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Abstract

BitTorrent, which is one of the successful Peer-to-Peer (P2P) file distribution systems, adopts the tit-for-tat (TFT) strategy in game
theory to encourage cooperation among peers, i.e., each peer has to provide fragments of the original file, called pieces, to others
so as to retrieve its demanding pieces from them. Because the TFT strategy can restrict free riding behavior of peers, there are also
several TFT-based P2P streaming systems and the performance of such existing systems has been analyzed. However, optimal piece
flow in TFT-based P2P streaming has not been revealed yet. In this paper, a discrete-time model of TFT-based P2P streaming is
first developed and integer linear programming (ILP) is formulated to determine the optimal piece flow where the average play-out
delay is minimized. By solving the ILP using existing solver, i.e., CPLEX, we can obtain numerical examples of optimal piece flow.
The analysis of obtained optimal piece flow reveals that (1) optimal piece selection is based on the balance between in-order piece
retrieving and the rarest-first piece retrieving, (2) optimal peer selection depends on the upload capacities of peers and the stage of
streaming, (3) the number of pieces does not affect the system performance, (4) the maximum play-out delay can be bounded by the
ratio of the number of peers to the server’s upload capacity, and (5) how the relaxation of TFT constraint can improve the system
performance.
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1. Introduction

With the proliferation of the Internet streaming services, e.g.,
YouTube [1], Hulu [2], and NetFlix [3], IP video traffic will be
82% of all IP traffic (both business and consumer) by 2020, up
from 70% in 2015 [4]. Most of the current streaming services
adopt client-server architectures by taking account of the sim-
plicity of managing user information and contents. Such client-
server architectures, however, have potential drawbacks of load
concentration and single point of failure at the server(s).

Peer-to-Peer (P2P) streaming has been expected to over-
come such drawbacks of client-server architectures by utiliz-
ing the upload capacities of peers joining the streaming ser-
vices [5]. There are some P2P streaming services, e.g., BitTor-
rent Live [6], PPTV [7], and GridCast [8], where, in the P2P
architectures, contents are divided into fragments called pieces.
Clients called peers can retrieve the pieces not only from the
server(s) but also from other peers. As a result, the streaming
system can dynamically and autonomously increase/decrease
the scale depending on the number of peers [9]. Such scalabil-
ity, however, requires peers’ altruistic behavior, i.e., uploading
pieces to others. In case of streaming services, users tend to
hesitate in uploading pieces to others and become free riders,
due to high and long-term bandwidth consumption [10, 11].

To alleviate such free-riding problems, Tit-for-Tat (TFT)
strategy in game theory has been expected to encourage peers to
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willingly exchange pieces with others [9, 10, 12, 13, 14]. Note
that BitTorrent [15] first applied the TFT strategy to P2P file
distribution systems. The TFT strategy in P2P content distribu-
tion means that each peer has to upload pieces to others so as
to retrieve his/her demanding pieces from them. To exchange
pieces between two peers, they have to possess different pieces.
As a result, in case of file distribution, it is rational and optimal
for peers to follow a rarest-first strategy, where they preferen-
tially retrieve the rarest piece(s) in the system.

In case of streaming distribution, however, such a rarest-first
strategy is not necessarily optimal because in-order strategy is
also important, where pieces are prioritized in play-out order.
There are several studies on performance evaluation of TFT-
based P2P streaming [16, 17, 18, 19]. However, most of them
have been focusing on the piece retrieving strategies that seem
to be rational, e.g., the rarest-first strategy and in-order strategy.
As a result, the optimal piece flow in TFT-based P2P streaming
has not been revealed yet.

In this paper, the optimal piece flow in TFT-based P2P
streaming is analyzed with the help of integer linear program-
ming (ILP). Although our problem is NP-hard, it can be solved
by existing solver, e.g., CPLEX [20], in case of small-scale sys-
tems. The analysis of the obtained optimal solution will show
fundamental characteristics of the optimal piece flow.

The main contributions of this paper are as follows:

1. A discrete-time model of TFT-based P2P streaming is de-
veloped and ILP is formulated to determine the optimal
piece flow where the average play-out delay is minimized.
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By solving the ILP using existing solver, numerical exam-
ples of optimal piece flow can be obtained.

2. The analysis of obtained optimal piece flow reveals that (1)
optimal piece selection is based on the balance between in-
order piece retrieving and the rarest-first piece retrieving,
(2) optimal peer selection depends on the upload capac-
ities of peers and the stage of streaming, (3) the number
of pieces does not affect the system performance, (4) the
maximum play-out delay can be bounded by the ratio of
the number of peers to the server’s upload capacity, and
(5) how the relaxation of TFT constraint can improve the
system performance.

The rest of the paper is organized as follows. Section 2 gives
related work. The determination of optimal piece flow in TFT-
based P2P streaming is formulated as ILP in Section 3. Sec-
tion 4 demonstrates some numerical results. Finally, Section 5
gives concluding remarks.

2. Related work

Incentive mechanism design plays the important role of
alleviating the free-riding problem in P2P content distribu-
tion [21, 22, 23, 24]. Since the P2P systems consist of anony-
mous and potentially selfish users, game theoretic approaches
are suitable for dealing with competitive situations among such
users: TFT approach [23], Stackelberg game approach [22],
and auction-based approach [24]. Most of the existing incen-
tive mechanisms can be classified into two categories: direct
reciprocity and indirect reciprocity. In the direct reciprocity, as
represented by the TFT strategy, each peer evaluates the con-
tribution of other peers based only on the amount of data that
it obtained from the corresponding peer. On the other hand,
the indirect reciprocity evaluates the contribution of each peer
based on the whole amount of data that the corresponding peer
provided to others. In this paper, we focus on the TFT strategy
because of its simplicity and robustness against peers’ cheating
of their contribution.

