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Continuous-Time Analysis of the Simple Averaging
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Abstract—In sparsely populated mobile ad hoc networks
(MANETs), mobile nodes are chronically isolated each other
and they meet very occasionally. Global clock synchronization
among nodes in such networks is a challenging problem because
reference clock information cannot be disseminated promptly
over nodes due to the lack of stable connections among nodes.
In recent years, distributed global clock synchronization based
on consensus algorithms has been studied. In this paper, we
conduct the continuous-time analysis of the simplest consensus-
based clock synchronization, where two mobile nodes exchange
their local clock times when they meet and adjust their own clocks
to the average of them. Through the analysis and simulation
experimennts, we reveal how the clock accuracy of nodes and
meeting rates among them affect the rate of convergence to the
steady state and the accuracy of clock synchronization in steady
state.

Index Terms—Continuous-time analysis, averaging scheme,
global clock synchronization, sparsely populated MANETs.

I. INTRODUCTION

In challenged networks such as sparsely populated mobile
ad hoc networks (MANETs) and mobile wireless sensor
networks (WSNs), mobile nodes are chronically isolated each
other and they meet very occasionally. Such a kind of networks
typically arise in deep-space exploration, wildlife tracking,
underwater networking, and emergency networking in disaster
areas [7]. To realize effective networking in those situations,
global clock synchronization is one of key issues [3], [17].

The local clock time c(t) of a node at real time t (t ≥ 0)
can be expressed to be [16]

c(t) = ρt + φ, (1)

where ρ and φ are called the clock rate and clock off-
set, respectively. The clock rate ρ is equivalent to the first
derivative dc(t)/dt of c(t) and ideally, it should be equal to
one. In practice, however, ρ differs from one in the range
of [10−4, 10−6], due to crystal inaccuracies and short- and
long-term environmental variations such as temperature and
aging [16]. The difference ρ − 1 of the clock rate from one
is called clock skew (or drift). On the other hand, the clock
offset φ = c(0) represents the initial error of the local clock
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time when the clock was initialized, which is not equal to zero
in general.

There are extensive studies on global clock synchronization
in multi-hop wireless networks and the surveys are given
in [6], [14]. If the network is static or stable, the simplest
way is to form a hierarchical topology rooted by a reference
node and to broadcast the clock time of the reference node
to all other nodes along with the topology. This category
of global time synchronization schemes includes Network
Time Protocol (NTP) [11] and its extension [17], tree-based
approach [9], [15], and cluster-based approach [5]. These
approaches, however, do not work well in challenged networks
due to the following reasons: 1) Making and maintaining the
hierarchical topology is difficult due to sparse node density,
node mobility, and node failures, and 2) estimation errors
increase with the number of hops from the reference node.

To tackle these problems, there are several studies on
distributed global clock synchronization based on consen-
sus/agreement algorithms [3], [10], [13]. The consensus al-
gorithm enables a large number of distributed nodes to reach
consensus on a common value, e.g., the global average among
their local values, in a fully distributed manner [1]. Li and
Rus first proposed consensus-based clock synchronization
for offset compensation [10], where each node periodically
calculates the average of clock times among neighbors. In
recent years, more sophisticated consensus-based clock syn-
chronization schemes have also been proposed to both drift
compensation and offset compensation [3], [13].

The original consensus algorithm has a good convergence
property under some assumptions. However, there is a signif-
icant difference between the original consensus problem and
the global clock synchronization problem. More specifically,
the local clock time at each node varies due to not only
the consensus algorithm but also clock itself. The existing
schemes [3], [10], [13], however, implicitly ignore the clock-
driven effect and the consensus-based clock synchronization is
modeled as a discrete-time system, where each node performs
averaging operations at least once at each time step. As a
result, the convergence of the local clock times is proved in a
way similar to the original consensus problem.

In actual systems, the clock changes continuously, as shown
in (1). Furthermore, the meeting rate (which is determined by
communication intervals) between a pair of nodes depends
on those nodes’ mobility. To the best of our knowledge,
there is no study on revealing how the clock drift, clock
offset, and meeting rate affect the rate of convergence to
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the steady state and the accuracy of clock synchronization
in steady state. In this paper, we clarify these fundamental
characteristics by conducting the continuous-time analysis of
the simplest consensus-based clock synchronization called the
simple averaging scheme, where two mobile nodes exchange
their local clock times when they meet and adjust their own
clocks to be the average of them.

The rest of this paper is organized as follows. Section II
describes the simple averaging scheme for global clock syn-
chronization. Section III provides the continuous-time analysis
of the simple averaging scheme. Section IV provides some nu-
merical illustrations with simulation experiments and demon-
strate the fundamental characteristics of the simple averaging
scheme and the practicality of the analytical results using real
trace data. Finally, conclusion is provided in section V.

II. SIMPLE AVERAGING SCHEME FOR GLOBAL CLOCK
SYNCHRONIZATION

Suppose there exist N (N ≥ 2) mobile nodes, labeled 1 to
N , in a closed region. Let N denote {1, 2, . . . , N}. The clock
rate and offset time of node k (k ∈ N ) are denoted by ρk

and φk, respectively. We define ck(t) (k ∈ N , t ≥ 0) as the
local clock time of node k at real time t. Thus ck(0) = φk

(k ∈ N ), and when the clock of node k is not adjusted during
a time interval (t1, t2] (0 ≤ t1 < t2),

ck(t2) = ρk(t2 − t1) + ck(t1). (2)

We assume that node k (k ∈ N ) has an estimated value
ρ̂k of its clock rate ρk and utilizes it for estimating real time
t from its local clock time ck(t) in the following way. Let
ĉk(t) (k ∈ N , t ≥ 0) denote the estimated time of node
k at time t. Also let τk(t) (k ∈ N , t ≥ 0) denote a time
instant at which the clock of node k was adjusted last time
before time t, where τk(t) = 0 if the clock has never been
adjusted during (0, t]. Note that whenever the clock of node k
is adjusted, the estimated time is also set to be the same time,
i.e., ĉk(τk(t)) = ck(τk(t)). Node k generates the estimated
time ĉk(t) by

ĉk(t) =
ck(t) − ck(τk(t))

ρ̂k
+ ck(τk(t)), t ≥ 0. (3)

It then follows from (2) and (3) that the estimated time ĉk(t)
at time t is given by ĉk(t) = ρ∗k(t− τk(t))+ ĉk(τk(t)), where
ρ∗k (k ∈ N ) denotes the adjusted clock rate of node k, i.e.,
ρ∗k = ρk/ρ̂k. Note that the default value of ρ̂k is equal to one.
In what follows, we assume that ck(t) and ĉk(t) are right-
continuous and have left-limits, and we denote the left-limits
of ck(t) and ĉk(t) at time t by ck(t−) and ĉk(t−), respectively.

