controls

the topological structure of a P2P network using evolutionary game theory [10]. In

SLACER, each node plays a game with a neighboring node and it keeps the con-

nection to the neighbor if the neighbor is cooperative. Otherwise, it disconnects the

connection and randomly chooses a node as a new neighbor. As time passes, SLACER

can construct multiple groups of cooperators.
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Table 1 General payoff matrix.

`````````̀player 1
player 2

cooperator defector

cooperator (R, R) (S, T )
defector (T, S) (P, P )

In this paper, we try to figure out the relationship between user selfishness and the

performance of P2P file-sharing systems by using evolutionary game theory.

3 System model

3.1 Overview

We first describe the overview of the P2P file sharing system assumed in this paper.

Each node obtains a set of providers using one of existing search methods. It then

retrieves the desired file from one or more providers in the set. Note that the node can

become a new provider of the file. As a result, the providers can construct an overlay

network for sharing the file. Because costs accompany caching a file, the node bargains

with other providers to decide whether it keeps caching the file. In this paper, we model

the bargains among file holders as caching games on the presupposition that the node

plays a caching game with another node randomly chosen from the set. Each node

determines whether it keeps caching the file or not based on the results obtained after

a certain number of games. For simplicity, we deal with the case of a single file in this

paper but we can extend our discussion to the case of multiple files by allowing nodes

to play multiple caching games in parallel.

3.2 Caching game

To model the caching game, we first define a payoff matrix that determines the relation-

ship between node’s behavior (strategy) and payoff obtained by the strategy. Table 1

shows a general payoff matrix between two players used in game theory. A defector

exploiting a cooperator obtains T and the exploited cooperator receives S. Both play-

ers receive R (P ) when they cooperate (defect) each other. Prisoner’s dilemma game

(T > R > P > S, 2R > T + S) and snowdrift game (T > R > S > P ) are examples of

the well-known games.

In the P2P file sharing system, each node has two strategies: caching (Sc) and no

caching (Sn). The node with Sc (Sn) corresponds to the cooperator (defector). Since a

node satisfies its demand to the file by leveraging the file, we define the benefit obtained

by the use of the file as its demand b. On the other hand, a node has to spend cost(s)

on caching a file, e.g., processing load cl caused by self and other node’s access to the

file and storage capacity cs consumed by caching the file.

In what follows, we investigate the system performance using two models: process-

ing load model and storage capacity model. In case of the processing load model, the pa-

rameters of payoff matrix become R = b−cl, T = b, S = b−2cl, P = 0. Note that b−2cl
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should be greater than 0 to prevent all nodes from selecting the strategy Sn. This condi-

tion is not necessarily unrealistic because users ordinarily try to avoid the file availabil-

ity becoming zero. On the other hand, we obtain R = b − cl, T = b, S = b − cl, P = 0

in case of the storage capacity model. Note that b − cs ≥ 0 because of the same

reason in the processing load model. Both models can be classified into games with

T > R ≥ S > P . Although there are lots of other possible models for realistic P2P

file-sharing systems, the following approaches and results are applicable to them if the

condition of T > R ≥ S > P is satisfied.

4 Evolutionary game theory

In a society of organisms, various individuals influence each other. Evolutionary game

theory [13] originally tries to figure out a mechanism in which optimum behavior comes

down to offspring in the evolutionary process of organisms. Suppose that individual

behavior defined by genes corresponds to a strategy in game theory and the number of

offspring selecting the behavior is proportional to payoff acquired by the strategy. In

such a case, various individuals are in strategically mutual dependence relation of game

theory. Thus, by using game theory, we can explain the phenomenon that superior

behavior spreads over a society of organisms through inheritance from ancestors to

offspring. Moreover, in sociology and economics, there are several studies that aim to

reveal the phenomena in which valuable information and behavior spread over human

societies by using evolutionary game theory [9, 11,12].

Evolutionary game theory provide us with two kinds of frameworks to reveal the

relationship between individual behavior and system behavior: replicator dynamics and

agent-based dynamics. Replicator dynamics is a mathematical model in which the ratio

of individuals selecting a strategy increases when the strategy can yield more payoff

than the average payoff of all strategies [13]. Replicator dynamics is applicable when

the number of individuals composed of the society is relatively large and the network

among the individuals is mean-field like. Thus, we can reveal the system characteristics

when a node has information on all providers through the search process mentioned in

section 3.1. In such a case, the overlay network for sharing the file is equivalent to a

full mesh network.

On the other hand, agent-based dynamics models a phenomenon that a superior

strategy spreads over the network in a hop-by-hop manner. In agent-based dynamics,

an individual plays a game once with all neighboring individuals, determines superiority

of its own strategy based on the game results, and finally decides the next strategy.

