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Quasi-Optimal Grouping of Clusters in Ferry-Assisted

DTNs∗

Masahiro SASABE†a), Member, K. Habibul KABIR†b), Nonmember,
and Tetsuya TAKINE†c), Member

SUMMARY Communication among isolated networks (clus-
ters) in delay tolerant networks (DTNs) can be supported by a
message ferry, which collects bundles from clusters and delivers
them to a sink node. When there are lots of distant static clus-
ters, multiple message ferries and sink nodes will be required.
In this paper, we aim to make groups, each of which consists of
physically close clusters, a sink node, and a message ferry. Our
main objective is minimizing the overall mean delivery delay of
bundles in consideration of both the offered load of clusters and
distances between clusters and their sink nodes. We first model
this problem as a nonlinear integer programming, utilizing the
existing result. Using a commercial nonlinear solver, we obtain
the quasi-optimal grouping. Through numerical evaluations, we
show the fundamental characteristics of grouping, the impact of
location limitation of base clusters, and the tradeoff between de-
livery delay and introduction costs.
key words: ferry-assisted DTN, grouping clusters, integer pro-
gramming formulation.

1. Introduction

The current end-to-end TCP/IP model does not ade-
quately match with delay tolerant networks (DTNs) [1,
2], where there are no permanent end-to-end connec-
tions. Alternatively, a store-carry-forward message de-
livery scheme [1] and custody transfer mechanism [3]
are used in those networks to assure reliable bundle
transfers among nodes, where a bundle is the protocol
data unit in DTNs. They perform a hop-by-hop reliable
bundle transfer from a source node to its destination.
To provide the opportunity of communication among
isolated networks called clusters, message ferry schemes
can be used [13,14], where a special mobile node proac-
tively visits each cluster. This kind of networks are ap-
plicable to sensor networking among physically distant
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regions and communications among rural areas with-
out network infrastructure, e.g., DakNet [9]. In such
situations, the system periodically collects information
from isolated multi-cluster DTNs, where nodes can only
communicate directly/indirectly with each other within
a cluster through multi-hop communication. It is usu-
ally assumed that there exists a fixed base station called
sink node, which serves as a connector to the Internet
or to other sink nodes. In such a scenario, a message
ferry helps the inter-cluster communication by acting
as a mediator between each cluster and the outer world
via the sink node. We call this scenario ferry-assisted
multi-cluster DTNs.

In actual situations, the arrival rates of bundles
at clusters are different from each other. For example,
the clusters can be regarded as village, town, or city,
in the rural-area communications. If the arrival rates
of bundles at clusters are different from each other and
service times are not negligible, the conventional trav-
eling salesman problem (TSP) solution does not work
well: Bundles in clusters with high arrival rate must
wait for a long time to be delivered to the sink node,
while less important visits to clusters with a few bun-
dles also take place. In [5], we proposed a scheme to
determine an optimal visiting order of a message ferry
for one group, which minimizes the mean delivery de-
lay of bundles, i.e., the average time interval from the
generation of a bundle in a cluster to the completion of
its delivery to the sink node. This optimization prob-
lem can be reduced to the minimization problem of the
weighted mean waiting time in the conventional polling
model of queueing theory [12]. The proposed visiting
order is effective, especially when arrival rates of bun-
dles in clusters and/or distances between clusters and
the sink node are heterogeneous.

When there are lots of distant static clusters with
heterogeneous offered load, which is the product of the
mean arrival rate and mean service time, there is a
potential drawback in designing a route using only one
message ferry: The time spent for one cycle of the route
increases with the number of clusters. This issue is
the main concern of this paper. The whole system is
divided into multiple groups, each of which consists of a
sink node, clusters, and one message ferry as in Fig. 1.
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b) Formation of groups and selection of base
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Fig. 1 Example of grouping where each number represents the
offered load of each cluster and the size of each cluster is propor-
tional to its offered load.

To decrease the mean delivery delay of bundles, it is
desirable to increase the number of groups. However,
this also increases the costs to introduce the sink nodes
and message ferries, i.e., introduction costs. In general,
the system designer aims to minimize the mean delivery
delay of bundles under the constraint of the number of
groups.