Suppose node k and node j (k, j ∈ N , k 6= j) meet at time
t = τ . They instantaneously exchange their estimated clock
times and adjust their clock to be the average of them.

ck(τ) = cj(τ) = ĉk(τ) = ĉj(τ) =
ĉk(τ−) + ĉj(τ−)

2
. (4)

It then follows from (4) that ĉk(τ)+ĉj(τ) = ĉk(τ−)+ĉj(τ−),
so that the sum of estimated times does not change before and
after meetings of nodes. Note also that the sum of estimated
times of all nodes increase at constant rate ρ∗1 +ρ∗2 + · · ·+ρ∗N

unless the estimated clock rate ρ̂k is updated. Therefore we
have ∑

k∈N

ĉk(t) =

(∑
k∈N

ρ∗k

)
t +

∑
k∈N

ĉk(0)

=

(∑
k∈N

ρ∗k

)
t +

∑
k∈N

φk, (5)

for all t (t ≥ 0), because (3) implies ĉk(0) = ck(0) = φk

(k ∈ N ).
Remark 1: In the above formulation, we ignore the prop-

agation delay between two nodes because it will be neg-
ligible compared with the achievable granularity of clock
synchronization. If the estimated propagation delay is available
(cf. [12]), however, it can be incorporated into the simple
averaging scheme.

We now define the reference time c∗(t) (t ≥ 0) as

c∗(t) =
1
N

∑
k∈N

ĉk(t) = ρt + φ, (6)

where
ρ =

1
N

∑
k∈N

ρ∗k, φ =
1
N

∑
k∈N

φk.

From (5) and (6), we have the following theorem.
Theorem 2: The sum of differences between the estimated

time ĉk(t) of each node and the reference time c∗(t) is always
zero. ∑

k∈N

(ĉk(t) − c∗(t)) = 0, ∀t ≥ 0.

III. CONTINUOUS-TIME ANALYSIS OF SIMPLE
AVERAGING SCHEME

In this section, we analyze the performance of the simple
averaging scheme under the assumption that the adjusted clock
rate ρ∗k (k ∈ N ) of node k is fixed. Let sk (k ∈ N ) denote
the difference between the adjusted clock rate ρ∗k of node k
and the clock rate ρ of the reference time.

sk = ρ∗k − ρ.

Hereafter, we call sk the relative clock skew of node k. Further,
we define S as a random variable representing the relative
clock skew of a randomly chosen node, i.e., Pr(S = sk) =
1/N (k ∈ N ). Note here that by the definition of ρ,∑

k∈N

sk = 0, (7)

and therefore E[S] = 0.
Let Xk(t) (k ∈ N , t ≥ 0) denote the difference between the

estimated time ĉk(t) of node k and the reference time c∗(t)
at time t.

Xk(t) = ĉk(t) − c∗(t).

Hereafter, we call Xk(t) the relative time difference of node
k at time t. It follows from Theorem 2 that∑

k∈N

Xk(t) = 0, (8)
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for all t ≥ 0. Thus Xk(t)’s (k ∈ N ) are dependent
random variables. We then define X(t) (t ≥ 0) as an N -
dimensional random vector of Xk(t) (k ∈ N ), i.e., X(t) =
(X1(t), X2(t), . . . , XN (t)), and let F (x, t) (t ≥ 0) denote the
joint distribution function of Xk(t) (k ∈ N ),

F (x, t) = Pr(Xk(t) ≤ xk; k ∈ N ),

where x = (x1, x2, . . . , xN ). By definition, F (x, 0) represents
the joint distribution of relative offset differences Xk(0) =
φk − φ (k ∈ N ), which are treated as random variables in
our formulation. We assume that X(t) is ergodic and let Xk

(k ∈ N ) denote the limiting random variable of Xk(t).

Xk = lim
t→∞

Xk(t).

We also define X(t) (t ≥ 0) as the relative time difference of a
randomly chosen node at time t, i.e., Pr(X(t) = Xk(t)) = 1

N
(k ∈ N ). Let X denote the limiting random variable of X(t).

X = lim
t→∞

X(t).

A. General N -Node Systems

We assume that there exist N nodes (N ≥ 2). To make
things tractable, we assume that the sequence of time instants
at which node k and node j (k, j ∈ N , k 6= j) meet forms an
independent Poisson process with rate λk,j . Thus the sequence
of time instants at which node k (k ∈ N ) encounters other
nodes forms an independent Poisson process with rate λk,
where λk is given by

λk =
∑
j∈N
j 6=k

λk,j , k ∈ N .

Let Λ denote an N × N matrix whose kth (k ∈ N ) diagonal
element is given by −λk and the (k, j)th (k, j ∈ N , k 6= j) off-
diagonal element is given by λk,j . Note that Λ is considered as
an infinitesimal generator of a continuous-time Markov chain
with finite state space N . We assume that Λ is irreducible.
Let π = (π1, π2, . . . , πN ) denote a 1×N invariant probability
vector of Λ, which is determined uniquely by πΛ = 0 and
πe = 1, where e denotes an N × 1 vector whose elements
are all equal to one. By definition, λk,j = λj,k, so that Λ is a
symmetric matrix. Thus we have π = (1/N) · eT , where ·T
stands for the transpose operator. It then follows that πkλk,j =
πjλj,k (k, j ∈ N , k 6= j), and therefore the finite state Markov
chain defined by Λ is reversible (cf. Chap. 1 in [8]).

Let f∗(η, t) (t ≥ 0) denote the joint characteristic function
of Xk(t) (k ∈ N ).

f∗(η, t) = E

[∏
k∈N

eıηkXk(t)

]
,

where η = (η1, η2, . . . , ηN ) and ı denotes the imaginary unit.
Theorem 3: The joint characteristic function f∗(η, t) (t ≥

0) satisfies

∂

∂t
f∗(η, t) =

∑
k∈N

(
ıskηk − 1

2
λk

)
· f∗(η, t)

+
∑

k,j∈N
k<j

λk,jf
∗(ηk,j , t), (9)

where ηk,j (k, j ∈ N , k < j) is given by

ηk,j =
(

η1, . . . , ηk−1,
ηk + ηj

2
, ηk+1, . . . , ηj−1,

ηk + ηj

2
, ηj+1, . . . , ηN

)
.