Thus, agent-based dynamics is applicable to various network topologies including the

full mesh network. If a node obtains only part of providers through the search process

due to the limitation of search range, the topology of the overlay network for sharing

the file can vary.

5 Theoretic analysis by replicator dynamics

In this section, we theoretically derive the relationship between the above mentioned

models and the ratio of cooperators by replicator dynamics [13]. As mentioned above,

every node decides whether to cache the file after a certain number of caching games

with other nodes. At each game, the node rationally behaves: It compares the expected



6

payoff obtained by strategy Sc and that obtained by strategy Sn, and selects a strategy

proportional to the payoffs acquired by the strategy. In what follows, we describe the

detail of the strategy selection.

We denote the ratio of cooperators, i.e., nodes selecting Sc, to the whole nodes by

x. The expected payoff Ui(Sc) that node i obtains when selecting Sc is given by

Ui(Sc) = xR + (1 − x)S.

We similarly have the expected payoff Ui(Sn) that node i obtains when selecting Sn

as follows:

Ui(Sn) = xT + (1 − x)P.

The differences between the expected payoffs of cooperators and those of the whole

nodes are expressed as

Ui(Sc) − {xUi(Sc) + (1 − x)Ui(Sc)} = {(R + P − T − S)x + S − P}(1 − x).

Finally, replicator dynamics ẋ that indicates the transition of x is defined as follows:

ẋ = {(R + P − T − S)x + S − P}(1 − x)x. (1)

The equilibria of x that satisfy ẋ = 0 are 0, 1, and (S −P )/(T + S −R−P ). Next,

we describe the stability of their equilibria. In Eq. (1), (1− x)x is constantly over zero

for 0 ≤ x ≤ 1. The remaining part (R + P − T − S)x + S − P becomes positive for

x < (S−P )/(T +S−R−P ) and negative for x > (S−P )/(T +S−R−P ) because of the

definition of games in section 3. As a result, x approaches to (S −P )/(T + S −R−P )

independently of the initial value of x. Thus, the steady equilibrium is

x =
S − P

T + S − R − P
. (2)

Eq. (2) indicates that the ratio of cooperators at a steady state depends on the

parameters of the payoff matrix. Based on Refs. [14–16], we first define r as the cost-

to-benefit ratio of mutual cooperation. r means a risk that a node should take when it

behaves as a cooperator. r ranges (0,1]. The smaller value of r indicates that cooperators

increase. In this paper, r is determined by b and cl or by b and cs. Therefore, r can be

regarded as the ratio of demand to cost for caching.

In case of the processing load model, from Eq. (2), the ratio x of cooperators at a

steady state becomes

x =
b − 2cl

b − cl
.

On the other hand, the cost-to-benefit ratio of mutual cooperation r is given as follows:

r =
cl

b − cl
.

Finally, the relationship between x and r satisfies

x = 1 − r. (3)

We can also derive the relationship between x and r in case of the storage capacity

model as follows:

x =
1

1 + r
. (4)
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From Eqs. (3) and (4), the ratio x of cooperators deteriorates with the increase of

the r, namely the decrease of the demand b to the file, independently of the cost models.

In this paper, we aim to achieve a file-sharing system with high file-availability that is

robust to file disappearance. In case of the processing load model, Eq. (3) denotes that

a file disappears from the system when r is close to 1 that means the demand to the

file is low. On the other hand, the storage capacity model enhances the file availability

by preventing x falling in 0 even if r is 1.

6 Simulation-based analysis by agent-based dynamics

Agent-based dynamics [17] can reveal how much caching based on local interaction

among neighboring nodes has impact on the number of cache files in the whole system.

Moreover, we can evaluate search latency for a file since we can obtain the strategies

of all nodes, namely the locations of cache files.

6.1 Agent-based dynamics

In agent-based dynamics, a node determines its strategy by comparing its own payoffs

with those of a neighboring node of the overlay network for sharing the corresponding

file. A node initially selects a strategy at random. The initial ratio of cooperators and

that of defectors are fifty-fifty in Refs. [14–16]. Once a node i determines its strategy,

it plays a game once with all neighboring nodes. This is one generation. At the end of

the generation, the node i calculates average Ai of payoffs acquired, then determines

the strategy of the next generation as follows.

Step 1: Selection of a neighboring node for comparison of payoffs

The node i randomly chooses a node j from neighboring nodes.

Step 2: Decision of the next strategy based on the comparison of average payoffs

If Aj > Ai is satisfied, the node i imitates the strategy of node j with the following

probability:

PA(i, j) =
Aj − Ai

T − P
.