We assume that the sink node is constructed in
one of clusters in each group. In what follows, we call
a cluster with the sink node a base cluster and others
group members. We further assume that the nodes in
each base cluster can directly communicate with their
sink node via high speed wireless channels, so that the
delivery delay of bundles generated at base clusters are
negligible. Therefore, the offered load of the base clus-
ter is excluded from the total offered load in each group.
Note here that the total offered load handled by a mes-
sage ferry should be less than one, and a moderate in-
tensity, say 0.7 or less, is preferable. In Fig. 1, the total
offered loads of the left and right groups become 0.65
and 0.7, respectively.

Our main goal is making groups to minimize the
mean delivery delay of bundles in all groups under the
constraint of the introduction costs. As mentioned
above, we studied the minimization problem of the
mean delivery delay in a single, fixed group [5], where
we obtained an explicit objective function composed of
four factors: arrival rates of bundles in clusters, offered
loads of clusters, traveling times between clusters and
their sink nodes, and the second moment of the bundle-
transmission time distribution. Utilizing this result, we
model our problem as a nonlinear integer programming
and solve it with the help of a commercial nonlinear
solver.

Besides, the intra-cluster communication can be ef-
ficiently handled by accumulating bundles from cluster
members to a limited number of nodes called aggrega-
tors, with the help of the self-organized data aggrega-
tion technique in our previous work [4]. As a result,
the message ferry needs to collect bundles only from

the aggregators.
In summary, combining this work with two of our

previous works, we can comprehensively achieve effec-
tive data aggregation in ferry-assisted multi-clusters
DTNs: (i) Making groups and determining base clus-
ters, i.e., sink nodes according to this work, (ii) ob-
taining a visiting order for each group using the visit-
ing order scheme [5], and (iii) electing aggregators in
each cluster based on the self-organized data aggrega-
tion technique [4].

The rest of this paper is organized as follows.
Section 2 provides the problem formulation. In Sec-
tion 3, we demonstrate the characteristics of the group-
ing through numerical results. Finally we conclude the
paper in Section 4.

2. Problem formulation

2.1 Overview

Our goal is the development of a method for divid-
ing clusters into several disjoint groups to minimize the
overall mean delivery delay of all groups under the con-
straint of the introduction costs in terms of the number
of sink nodes and message ferries. For each group, we
select a base cluster, where a sink node is located, and
we assign one message ferry to the group. Recall that
the sink node has a connection to the outer world and
can directly handle traffic generated in the cluster it be-
longs to via high speed wireless channels. On the other
hand, the message ferry goes back and forth between
the base cluster and other clusters in order to collect
bundles. In general, the overall mean delivery delay
of bundles decreases with the increase of the number
of groups. In order to restrain the introduction costs,
however, it is preferable that the number of message
ferries should be minimal under the condition that the
overall mean delivery delay is allowable.

Note that given groups, we can calculate an op-
timal visiting order of clusters to minimize the mean
delivery delay of each group, according to [5]. There-
fore, we first formulate our problem as an optimization
problem whose objective function is the lower bound
of the overall mean delivery delay of all groups, when
the number K of groups is given. This will be shown
as a nonlinear integer programming formulation in sec-
tion 2.2. We also give a guideline for the number K of
groups in section 2.3.

2.2 Nonlinear integer programming formulation

We assume that there are V clusters labeled 1 to V
in a closed geographical area. Let V = {1, 2, . . . , V }
denote the set of cluster indices. We define D = [di,j ]
(i, j ∈ V) as a matrix of the message ferry’s traveling
time di,j between cluster i and cluster j, where di,i
(i ∈ V) is equal to zero. Let λi (i ∈ V) denote the
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Fig. 2 Timing chart in group k (exhaustive service policy).
When the message ferry arrives at cluster i, three bundles have al-
ready arrived. During the service for them, one bundle is further
generated. When there is no bundle to be served, the message
ferry leaves cluster i and visits the next cluster j via the base
cluster k.

mean arrival rate λi of bundles in cluster i. We assume
that transmission times of bundles at cluster i (i ∈
V) are independent and identically distributed (i.i.d.)
according to a general distribution with finite mean hi

and second moment h
(2)
i . Also, let ρi (i ∈ V) denote the

average offered load of cluster i. Note that ρi = λihi

and ρi should be less than one to achieve stable systems.
We assume that base clusters are selected from the

subset U of V (U ⊆ V). We define the set of base
clusters as K, where |K| = K. Note that K ⊆ U ⊆ V .
We will discuss a way of setting the numberK of groups
in section 2.3. Let V(k) denote the set of group members
in group k (k ∈ K), where k also represents the ID of
the corresponding base cluster. Note that base cluster

k is excluded from V(k). Let E[W
(k)
total] denote the mean

delivery delay of bundles in group k.