The proof of Theorem 3 is given in Appendix A. Unfortu-
nately, it seems to be hard to obtain the solution for F (x, t)
from (9). Thus we consider moments of Xk(t) (k ∈ N ) below.

We first discuss the first moment of the relative time dif-
ference Xk(t). Let f∗

k (η, t) (k ∈ N , t ≥ 0) and f∗
k,j(ηk, ηj , t)

(k, j ∈ N , t ≥ 0) denote the marginal characteristic function
of Xk(t) and the marginal joint characteristic function of
Xk(t) and Xj(t), respectively.

f∗
k (η, t) = E

[
eıηXk(t)

]
,

f∗
k,j(ηk, ηj , t) = E

[
eıηkXk(t)eıηjXj(t)

]
.

Substituting ηj = 0 for all j (j ∈ N , j 6= k) in (9) yields

∂

∂t
f∗

k (η, t) = ıskηf∗
k (η, t) − λkf∗

k (η, t)

+
∑
j∈N
j 6=k

λk,jf
∗
k,j

(η

2
,
η

2
, t
)

. (10)

Let s denote an N × 1 vector whose kth (k ∈ N ) element
is given by sk. We define x(n)(t) (n = 1, 2, t ≥ 0) as an
N × 1 vector whose kth (k ∈ N ) element x

(n)
k (t) is given by

E[Xn
k (t)]. By definition,

x
(1)
k (t) = E[Xk(t)] = −ı lim

η→0

∂

∂η
f∗

k (η, t).

Theorem 4: x(1)(t) is expressed to be

x(1)(t) = x(1) + exp
(

1
2
Λt

)(
x(1)(0) − x(1)

)
, (11)

where x(1) = limt→∞ x(1)(t) is given by

x(1) = 2
(

1
N

eeT − Λ
)−1

s. (12)

The proof of Theorem 4 is given in Appendix B.
Recall that Λ is considered as a symmetric infinitesimal

generator of a finite-state reversible Markov chain. Therefore
all eigenvalues of Λ are real, the maximum eigenvalue is equal
to 0, and other eigenvalues are strictly negative. Therefore,
from (11), we observe that the influence of relative offset times
x

(1)
k (0) (k ∈ N ) decays exponentially and the relaxation time

is given by the reciprocal of the absolute value of the second
largest eigenvalue of Λ/2, which is independent of relative
clock skews.

Remark 5: The second largest eigenvalues of infinitesimal
generators of reversible Markov chains have been studied in
depth, e.g., see [4] and references therein.
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Next we consider the time-dependent second moment
E[X2

k(t)] (k ∈ N ). Let f∗
k,j,i(ηk, ηj , ηi, t) (k, j, i ∈ N , t ≥ 0)

denote

f∗
k,j,i(ηk, ηj , ηi, t) = E

[
eıηkXk(t)eıηjXj(t)eıηiXi(t)

]
.

Substituting ηi = 0 for all i (i ∈ N , i 6= k, j) in (9) yields

∂

∂t
f∗

k,j(ηk, ηj , t) = ıskηkf∗
k,j(ηk, ηj , t) + ısjηjf

∗
k,j(ηk, ηj , t)

− (λk + λj − λk,j)f∗
k,j(ηk, ηj , t)

+ λk,jf
∗
k,j

(
ηk + ηj

2
,
ηk + ηj

2
, t

)
+
∑
i∈N
i 6=k,j

λk,if
∗
k,j,i

(ηk

2
, ηj ,

ηk

2
, t
)

+
∑
i∈N
i 6=k,j

λj,if
∗
k,j,i

(
ηk,

ηj

2
,
ηj

2
, t
)

. (13)

We define x
(1,1)
k,j (t) (k, j ∈ N ) as E[Xk(t)Xj(t)]. By

definition,

x
(1,1)
k,j (t) = − lim

ηk→0
lim

ηj→0

∂

∂ηk

∂

∂ηj
f∗

k,j(ηk, ηj , t),

x
(2)
k (t) = E[X2

k(t)] = − lim
η→0

∂2

∂η2
f∗

k (η, t).

Theorem 6: E[X2
k(t)] (k ∈ N ) is given by

E[X2
k(t)] = −

k−1∑
j=1

x
(1,1)
j,k (t) +

N∑
j=k+1

x
(1,1)
k,j (t)

 ,

where x
(1,1)
k,j (t) (1 ≤ k < j ≤ N ) is the solution of the

following system of N(N − 1)/2 linear ordinary differential
equations.

d

dt
x

(1,1)
k,j (t) =

k−1∑
l=1

{(
λl,j

2
+

λk,j

4

)
x

(1,1)
l,k (t)

+
(

λl,k

2
+

λk,j

4

)
x

(1,1)
l,j (t)

}
+

j−1∑
l=k+1

{(
λl,j

2
+

λk,j

4

)
x

(1,1)
k,l (t)

+
(

λk,l

2
+

λk,j

4

)
x

(1,1)
l,j (t)

}
+

N∑
l=j+1

{(
λj,l

2
+

λk,j

4

)
x

(1,1)
k,l (t)

+
(

λk,l

2
+

λk,j

4

)
x

(1,1)
j,l (t)

}
− 1

2
(λk + λj − 2λk,j)x

(1,1)
k,j (t)

+ skx
(1)
j (t) + sjx

(1)
k (t),

1 ≤ k < j ≤ N, (14)

which can be solved numerically.
The proof of Theorem 6 is given in Appendix C.

Note that all coefficients of unknowns x
(1,1)
k,j (t) in (14) are

independent of relative clock skews sk. Thus the convergence
speed of the second moments to the limiting values is deter-
mined only by λk,j (k, j ∈ N , k 6= j), and it is independent
of relative clock skews.

It is easy to see that the limiting second moments E[X2
k ]

(k ∈ N ) are given by

E[X2
k ] = −

k−1∑
j=1

x
(1,1)
j,k +

N∑
j=k+1

x
(1,1)
k,j

 ,

where x
(1,1)
k,j = limt→∞ x

(1,1)
k,j (t) (k, j ∈ N , k < j) denotes

the solution of a system of linear simultaneous equations,
which is obtained by taking limit t → ∞ on both sides of
(14), where limt→∞ dx

(1,1)
k,j (t)/dt = 0.