Otherwise, it does not change its strategy. The node i tends to imitate the strategy

of a node that obtained more payoffs than it. In addition, PA increases in proportion

to the payoff differences.

In an actual system, we should consider the overheads incurred by playing games

and exchanging payoffs with neighboring nodes. We expect that these processes can

be realized by slightly modifying the keep-alive messaging typically used in P2P file-

sharing systems.

6.2 Simulation experiments

Through several simulation experiments, we evaluate how the node behavior based

on the payoff matrix affects file availability and search latency of the whole system

in scale-free and random networks. We evaluate the file availability by the ratio x of

cooperators. In the case of the single-file caching, the number of cache files is the same
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Fig. 2 payoff matrix vs. file availability and search latency (scale-free: m=4)

as the product of x and the number of nodes. On the other hand, we define the search

latency as the average hop count between a node to its closest provider including itself.

Note that we alternatively use the maximum hop count between two arbitrary nodes

when a file disappears from the system.

6.2.1 Simulation model

We used NetLogo [18] in our simulation experiments. Based on Refs. [14–16], we set

simulation configurations as follows. We generated scale-free and random networks

of 1000 nodes by using the topology generator BRITE [19]. The scale-free network

was based on Barabási-Albert (BA) model [20] and the random network generated by

waxman algorithm [21] with α = 0.15 and β = 0.2. We also set the number m of

connections that a newly participating node established to 2 and 4. Table 2 represents

the average of maximum hop count between two arbitrary nodes in twenty networks.

We set the caching costs cl and cs to 1, respectively. Thus, independently of the cost

models, b = (1+r)/r was derived. We configured that the initial ratio x0 of cooperators

was 0.5. To investigate the system characteristics in a steady state, we show results

when 1000 generations passed. The following results indicate the average of twenty

simulations. We abbreviate replicator dynamics to RD, agent-based dynamics to AD,

scale-free to SF, and random to RND in the following figures.

6.2.2 Impact of payoff matrix

Figure 2(a) illustrates that the relationship between r and the ratio x of nodes taking

the strategy Sc that is derived by agent-based dynamics in a scale-free network with

m = 4. We discover that x deteriorates with the increase of r, namely the decrease of

demand, regardless of the cost models. In addition, the processing load model causes

the disappearance of files with larger r. On the other hand, the file availability is

enhanced by using the storage capacity model even if r is 1. Next, Fig. 2(a) also shows

x derived by replicator dynamics. In case of the processing load model, x of agent-

based dynamics is lower than that of replicator dynamics excluding the case of smaller

r. On the contrary, the storage capacity model enhances the file availability as x of

agent-based dynamics achieves almost the same as that of replicator dynamics.
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Fig. 3 impact of network structure (m=2 vs. m=4, scale-free vs. random)

Table 2 maximum hop count between two arbitrary nodes

m = 2 m = 4
scale-free network 7.4 5
random network 8.7 6

Figure 2(b) depicts that the search latency increases with the growth of r, inde-

pendently of the cost models. This is because the number of providers decreases as

shown in Fig. 2(a). In case of the storage capacity model, x is higher than 0.4 even for

a low-demand file. Consequently, a node can reduce the search latency by finding out

a closer provider.

6.2.3 Impact of network structure

Figure 3 illustrates x and the search latency in scale-free networks with m = 2, 4. Since

the average degree is 2m, larger m makes a network dense. Figure 3(a) shows that

smaller m promotes to increase high-demand files, independently of the cost models.

This is due to the effect of high degree nodes. A high degree node tends to acquire more

payoffs than other nodes and be chosen for comparison of payoffs by its neighboring

nodes. As a result, the strategy of a high degree node is likely to spread over the

network. The impact of high degree nodes is accelerated in a network with small m

where low degree nodes frequently exist.

On the other hand, Fig. 3(b) presents that the search latency of m = 2 is lower

than that of m = 4 if r is smaller than 0.3 in the processing load model and 0.5 in

the storage capacity model. This is because files with smaller r are more cached in the

case of m = 2 as shown in Fig. 3(a). Since the increase of r results in the decrease of

providers, the search latency of m = 4 becomes superior to that of m = 2. Note that

there is slight difference between m = 2 and m = 4 in the storage capacity model.

Figure 3 also shows that x and the search latency in the random network with

m = 4. We find that x in the scale-free network is mainly larger than that in the

random network as shown in Fig. 3(a). Contrary to our expectation, Fig. 3(b) presents

that the search latency in the scale-free network is not so superior to that in the

random network despite of its lower diameter of the network (Table 2). This is because
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files tend to be cached at regular nodes rather than high degree nodes in the scale-free

network. In other words, we can alleviate load concentration on high degree nodes while

suppressing the search latency. We give the detail discussion about the load balancing

in section 6.2.5. Note that the difference of degree distribution does not so much affect

to the search latency in case of the storage capacity model.