E[W
(k)
total] =

∑
i∈V(k)

λiE[W
(k)
deliver,i] + λk · 0

∑
i∈V(k)

λi + λk

(k ∈ K),

where the mean delivery delay E[W
(k)
deliver,i] is the av-

erage time interval from the generation of a bundle of
cluster i (i ∈ V(k), k ∈ K) to the completion of its de-
livery to the sink node in the base cluster at group k
(See Fig. 2). Note that the delivery delay of the base
cluster k is always zero, which is represented by the
second term of the numerator, because it can directly
use the high speed wireless channels without the help
of the message ferry. The overall mean delivery delay
E[Wtotal] of bundles becomes

E[Wtotal] =

∑
k∈K

λ
(k)
totalE[W

(k)
total]∑

k∈K
λ
(k)
total

, (1)

where λ
(k)
total =

∑
i∈V(k) λi + λk and

∑
k∈K λ

(k)
total is con-

stant.
Our main objective is to create groups of clus-

ters in order to minimize E[Wtotal]. From our previous

work [5], E[W
(k)
total] (k ∈ K) is given by

E[W
(k)
total] =

1

λ
(k)
total

∑
i∈V(k)

λi

(
E[W

(k)
wait,i] + hi

1− ρi
+ dk,i

)
,

where E[W
(k)
wait,i] denotes the average waiting time that

a randomly chosen bundle at cluster i in group k waits
for ferry’s service from its generation (See Fig. 2). Un-
der the exhaustive service discipline (i.e., bundles are
transmitted successively to the message ferry and the
message ferry leaves the cluster only when there are

no waiting bundles), the lower bound E[W
(k)
total]

∗ of

E[W
(k)
total] (k ∈ K) becomes as follows [5]:

E[W
(k)
total]

∗ =
1

2λ
(k)
total

∑
i∈V(k)

(
λi

qi
+

λ2
ih

(2)
i

(1 − ρi)2

)

+
1

λ
(k)
total

∑
i∈V(k)

(
ρi

1− ρi
+ λidk,i

)
. (2)

In (2), qi (i ∈ V(k)) denotes the mean number of visits
at cluster i per unit time at group k (k ∈ K), i.e.,

qi =
1− ρ

(k)
total∑

j∈V(k)

√
2λjdk,j

√
λi

2dk,i
, (3)

where ρ
(k)
total =

∑
i∈V(k) ρi.

From (1), (2), and (3), E[W
(k)
total]

∗ (k ∈ K) and the
lower bound E[Wtotal]

∗ of E[Wtotal] are rewritten to be

E[W
(k)
total]

∗ = (λ
(k)
total)

−1f (k), (4)

E[Wtotal]
∗ = λ−1

total

∑
k∈K

f (k), (5)

where

f (k) =

⎛
⎝ ∑

j∈V(k)

√
λjdk,j

⎞
⎠

2

1− ρ
(k)
total

+
∑

j∈V(k)

λjdk,j

+
∑

j∈V(k)

(
ρj

1− ρj
+

λ2
jh

(2)
j

2(1− ρj)2

)
, (6)

λtotal =
∑
k∈K

λ
(k)
total.

We now formulate the minimization problem of the
lower bound E[Wtotal]

∗ of the mean delivery delay as an
integer programming. We expect that the minimiza-
tion of E[Wtotal]

∗ will yield a quasi-optimal grouping of
clusters.

We first define decision variables xi,j (i, j ∈ V) as
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xi,j =

⎧⎪⎪⎨
⎪⎪⎩

1, if i = j and cluster i is a base cluster,
1, if clusters i and j (i �= j) are in the same

group and cluster i is a base cluster,
0, otherwise.

Note that K and V(k) (k ∈ K) are given by

K = {i; xi,i = 1}, V(k) = {j; j �= k, xk,j = 1}.
With those decision variables, we can formulate the
grouping problem as follows.