Because the above formulation for the general case provides
us only with limited insight, we consider two special cases
below.

B. Special Case 1: Homogeneous Meetings

We now assume that all nodes are homogeneous in terms
of their meetings.

Corollary 7: Suppose λk,j = λ for all k, j (k, j ∈ N , k 6=
j). We then have for k ∈ N ,

E[Xk(t)] = E[Xk] + (E[Xk(0)] − E[Xk]) e−
Nλ
2 t, (15)

where

E[Xk] = lim
t→∞

E[Xk(t)] =
2sk

Nλ
, k ∈ N .

The proof of Corollary 7 is postponed till section III-C.
In the homogeneous meeting case, the relaxation time γ is

given by γ = 2/(Nλ), which is independent of relative clock
skews, as shown in the general case. Note that when N is large,
γ ≈ 2 × {(N − 1)λ}−1, which is approximately equal to the
mean length of time which a specific node takes to encounter
other nodes twice. Thus the relaxation time is fairly short
and we expect the fast convergence to steady state. Also the
mean relative time difference E[Xk(t)] of node k converges
to E[Xk] = γsk as t goes to infinity, and this limiting value
depends on the relative clock skews of other nodes through
the constraint of (7).

Theorem 8: Suppose λk,j = λ for all k, j (k, j ∈ N , k 6=
j). We then have for k ∈ N ,

E[X2
k ] = lim

t→∞
E[X2

k(t)] =
8

3N2λ2

(
2s2

k + E[S2]
)
, (16)

E[X2] = lim
t→∞

E[X2(t)] =
8E[S2]
N2λ2

, (17)

and

E[X2
k(t)] = E[X2

k ] + (2Ck + Dk − Ek)e−
3Nλ

4 t

+ (A − 3Ck + Ek)e−
Nλ
2 t + Bte−

Nλ
2 t, (18)

E[X2(t)] = E[X2] + Ae−
Nλ
2 t + Bte−

Nλ
2 t, (19)

where

A = E[X2(0)] − E[X2],
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B =
2
N

∑
j∈N

sj(E[Xj(0)] − E[Xj ]),

Ck = E[X2
k ] − E[X2],

Dk = E[X2
k(0)] − E[X2(0)],

Ek = 4

E[Xk]E[Xk(0)] − 1
N

∑
j∈N

E[Xj ]E[Xj(0)]

 .

The proof of Theorem 8 is given in Appendix D.
As observed in the general case, the speed of convergence is

independent of relative clock skews. We also observe that the
second moment E[X2

k ] of the limiting relative time difference
of node k is composed of two factors, one of which is
the common factor E[X2]/3 determined by overall system
parameters. The other factor is given by 4(E[Xk])2/3 (see
Corollary 7), which is proportional to the square s2

k of the
relative clock skew of node k. Thus even if sk = 0, node k is
influenced by other nodes with non-zero relative clock skews.

Next we discuss the transient behavior of the second
moments. From (19), we observe that the second moment
E[X2(t)] of the relative time difference of a randomly chosen
node has two decay terms containing factors exp(−t/γ) and
t exp(−t/γ), respectively. Note that the second decay term
stems from the transient dynamics of E[Xk(t)] (k ∈ N ). In
fact, if E[Xk(0)] = E[Xk] for all k ∈ N , the second term
vanishes away and E[Xk(t)] = E[Xk] for all t ≥ 0. Even
when E[Xk(0)] = E[Xk] for all k ∈ N , however, the first
decay term remains, so that it is the essential term representing
the transient behavior of the second moment E[X2(t)] of the
relative time difference of a randomly chosen node.

We then turn our attention to the time-dependent second
moment E[X2

k(t)] of the relative time difference of node k.
From (18) and (19), we have

E[X2
k(t)] − E[X2

k ]
= E[X2(t)] − E[X2]

+ (2Ck + Dk − Ek)e−
3Nλ

4 t − (3Ck − Ek)e−
Nλ
2 t, (20)

which shows that the transient dynamics of E[X2
k(t)] is

composed of two factors, one of which is determined by
overall system parameters. We also observe from (20) that
E[X2

k(t)] has two additional terms decaying exponentially at
rates 1/γ and 3/(2γ), respectively. Note here that Ck, Dk,
and Ek in those terms satisfy∑

k∈N

Ck =
∑
k∈N

Dk =
∑
k∈N

Ek = 0,

so that they do not appear in E[X2(t)] of (19). Thus they
are considered as decay terms stemming from the diversity of
respective nodes.

C. Special Case 2: N -Node System with One Active Node

Next we consider a situation where meetings of nodes
are not homogeneous: node 1 moves around actively and
encounter other nodes frequently, while interactions among
other N − 1 nodes are homogeneous. More specifically, the
sequence of meeting times of node k and node j (k, j ∈ N ,
k, j 6= 1, k 6= j) is assumed to be an independent Poisson

process with rate λ1. We also assume that the sequence of
meeting times of node 1 and node k (k ∈ N , k 6= 1) forms an
independent Poisson process with rate λ∗ = λ1+λ2. Note that
the model is reduced to Special Cases 1 when λ2 = 0 and we
are mainly interested in the case of λ2 > 0, even though the
following analytical results are valid for all λ2 > −λ1 (i.e.,
λ∗ > 0).

Corollary 9: Suppose λk,j (k, j ∈ N , k 6= j) is given by

λk,j =
{

λ∗ = λ1 + λ2, k = 1 or j = 1,
λ1, otherwise.

We then have

E[X1(t)] = E[X1] + (E[X1(0)] − E[X1]) e−
Nλ∗

2 t, (21)

E[Xk(t)] = E[Xk] + (E[Xk(0)] − E[Xk]) e−
Nλ1+λ2

2 t

+
E[X1(0)] − E[X1]

N − 1

(
e−

Nλ1+λ2
2 t − e−

Nλ∗
2 t
)

,

k 6= 1, (22)

where E[Xk] = limt→∞ E[Xk(t)] (k ∈ N ) is given by

E[Xk] =


2s1

Nλ∗ , k = 1,

2sk

Nλ1 + λ2
+

λ2

Nλ1 + λ2
· 2s1

Nλ∗ , k 6= 1.

(23)
The proof of Corollary 9 is given in Appendix E.