In summary, we can accomplish a file-sharing system with high file-availability and

low search-latency by using the storage capacity model independently of the network

structures.

6.2.4 Impact of evolving network

Although we have evaluated the system performance in case of the static networks,

actual P2P networks are evolving networks where nodes sequentially participate in the

system. In this section, we reveal how the growth of the network affects the system

performance. We used BA model (m = 4) as an example of the evolving networks. To

evaluate the impact of the relationship between the growth rate of the network and

the frequency of the caching games, we define a game ratio gr as the number of games

per node arrival. Noe that when the game ratio is less than 1, games are conducted

every b1/grc node arrivals.

Figure 4 illustrates the relationship between r and x for the both cost models when

the game ratio is set to 0.5, 1, 2. First, the difference of the game ratio does not have

much influence on the system performance. Thus, caching condition is independent of

the growth rate of the network. Next, comparing Fig. 4 with Fig. 3(a), we find that the

results are similar to those in case of the static networks, which means that we need

not to evaluate in case of the evolving networks in more detail.

6.2.5 Load balancing

It is desirable that files are appropriately distributed in the network to cope with dis-

turbances caused by node departures or attacks from malicious users. In what follows,

we evaluate the case of the scale-free network with m = 4. Figure 5(a) depicts the re-

lationship between r and x for high-degree and regular nodes. Note that a high-degree

node is a node whose degree is not less than kmax/2 where kmax is the largest degree

in the network [22].
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By comparing Fig. 5(a) with Fig. 2(a), we find that the regular nodes present

almost the same results as the whole nodes. This is because the regular nodes are

the majority in the scale-free network. On the contrary, the high-degree nodes have

different characteristics. Except for the processing load model (r ≥ 0.7), the high-

degree nodes tend not to cache files compared with the regular nodes. Consequently,

load concentration on the high-degree nodes can be reduced.

Figure 5(b) illustrates the fraction of strategy pairs between two neighboring nodes.

The strategy pair is classified into three types: cooperator-cooperator (CC), cooperator-

defector (CD), and defector-defector (DD). The fraction of strategy pairs enables us

to comprehend how the network consists of cooperators and defectors. As shown in

Fig. 5(b), a cooperator’s cluster shrinks with the increase of r in both cost models.

In the processing load model, defectors finally overcome cooperators as DD reaches to

1. However, cooperators can coexist with defectors in the storage capacity model even

when r becomes large.

These results imply that the storage capacity model contributes to effective load

balancing.
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6.2.6 Convergence Property

Figure 6 illustrates the relationship between r and x when the generation g is 10, 100,

and 1000. We denote x at g as xg. As mentioned before, x0 is set to 0.5, independently of

r. The results show that the system almost reaches a steady state at g = 100 because the

disparity between x100 and x1000 is at most 0.087. Furthermore, the difference between

x10 and x1000 are less than 0.19. We can conclude that the system has relatively high

convergence property, despite the fact that it is based on only local interactions between

neighboring nodes.

7 Conclusions

In this paper, we revealed the relationship between node behavior and effective caching

in the whole system by evolutionary game theory so as to accomplish a file-sharing sys-

tem with high file availability and low search latency even if nodes behaved selfishly and

autonomously. We first made modeling a file-sharing system as two kinds of caching

games between two neighboring nodes of the overlay network for sharing the corre-

sponding file. Then, we showed the basic characteristics of the models by analytically

deriving the number of cache files in the system based on replicator dynamics. Further-

more, through simulation experiments based on agent-based dynamics, we evaluated

how much local interactions among nodes had impact on the system performance.

Simulation results showed that the storage capacity model made a file-sharing sys-

tem robust to fie disappearance independently of the network structures even if nodes

behave selfishly.

As future research work, we should examine a caching game that takes into ac-

count dynamic costs, e.g., delay and bandwidth. Furthermore, we plan to analyze the

dynamics of information networks other than the file-sharing system and propose con-

trol mechanisms based on the analysis. For example, information travels along a chain

of intermediate nodes toward its destination in the following information systems: in-

formation distribution on an overlay network, e.g., application level multicast, and

information diffusion and gathering on a sensor network. Since forwarding informa-

tion takes costs, such as network bandwidth and electricity consumption, an effective

forwarding mechanism taking into account the significance of information is needed.

Evolutionary game theory can reveal node behavior suitable for such effective informa-

tion transfer.
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