P: min
∑
i∈V

f (i)(X), (7)

s.t. xi,i ∈ {0, 1}, ∀i ∈ U , (8)

xi,i = 0, ∀i ∈ V \ U , (9)

xi,j ∈ {0, 1}, ∀i, j ∈ V , i �= j, (10)∑
i∈V

xi,j = 1, ∀j ∈ V , (11)

∑
i∈V

xi,i = K, (12)

∑
j∈V

ρjxi,j − ρixi,i < 1, ∀i ∈ V , (13)

where X = [xi,j ] denotes the matrix of decision vari-

ables and f (i)(X) (i ∈ V) is given by

f (i)(X) =

(∑
j∈V

√
λjdi,jxi,j

)2
1−

(∑
j∈V ρjxi,j − ρixi,i

) +
∑
j∈V

λjdi,jxi,j

+
∑

j∈V\{i}

(
ρj

1− ρj
+

λ2
jh

(2)
j

2(1− ρj)2

)
xi,j . (14)

Note here that (8) and (9) ensure that base clusters
should be selected among U . (8) through (11) mean
that cluster j is either a base cluster (xj,j = 1) or
a group member in the same group as base cluster i
(xi,j = 1 for i �= j). (12) implies that there are K base
clusters. (13) means that the total offered load of each
group should be less than one. Note here that for i ∈ V
such that xi,i = 0 (i.e., i is not a base cluster), the left
hand sides of (13) is equal to zero, so that (13) always
holds for such i. (14) is equivalent to (6), because it is
positive only when i is a base cluster (xi,i = 1). Since
λtotal in (5) is constant regardless of xi,j , the objective
function can be rewritten to be (7).

Because the first term of (14) is nonlinear and the
decision variables xi,j are integer, our problem P is a
nonlinear integer programming, which can be solved by
commercial nonlinear solvers, e.g., KNITRO [7]. Our
problem can be regarded as a variant of the capacitated
vertex p-center problem (CVPCP) in facility location
problems [8, 11]. CVPCP tries to find locations of p
capacitated facilities and assign customers to them in
order to minimize the longest distance between facilities

and their customers, when the locations and capacity
of facilities, and locations and demand of customers are
given. In our case, the facility and the customer are
the sink node and the cluster, respectively. However,
the objective function (7) and the constraint (13) are
different from the conventional CVPCP.

2.3 Guideline for the number K of groups

To solve problem P, we have to specify the number K
of groups. In this subsection, we provide a guideline for
it. Given a maximum allowable offered load θ in each
group, we can find the lower bound Klower(θ) of the
number K of groups as follows. Suppose there exist K
disjoint, non-empty group partitions for a given maxi-
mum allowable offered load θ in each group. Without
loss of generality, we assume ρ1 ≥ ρ2 ≥ · · · ≥ ρV . If
cluster i for some i > K is a base cluster of group k,
there exists a cluster j (j ≤ K) of group k′. We then
swap those two clusters; cluster j becomes a base clus-
ter of group k and cluster i joins group k′ as a group
member. This swap yields another feasible group parti-
tion because it decreases the total offered load of group
k′ by ρj − ρi > 0, and when k �= k′, the total of-
fered load of group k remains the same. Therefore, we
consider only the case that clusters 1 to K are base
clusters in discussing Klower(θ) for a while. If a fea-
sible partition of K groups is given, ρK+1 ≤ θ and
ρK+1 + ρK+2 + · · ·+ ρV ≤ Kθ. We thus have

Klower(θ) = min
1≤K≤V

{K; ρK+1 ≤ θ,

V∑
i=K+1

ρi ≤ Kθ}.

Next, we focus on how to determine θ. From the
first term of (14), a moderate value of θ, e.g., 0.7, is
desirable to avoid the steep increase of the mean deliv-
ery delay of bundles. In actual situations, the system
designer has to determine K by taking account of the
tradeoff between the delivery delay and the introduc-
tion costs. This tradeoff problem will be discussed in
subsection 3.4.

3. Numerical results

3.1 Evaluation settings

We consider an area of 40 [km] × 40 [km], where
fifty isolated clusters (V = 50) are randomly located.
For inter-cluster communications, we assume that each
message ferry travels at a fixed speed of 10 m/s (i.e.,
36 km/h). We then set D = [dij ] (i, j ∈ V) by divid-
ing the distance between cluster i and cluster j by the
ferry’s speed.

We assume that the mean arrival rate λi (i ∈ V) of
bundles at cluster i is given by 0.01×i. We also assume
that transmission times of bundles in cluster i (i ∈ V)
are i.i.d. according to an exponential distribution with
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Fig. 3 Quasi-optimal grouping (K = 12, U = V , Case 1).
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Fig. 4 Quasi-optimal grouping (K = 12, U = V , Case 2).

Table 1 Settings of ρi (V=50).