It is interesting to observe that the time-dependent mean
relative time difference E[X1(t)] and the limiting mean rela-
tive time difference E[X1] of node 1 take the same forms as
those in Special Case 1 of the homogeneous meeting model.
Note that node 1 encounters other nodes randomly with equal
probabilities and the rate of meetings of node 1 to a specific
node is given by λ∗. Therefore this result suggests that the
mean relative time difference of a specific node is determined
mainly by the frequency of meetings to other nodes and their
relative clock skews, and interactions among other nodes have
little impact on the specific node.

Next we consider node k (k 6= 1). Because Special Case 2
for N = 2 is equivalent to Special Case 1, we assume N ≥ 3.
The relaxation time γk = 2/(Nλ1 + λ2) of node k (k 6= 1) is
longer (resp. shorter) than the relaxation time γ1 = 2/(Nλ∗)
of node 1 when λ∗ > λ1 (resp. λ∗ < λ1). This suggests
that when meeting frequencies among nodes are different, the
relaxation time maxk∈N γk of the system is determined by
the node with the least meeting frequency.

In the system with one active node 1 (i.e., λ2 > 0), meetings
of node k (k ∈ N , k 6= 1) to other nodes can be divided into
two sorts. One is the homogeneous meeting to other nodes
and the meeting rate to each pair of nodes is given by λ1.
The other is the addition meeting to node 1 with rate λ2. As
a result, E[Xk(t)] (k 6= 1) has a term involving E[X1(0)] −
E[X1], which is common for all k (k 6= 1). Similarly, E[Xk]
is composed of two terms, one is the product of the relaxation
time γk and the relative clock skew sk, and the other is a term
involving E[X1], which is common for all k (k 6= 1).

Proofs of Corollary 7 Corollary 7 is obtained by setting
λ2 = 0 in Corollary 9.
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Theorem 10: Suppose λk,j (k, j ∈ N , k 6= j) is given by

λk,j =
{

λ∗ = λ1 + λ2, k = 1 or j = 1,
λ1, otherwise.

We then have

E[X2
1 ] =

8E[S2]
(Nλ1 + λ2)(3Nλ1 + 4λ2)

+
8

Nλ∗(3Nλ1 + 4λ2)

·
(

2(Nλ1 + λ2)
Nλ∗ − λ2

Nλ1 + λ2

)
s2
1, (24)

E[X2] =
24E[S2]

(Nλ1 + λ2)(3Nλ1 + 4λ2)

− 8λ2

Nλ∗(3Nλ1 + 4λ2)

(
2

Nλ∗ +
3

Nλ1 + λ2

)
s2
1,

(25)

and for k 6= 1,

E[X2
k ] =

1
| − 4B|

[
2Nλ1{(2N − 1)λ1 + Nλ2}E[X2]

+ [2λ2{(2N − 1)λ1 + Nλ2}
+ 2λ2(λ2 − λ1)]E[X2

1 ] + 8λ2skE[X1]

+ 8[λ2s1 + 2{(2N − 1)λ1 + Nλ2}sk]E[Xk]
]
,

(26)

where

| − 4B| = 6(Nλ1 + λ2){(2N − 1)λ1 + Nλ2} + 2λ2λ
∗.

The proof of Theorem 10 is given in Appendix F. It is easy to
verify that when λ2 = 0, Theorem 10 is reduced to the result
in Theorem 8.

Compared with the mean relative time difference, the second
moment is quite complicated, especially, for Xk(t) (k 6= 1).
It is interesting to observe that when E[S2] is fixed and
λ2 > 0, the limiting second moment E[X2] of the relative time
difference of a randomly chosen node is a decreasing function
of |s1|. Therefore E[X2] is minimized when a node with
the largest absolute value of the relative clock skew moves
around actively. In other words, it is maximized when a node
with the minimum absolute value of the relative clock skew
moves around actively. This fact might be counterintuitive.
Note that the high meeting frequency of a node leads to
frequent adjustments of its clock. Thus, by letting the node
with the largest relative clock skew move around, we can
eliminate the influence of such a node to some extent and
this leads to a small variation in the limiting relative time
difference.

IV. NUMERICAL ILLUSTRATIONS WITH SIMULATION
EXPERIMENTS

In this subsection, we provide some numerical illustrations
obtained by simulation experiments, in order to demonstrate
the fundamental characteristics of the simple averaging scheme
visually. We first consider Special Case 1 (the homogeneous
meeting model), where N = 20, the unit of time is chosen
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Fig. 1. Transient State and Steady State in Special Case 1.

to be the relaxation time γ = 2/(Nλ), and the relative clock
skew sk and offset time φk = E[Xk(0)] of node k are set to
be

(sk, φk) =
{

(1, 1000), k = 1, 2, . . . , 10,
(−1,−1000), k = 11, 12, . . . , 20.

In this setting, a specific node encounters other nodes (N −
1)λ× γ = 2(N − 1)/N = 1.9 times per unit time on average
and the average of the total number of node meetings per unit
time is equal to 19 (= N−1). Also, it follows from Corollary 7
that E[Xk(t)] = sk[1 + 999 exp(−t)] and E[Xk] = sk (k ∈
N ). Thus the system is nearly in steady state at time t = 10
(cf. E[Xk(10)] − E[Xk] ≈ 0.045sk).

Figures 1(a) and 1(b) plot all sample paths of Xk(t) (k ∈
N ) in transient state and steady state, respectively, with dotted
lines. For reference, we also plot E[Xk(t)] ± nσk(t) (n =
0, 1, 2) for k ∈ N such that sk = 1 in Fig. 1(a), where σk(t) =√

E[X2
k(t)] − E[Xk(t)]2 denotes the time-dependent standard

deviation of Xk(t). Further, in Fig. 1(b), we plot E[X]±nσ =
0±n (n = 1, 2, 3), where σ = 1 denotes the limiting standard
deviation of X(t). We observe that the influence of huge initial
offsets vanish away rapidly, and all Xk(t)’s remain in a certain
range when t is large enough.

A. Fundamental Characteristics

Next we consider Special Case 2, where node 1 moves
around actively. We set N = 20, λ1 = λ2, the unit of time is
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(b) |s1| = maxk∈N |sk|.

Fig. 2. Transient State in Special Case 2.

chosen to be the relaxation time 2/(Nλ1 + λ2), E[S2] = 1,
and for all k ≥ 3,

(sk, φk) = (−

√
N

(N − 1)(N − 2)
,−100) ≈ (−0.24,−100).

Within this setting, we consider two cases, Case (a) and Case
(b). In Case (a), we set

(s1, φ1) = (0, 0),

(s2, φ2) = (

√
N(N − 2)

N − 1
, 1800) ≈ (3.08, 1800),

so that the node with an exact clock moves around actively.
On the other hand, in Case (b), we interchange the roles of
node 1 and node 2, i.e., we set

(s1, φ1) = (

√
N(N − 2)

N − 1
, 1800) ≈ (3.08, 1800),

(s2, φ2) = (0, 0),

so that the node with the largest relative clock skew (and the
largest offset time) moves around actively. Sample paths in
those two cases are identical in terms of meeting epochs and
a pair of node IDs at each meeting epoch.

Figures 2 and 3 show all sample paths of Xk(t) in transient
state and steady state, respectively, where the sample path of
node 1 is plotted with a solid line and the rest is plotted
with dotted lines. From Fig. 2, we observe that Xk(t)’s in
both cases converge to steady state rapidly and there is little
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Fig. 3. Steady State in Special Case 2.

qualitative difference between those two cases. From Fig. 3,
however, we observe that Cases (a) and (b) exhibit different
characteristics in steady state. At a glance, variation in Case
(a) is much larger than that in Case (b). In fact, it follows from
(25) that E[X2] ≈ 1.97 in Case (a) and E[X2] ≈ 0.71 in Case
(b). Compared with Case (b), node 2 with the largest relative
clock skew in Case (a) has less opportunities to encounter
other nodes, so that the variation of the relative time difference
of this node gets large. Further, when it encounters another
nodes, its incorrect clock time propagates to the other. These
facts lead to the large variation in Case (a).

B. Evaluation Using Real Trace Data

In this subsection, we examine the practicality of the an-
alytical results using the real trace data of meeting epochs
among participants of IEEE Infocom’06 [2]. We use the trace
data composed of meeting epochs among 54 mobile nodes
(i.e., N = 54) from 9:30am to 10:30am on April 24, 2006.
The average rate of meeting epochs between a pair of nodes
becomes 7.96 × 10−4 [1/sec]. We rearranged the node IDs
in descending order of λk =

∑
j∈N ,j 6=k λk,j , where λk,j

(k, j ∈ N , k 6= j) is estimated by the number of meetings
divided by 3,600 [sec]. We set sk and φk to be

(sk, φk) =
{

(10−4, 1 − 0.01 ∗ (27 − k)), 1 ≤ k ≤ 27,
(−10−4,−1 + 0.01 ∗ (54 − k)), 28 ≤ k ≤ 54,

in order to clarify: 1) the influence of clock offset and drift,
and 2) transition of each node’s clock.
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Fig. 4. Results for real trace data.

Figure 4(a) shows the analytical results of E[Xk(t)] based
on Theorem 4. We observe that the global clock synchroniza-
tion is almost achieved at 3,000 [sec] under the assumption
of Poisson meeting epochs. Note that the relaxation time γ
is given by 513 [sec]. Thus, the system converges to the
steady state after about 6γ [sec]. Note here that the relaxation
time is inherently determined by the meeting rate of the node
(i.e., node #54) with the least meeting opportunities. Except
for node #54, the time synchronization is achieved around
1,500 [sec]. Fig. 4(b) illustrates the sample paths of Xk(t)
based on the meeting epochs in the trace data. We observe
that result for the trace data is very similar to the analytical
results in Figure 4(a) and the global clock synchronization is
almost achieved at 3,000 [sec]. We observe that the relative
time difference of node #54 becomes about half every time it
meets other nodes, so that node #54 has to meet other nodes
ten times or more before the relative time difference shrinks
sufficiently.

V. CONCLUSION

This paper considered the simple averaging scheme for
global clock synchronization in sparsely populated MANETs.
Under the assumption that the estimated clock rates ρ̂k are
fixed, we discussed the fundamental characteristics of the
scheme through the analysis and simulation results. Recall that
the performance was evaluated in terms of two metrics: the
speed of convergence to the steady state and the variation of

relative time differences in steady state. Roughly speaking, the
former is determined by the meeting frequency, independent
of relative clock skews. On the other hand, the variation of
relative time differences in steady state is influenced directly
by relative clock skews.

APPENDIX A
PROOF OF THEOREM 3

Consider the dynamics of X(t) in a time interval [t, t+δt].
Any two nodes do not meet with probability

1 −
∑
k∈N
k<j

λk,jδt + o(δt) = 1 − 1
2

∑
k∈N

λkδt + o(δt),

and in this case, X(t + δt) = X(t) + (s1, s2, . . . , sN ) · δt.
Also, with probability λk,jδt + o(δt) (k, j ∈ N , k 6= j), node
k and node j meet and those two nodes synchronize their
clocks. Thus, when node k and node j meet at time t + z
(0 < z < δt), we have for i ∈ N ,

Xi(t + δt) =


Xi(t) + siδt, i 6= k, j,
1
2
(Xk(t) + skz + Xj(t) + sjz)

+ si(δt − z), i = k, j.

The probability of any other event is of o(δt).
Therefore, noting (Xk(t)+ skz +Xj(t)+ sjz)/2+ si(δt−

z) = (Xk(t) + Xj(t))/2 + o(1) and exp(ıskηkδt) = 1 +
ıskηkδt + o(δt), we have

f∗(η, t + δt) =

(
1 − 1

2

∑
k∈N

λkδt

)
f∗(η, t)

∏
k∈N

(1 + ıskηkδt)

+
∑
k∈N
k<j

λk,jδtf
∗(ηk,j , t) + o(δt)

=

(
1 +

∑
k∈N

ıskηkδt − 1
2

∑
k∈N

λkδt

)
f∗(η, t)

+
∑
k∈N
k<j

λk,jδtf
∗(ηk,j , t) + o(δt),

from which the theorem follows.

APPENDIX B
PROOF OF THEOREM 4

Differentiating both sides of (10) once with respect to η,
substituting 0 into η, and rearranging terms, we obtain

d

dt
x

(1)
k (t) = −λk

2
x

(1)
k (t) +

∑
j∈N
j 6=k

λk,j

2
x

(1)
j (t) + sk,

or equivalently

d

dt
x(1)(t) =

1
2
Λx(1)(t) + s. (27)

It is easy to verify that the solution of (27) takes a form:

x(1)(t) = x(1) + exp
(

1
2
Λt

)
(x(1)(0) − x(1)),
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where x(1) = limt→∞ x(1)(t) satisfies

−Λx(1) = 2s. (28)

Adding eπx(1) to both sides of (28) and noting eπ − Λ is
nonsingular, we have x(1) = 2(eπ−Λ)−1s+eπx(1). Because
π = N−1eT and (8), we have πx(1) = 0, from which (12)
follows.