ρ1 ρ2 ρ3 · · · ρ50 ρ
0.01 0.02 0.03 · · · 0.50 0.255

mean hi = 1 [s] and second moment h
(2)
i = 2. We then

have ρi = λi (i ∈ V), as shown in Table 1. Note that
ρi is assigned in an ascending order with cluster IDs,
and the mean offered load is given by 0.255. We set
K = Klower(0.7) = 12, unless stated otherwise.

We obtain the quasi-optimal grouping by solving
P using a nonlinear solver KNITRO. Next, we derive

E[W
(k)
total]

∗ (k ∈ K) and determine the optimal visit-
ing order of the message ferry in each group according
to the method in [5]. Finally, we conduct the simula-

tion experiments to obtain E[W
(k)
total] for each group k

(k ∈ K) and calculate the overall mean delivery delay
E[Wtotal].

3.2 Fundamental characteristics

We first examine fundamental characteristics of group-
ing obtained by solving the optimization problem. We
set U = V and K = 12, and used two random cluster
layouts: Case 1 in Fig. 3 and Case 2 in Fig. 4. In these
figures, the solution of problem P is also represented,
where circles, squares, and lines indicate the base clus-
ters, the group members, and the group relationship,
respectively. Tables 2 and 3 shows the group-level re-
sults of optimization in Cases 1 and 2, respectively. For

each group, we show the base cluster’s ID, ρ
(k)
total, d

(k)
total,

E[W
(k)
total]

∗, and E[W
(k)
total], where d

(k)
total denotes the total

distance between base cluster k (k ∈ K) and its group
members.

Clusters with larger IDs tend to be base clusters

because the offered load ρk of base cluster k is excluded
from the total offered load of group k. Selecting the
highly loaded clusters as base clusters leads to small
E[Wtotal]. In the case of K = 12, the top 12 of highly
loaded clusters are clusters 39–50, among which only
clusters 39, 42, and 45 in Case 1 and only clusters
41 and 45 in Case 2 are not base clusters. Also, as
discussed in section 2.3, the total offered load in each
group should be moderate (see Tables 2 and 3).

Next, we discuss the influence of di,j (i, j ∈ V).
Intuitively, short distances between a base cluster and
its group members are preferable. Recall that the ob-
jective function is given by the sum of f (i)(X) (i ∈ V).
It follows from (14) that f (i)(X) is positive iff xi,i = 1.
Therefore, for i, j ∈ V such that xi,i = 1 and xi,j = 1,

f (i)(X) is an increasing function of λjdi,j (= ρjdi,j
because hj = 1 in our setting). We thus have to take
account of the offered load ρj , as well as di,j . This is the
reason why some clusters with low arrival rates (e.g.,
clusters 4, 10, and 13 in Case 1, and clusters 10 and
12 in Case 2) belong to distant base clusters. We also
observe in Figs. 3 and 4 that above-mentioned highly
loaded group members (i.e., clusters 39, 42, and 45 in
Case 1 and clusters 41 and 45 in Case 2) are located
next to other highly loaded clusters. As a result, each
group has relatively low total offered load and/or rela-
tively short total distance (see Tables 2 and 3).

Finally, Table 4 illustrates the overall results of

optimization: Arithmetic means of ρ
(k)
total and d

(k)
total,

E[Wtotal]
∗ in (5) and E[Wtotal] obtained by simulation

experiments. Because both cases show the similar re-
sults, we use the cluster layout of Case 1 in the suc-
ceeding evaluations.
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Table 2 Group-level results of optimization (K = 12, U = V , Case 1).

Base cluster 33 36 37 40 41 43 44 46 47 48 49 50

ρ
(k)
total 0.65 0.60 0.57 0.56 0.64 0.63 0.70 0.63 0.68 0.55 0.70 0.70

d
(k)
total 1,853 1,722 2,592 2,803 1,018 1,162 1,881 1,564 985 3,089 1,677 1,985

E[W
(k)
total]

∗ 3,379 2,728 3,264 2,251 1,695 1,883 2,289 2,824 1,944 3,424 3,381 3,945

E[W
(k)
total] 3,885 3,010 3,593 2,570 1,803 2,024 3,199 2,966 2,349 3,717 3,648 4,160

Table 3 Group-level results of optimization (K = 12, U = V , Case 2).

Base cluster 29 37 39 40 41 42 43 44 47 48 49 50

ρ
(k)
total 0.68 0.54 0.79 0.57 0.70 0.68 0.53 0.69 0.61 0.58 0.66 0.63

d
(k)
total 2,233 3,240 1,203 1,474 973 1,080 2,332 2,100 1,853 2,186 1,444 3,061

E[W
(k)
total]

∗ 3,911 3,364 3,879 2,165 2,324 2,334 2,602 2,918 2,874 2,458 2,837 3,912

E[W
(k)
total] 4,336 3,729 4,175 2,376 2,523 2,606 2,888 3,052 3,061 2,823 2,855 3,994

Table 4 Overall results of optimization (K = 12, U = V).

mean of ρ
(k)
total mean of d

(k)
total E[Wtotal]

∗ E[Wtotal]

Case 1 0.63 1,860 2,756 3,084
Case 2 0.64 1,931 2,970 3,201

Table 5 Relationship between |U| and overall results of optimization (K = 12, Case 1).

|U| mean of ρ
(k)
total mean of d

(k)
total E[Wtotal]

∗ E[Wtotal]
12 0.62 2,516 3,370 3,680
13 0.62 2,568 3,367 3,678
14 0.62 2,323 3,073 3,390

15–17 0.62 2,175 3,044 3,336
≥ 18 0.63 1,860 2,756 3,084
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Fig. 5 Quasi-optimal grouping (K = 12, |U| = 12, Case 1).
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Fig. 6 Quasi-optimal grouping (K = 12, |U| = 15, Case 1).

3.3 Impact of location limitation of base clusters

In this subsection, we examine how the location limi-
tation U , i.e., the candidates of base clusters, affects
E[Wtotal]. In actual situations, the system designer

may not be able to select the locations of base clusters
freely due to some economical and/or geographical rea-
sons. For instance, highly populated clusters may have
higher priority than others. Because the arrival rate of
bundles at a cluster seems to have positive correlation
with the population of that cluster in actual situations,
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Table 6 Tradeoff between overall results and K (U = V , Case 1).

K mean of ρ
(k)
total mean of d

(k)
total E[Wtotal]

∗ E[Wtotal]
11 0.72 2,199 4,451 4,826

12 0.63 1,860 2,756 3,084
13 0.55 1,462 2,010 2,209
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Fig. 7 Quasi-optimal grouping (K = 11, U = V , Case 1).
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Fig. 8 Quasi-optimal grouping (K = 13, U = V , Case 1).

we assume that U consists of the top |U| highly loaded
clusters in this subsection.

Table 5 illustrates the relationship between |U| and
the results of optimization when K = 12. We also show
the quasi-optimal grouping for |U| = 12 and |U| = 15
in Figs. 5 and 6, respectively. Note that the results
for |U| = 15, 16, and 17 are identical and all results for
|U| ≥ 18 are identical to the case of U = V . Comparing
Figs. 5 and 6 with Fig 3, we observe that some clusters
have to be assigned to very distant base clusters when
K = 12 and 15. As a result, E[Wtotal] becomes large.
In Case 1, cluster 33, which can be selected as a base
cluster only when |U| ≥ 18, plays an important role in
minimizing E[Wtotal].

3.4 Tradeoff between delivery delay and introduction
costs

So far, we set K = 12, which was obtained by setting
θ = 0.70 in the procedure of subsection 2.3. In this
subsection, we discuss the tradeoff between E[Wtotal]
and the introduction costs proportional to K. Table 6
shows the results of optimization for K = 11, 12, and
13, where U = V . We also show the quasi-optimal
grouping for K = 11 and K = 13 in Figs. 7 and 8,
respectively.

As we expected, E[Wtotal] decreases with the in-

crease of K because of the reduction of both ρ
(k)
total and

d
(k)
total. We further observe that the difference between

E[Wtotal] of K = 11 and that of K = 12 is larger than
the difference between E[Wtotal] of K = 12 and that of
K = 13. This is because the first term of (14) has a
larger impact when its denominator, i.e., total offered
load, approaches one.

4. Conclusion

In this paper, we considered grouping of clusters in
ferry-assisted DTNs in order to minimize the overall
mean delivery delay of bundles. We first formulated
our problem as a nonlinear integer programming, which
depends on the arrival rate and offered load of clusters,
the transmission time distribution of bundles, and the
distance between clusters. By solving the optimiza-
tion problem using the nonlinear solver KNITRO, we
obtained the quasi-optimal grouping. Through numer-
ical evaluations, we showed the basic characteristics of
grouping, the impact of location limitation of base clus-
ters, and the tradeoff between delivery delay and intro-
duction costs.
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