APPENDIX C
PROOF OF THEOREM 6

Differentiating both sides of (13) twice with respect to ηk,
substituting 0 into ηk and ηj , and rearranging terms, we obtain

d

dt
x

(2)
k (t) = 2skx

(1)
k (t) +

1
4

∑
i∈N

λk,ix
(2)
i (t)

+
1
2

∑
i∈N

λk,ix
(1,1)
i,k (t), (29)

where we use x
(1,1)
k,i (t) = x

(1,1)
i,k (t) and for k ∈ N , λk,k =

−λk and x
(1,1)
k,k (t) = x

(2)
k (t). Also, differentiating both sides

of (13) with respect to ηk and ηj (k, j ∈ N , k 6= j) once
each, substituting 0 into ηk and ηj , and rearranging terms, we
obtain
d

dt
x

(1,1)
k,j (t) = skx

(1)
j (t) + sjx

(1)
k (t) +

λk,j

2
x

(1,1)
k,j (t)

− λk,j

4
(x(2)

k (t) + x
(2)
j (t)) +

1
2

∑
i∈N

λk,ix
(1,1)
i,j (t)

+
1
2

∑
i∈N

λj,ix
(1,1)
i,k (t). (30)

Note here that (8) implies∑
k∈N

x
(1)
k (t) =

∑
k∈N

E[Xk(t)] = 0, (31)

∑
j∈N
j 6=k

x
(1,1)
k,j (t) = E

[
Xk(t)

∑
j∈N
j 6=k

Xj(t)

]

= E[Xk(t)(−Xk(t))] = −x
(2)
k (t). (32)

Summing up both sides of (30) for all j (j ∈ N , j 6= k) and
using (31) and (32), we can obtain (29), which implies that
(29) is redundant. With (32) and x

(1,1)
k,j (t) = x

(1,1)
j,k (t), (30) is

rewritten to be (14). Finally, E[X(2)
k (t)] = x

(2)
k (t) is obtained

with (32).

APPENDIX D
PROOF OF THEOREM 8

When λk,j = λ for all k, j (k, j ∈ N , k 6= j), (29) is
reduced to

d

dt
x

(2)
k (t) = 2skx

(1)
k (t)− 3Nλ

4
x

(2)
k (t) +

λ

4

∑
i∈N

x
(2)
i (t), (33)

where we use (32). We define x(2)(t) as

x(2)(t) =
1
N

∑
k∈N

x
(2)
k (t) =

1
N

∑
k∈N

E[X2
k(t)] = E[X2(t)].

Summing up both sides of (33) for all k (k ∈ N ), dividing
the both sides by N , and rearranging terms yield

d

dt
x(2)(t) =

2
N

∑
k∈N

skx
(1)
k (t) − Nλ

2
x(2)(t),

and using (15), we obtain

d

dt
x(2)(t) = −Nλ

2
x(2)(t) +

4E[S2]
Nλ

+ 2

(
1
N

∑
k∈N

skE[Xk(0)] − 2E[S2]
Nλ

)
e−

Nλ
2 t.

Thus we have

x(2)(t) =
8E[S2]
N2λ2

+
(

E[X2(0)] − 8E[S2]
N2λ2

)
e−

Nλ
2 t

+ 2

(
1
N

∑
k∈N

skE[Xk(0)] − 2E[S2]
Nλ

)
te−

Nλ
2 t,

(34)

from which (17) and (19) follow. Further, noting

λ

4

N∑
j=1

x
(2)
j (t) =

Nλ

4
x(2)(t),

substituting (15) and (34) into (33), and rearranging terms, we
obtain

d

dt
x

(2)
k (t) = −3Nλ

4
x

(2)
k (t) +

2
Nλ

(2s2
k + E[S2])

+
[
2skE[Xk(0)] +

NλE[X2(0)]
4

− 2
Nλ

(2s2
k + E[S2])

]
e−

Nλ
2 t

+

λ

2

N∑
j=1

sjE[Xj(0)] − E[S2]

 te−
Nλ
2 t,

from which (16) and (18) follow.

APPENDIX E
PROOF OF COROLLARY 9

In Special Case 2, Λ can be represented to be

Λ = −[(Nλ1+λ2)I−λ1eeT +Nλ2e1e
T
1 −λ2eeT

1 −λ2e1e
T ],

(35)
where e1 denotes an N × 1 unit vector whose first element
is equal to one. Thus, for any vector x such that eT x = 0, it
can be shown that

Λnx = (−(Nλ1 + λ2))n

[
I − N

N − 1
e1e

T
1 +

1
N − 1

eeT
1

]
x

+ (−N(λ1 + λ2))n

[
N

N − 1
e1e

T
1 − 1

N − 1
eeT

1

]
x.

Therefore we have

exp
(

Λ
2

t

)
(x(1)(0) − x(1))

= e−
Nλ1+λ2

2 t

[
I − N

N − 1
e1e

T
1 +

1
N − 1

eeT
1

]
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· (x(1)(0) − x(1))

+ e−
N(λ1+λ2)

2 t

[
N

N − 1
e1e

T
1 − 1

N − 1
eeT

1

]
· (x(1)(0) − x(1)),

from which (21) and (22) follow. On the other hand, (23)
immediately follows from (28), (35), and eT x(1) = 0, i.e.,

−Λx(1) = [(Nλ1 + λ2)I + Nλ2e1e
T
1 − λ2eeT

1 ]x(1) = 2s,

which completes the proof.

APPENDIX F
PROOF OF THEOREM 10

Note that the special case of λ2 = 0 has already been
considered in Theorem 8 of section III-B. Therefore we
assume λ2 6= 0. For simplicity in description, we define x(2)(t)
as

x(2)(t) =
1
N

∑
k∈N

x
(2)
k (t).

It then follows from (29) that

d

dt

(
x

(2)
1 (t)

x(2)(t)

)
=

−3Nλ∗

4
Nλ∗

4

−λ2

2
−Nλ1 + λ2

2

(x
(2)
1 (t)

x(2)(t)

)

+

 2s1x
(1)
1 (t)

2
N

∑
k∈N

skx
(1)
k (t)


= A

(
x

(2)
1 (t)

x(2)(t)

)
+ b + e−

Nλ∗
2 tc + e−

Nλ1+λ2
2 td,

where

A =
1
4

(
−3Nλ∗ Nλ∗

−2λ2 −2(Nλ1 + λ2)

)
,

b = 2

 s1E[X1]
1
N

∑
k∈N

skE[Xk]

 ,

c = 2s1 ·
E[X1(0)] − E[X1]

N − 1

(
N − 1

1

)
,

d =
2
N

(
N∑

k=2

sk(E[Xk(0)] − E[Xk])

− s1 ·
E[X1(0)] − E[X1]

N − 1

)(
0
1

)
.

Because A, Nλ∗

2 I + A, and Nλ1+λ2
2 I + A are nonsingular

when λ2 6= 0, we have(
x

(2)
1 (t)

x(2)(t)

)
= (−A)−1b − e−

Nλ∗
2 t

(
Nλ∗

2
I + A

)−1

c

− e−
Nλ1+λ2

2 t

(
Nλ1 + λ2

2
I + A

)−1

d

+ exp(At)

[(
x

(2)
1 (0)

x(2)(0)

)
− (−A)−1b

+
(

Nλ∗

2
I + A

)−1

c +
(

λ2

2
I + A

)−1

d

]
.

It can be readily shown that all eigenvalues of A are negative.
Thus we have

lim
t→∞

(
x

(2)
1 (t)

x(2)(t)

)
= (−A)−1b,

from which (24) and (25) follow. Further, from (29), (30), and
(32), we have for k (k ∈ N , k 6= 1),

d

dt

(
x

(2)
k (t)

x
(1,1)
1,k (t)

)
= B

(
x

(2)
k (t)

x
(1,1)
1,k (t)

)
+

Nλ1

4

(
1
0

)
x(2)(t)

+
1
4

(
λ2

λ2 − λ1

)
x

(2)
1 (t)

+
(

0 2sk

sk s1

)(
x

(1)
1 (t)

x
(1)
k (t)

)
,

where

B =
1
4

(
−3(Nλ1 + λ2) 2λ2

−λ∗ −2[(2N − 1)λ1 + Nλ2]

)
,

and taking the limit t → ∞, we have

−B

(
E[X2

k ]
E[X1Xk]

)
=

Nλ1

4

(
1
0

)
E[X2] +

1
4

(
λ2

λ2 − λ1

)
E[X2

1 ]

+
(

0 2sk

sk s1

)(
E[X1]
E[Xk]

)
,

from which (26) follows.
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[12] K. Römer, “Time Synchronization in Ad Hoc Networks,” in Proc. of
the 2nd ACM Int’l Symp. on Mobile Ad Hoc Netw. and Computing
(MobiHoc’01), pp. 173–182, 2001.

[13] L. Schenato and F. Fiorentin, “Average TimeSynch: A Consensus-Based
Protocol for Clock Synchronization in Wireless Sensor Networks,”
Automatica, vol. 47, no. 9, pp. 1878–1886, 2011.

Submitted version



IEEE JSAC, SPECIAL ISSUE ON IN-NETWORK COMPUTATION: EXPLORING THE FUNDAMENTAL LIMITS VOL. XX, NO. YY, ZZZ 2013 11

[14] O. Simeone, U. Spagnolini, Y Bar-Ness, and S. H. Strogatz, “Distributed
Synchronization in Wireless Networks,” IEEE Sig. Processing Mag.,
vol. 25, no. 5, pp. 81–97, 2008.

[15] W. Su and I. F. Akyildiz, “Time-Diffusion Synchronization Protocol for
Wireless Sensor Networks,” IEEE/ACM Trans. Netw., vol. 13, no. 2,
pp. 384–397, 2005.

[16] J. R. Vig, “Introduction to Quartz Frequency Standards,” Tech. Rep.
SLCET-TR-92-1 (Rev. 1) Army Res. Lab. Electron. and Power Sources
Directorate, 1992. available at http://www.ieee-uffc.org/frequency
control/teaching.asp?name=vigtoc.

[17] Q. Ye and L. Cheng, “DTP: Double-Pairwise Time Protocol for Dis-
ruption Tolerant Networks,” in Proc. of Int’l Conf. on Distributed
Computing Sys., pp. 345–352, 2008.

PLACE
PHOTO
HERE

Masahiro Sasabe (M’06) received the M.E. and
Ph.D. degrees from Osaka University, Osaka, Japan,
in 2003 and 2006, respectively. He is currently
an Assistant Professor with the Department of In-
formation and Communication Technology, Osaka
University. From 2003 to 2004, he was a Research
Fellow with 21COE-JSPS, Japan. From 2004 to
2007, he was an Assistant Professor with the Cyber-
media Center, Osaka University. His research inter-
ests include P2P/overlay networking, game-theoretic
networking, and ubiquitous networking. Dr. Sasabe

is a member of IEICE.

PLACE
PHOTO
HERE

Tetsuya Takine (M’94) is currently a Professor in
the Department of Information and Communications
Technology, Graduate School of Engineering, Os-
aka University. He was born in Kyoto, Japan, on
November 28, 1961. He received B.Eng., M.Eng.,
and Dr.Eng. degrees in applied mathematics and
physics from Kyoto University, Kyoto, Japan, in
1984, 1986, and 1989, respectively. In April 1989, he
joined the Department of Applied Mathematics and
Physics, Faculty of Engineering, Kyoto University,
as an Assistant Professor. Beginning in November

1991, he spent one year at the Department of Information and Computer
Science, University of California, Irvine, on leave of absence from Kyoto
University. In April 1994, he joined the Department of Information Systems
Engineering, Faculty of Engineering, Osaka University as a Lecturer, and from
December 1994 to March 1998, he was an Associate Professor in the same
department. From April 1998 to May 2004, he was an Associate Professor
in the Department of Applied Mathematics and Physics, Graduate School of
Informatics, Kyoto University. His research interests include queueing the-
ory, emphasizing numerical computation, and its application to performance
analysis of computer and communication networks. He is now serving as an
associate editor of Queueing Systems, Stochastic Models, and International
Transactions in Operational Research. He received Telecom System Technol-
ogy Award from the Telecommunications Advancement Foundation in 2003
and 2010, and Best Paper Awards from ORSJ in 1997, from IEICE in 2004
and 2009, and from ISCIE in 2006. Dr. Takine is a fellow of ORSJ and a
member of IEICE, IPSJ, and ISCIE.

Submitted version