To improve the system performance of P2P streaming, e.g.,
play-out delay, piece and peer selection policies have also been
studied. Fan et al. investigate how the three kinds of piece selec-
tion policies, i.e., rarest random, naive sequential, and cascad-
ing, affect the balance between throughput, robustness, and in-
order delivery in case of on-demand streaming [25]. In [26], au-
thors propose an abstract stochastic model to analyze and com-
pare the content-diversified oriented policy and importance-first
oriented policy in live streaming. Based on the model, they also
propose a method that dynamically switches these two policies.
In [27], authors propose a sophisticated peer selection strategy
under a P2P system where two kinds of services, i.e., stream-
ing service and file downloading service, coexist. In [28], au-
thors propose decentralized peer selection strategies to achieve
semi-optimal streaming capacity in large-scale P2P VoD sys-
tems with sparse connectivity among peers. In [29], the authors
consider a streaming system where a server distributes pieces
in play-out order, i.e., in-order policy, and each peer sends the

newest piece among the received pieces to others, i.e., newest-
first policy. In this system, they mathematically analyze the
system performance, e.g., the lower bound of initial play-out
delay, with the help of trellis graph techniques. Note that these
works do not consider the TFT-based P2P streaming.

There are several studies on performance evaluation of TFT-
based P2P streaming: analytical approaches [16, 17, 18, 30]
and simulation-based approach [19].

Tewari and Klienrock provide an analytical model to design
the BitTorrent-based live video streaming solutions [30]. They
show that existing server-based streaming infrastructures with
a well-designed peer-to-peer solution can achieve allow higher
streaming rates and the efficiency of the solution depends on
the group size of peers and the number of pieces available for
sharing at any given time.

Parvez et al. develop analytic models to characterize the be-
havior of BitTorrent-like on-demand stored media content de-
livery [16]. These models can capture the effects of different
piece selection policies, e.g., rarest-first and two variants of in-
order. Through the analysis, they show that one of the in-order
variants is optimal in terms of play-out delay among these three
policies. The authors also extend this study to analyze two addi-
tional probabilistic piece selection policies (Portion and Zipf),
which try to cope with the trade-off between the rarest-first pol-
icy and in-order policy [17].

In [18], authors provide a mathematical model to analyze the
hybrid BitTorrent system composed of both downloading peers
and streaming peers. They propose a sliding window-based hy-
brid method that combines the rarest-first policy with the in-
order policy to support the two-types of peers. The experimen-
tal results show that the proposed method can achieve higher
throughput and better streaming continuity than the sequential
policy.

In [19], authors propose a simulation-based methodology to
provide a common basis to compare the performance of many
P2P streaming protocols under a variety of conditions. They
show that, despite of their considerable differences, all of the
existing BitTorrent-like P2P streaming protocols share some
characteristics, i.e., their bandwidth reciprocity based methods
to encourage cooperation cannot necessarily optimize the over-
all performance.

All of the above approaches focus on the performance of
piece selection policies that seem to be rational. In this paper,
the optimal piece flow in TFT-based P2P streaming is analyzed,
which yields the minimum average play-out delay among peers,
with the help of ILP formulation. As for TFT-based P2P file
distribution, Hasegawa et al. have already studied the optimal
piece flow, which achieves the minimum average file retrieving
time [31]. Inspired by the approach in [31], ILP formulation for
TFT-based P2P streaming is newly developed.

3. Modeling TFT-based P2P streaming and formulation of
determination of its optimal piece flow

In case of the streaming service, each user wants to shorten
the initial waiting time for play-out, called play-out delay. From
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the viewpoint of overall system, average and maximum play-
out delay among users should be minimized. In this section, a
discrete-time model of TFT-based P2P streaming is developed
and the determination of its optimal piece flow is formulated as
three-step ILP. First two steps are used to obtain optimal flows
yielding low-latency streaming and the last step is used to find
out simple one from the obtained optimal flows.

3.1. Model

TFT-based P2P streaming is modeled as a discrete-time
system where there are ND servers, denoted by ND =

{1, 2, . . . ,ND}, and NP peers, denoted byNP = {ND+1, . . . ,ND+

NP}. We define N = ND ∪ NP and N = ND + NP. In what fol-
lows, the servers and peers are hereinafter referred to as nodes.
Peers are classified according to the state of file retrieving, e.g.,
seeds that complete file retrieving and leechers that are under
file retrieving. Suppose that all peers aim to play a specific me-
dia divided into M pieces, denoted byM = {1, 2, . . . ,M}.

The upload capacity of node i (i = 1, 2, . . . ,N) is denoted by
Ci, which is assumed to be a natural and finite number. Each
node can send at most Ci pieces in a unit time. On the con-
trary, the download capacity of each peer is assumed to be un-
limited by taking account of the fact that the uplink and down-
link channel speeds are asymmetry in the Internet, e.g., ADSL
and cable Internet. Note that applying the TFT strategy bounds
the peer i’s download speed by the total upload capacity of
servers and seeds. The piece transfers between nodes in dis-
crete time, i.e., piece flow, are modeled by decision variables
xt,k,i, j (t = 1, 2, . . . ,T , k ∈ M, i, j ∈ N) as

xt,k,i, j =

1, if node i sends piece k to node j at time t,
0, otherwise,

where T denotes the maximum time until that all peers finish
file retrieving. In section 3.2, the determination of T will be
shown. For simplicity in description, two sets of time steps, T
and T +, are defined as

T = {0, 1, . . . ,T }, T + = {1, 2, . . . ,T }.

For simplicity of explanation, in what follows, we formulate
the problem under the assumption where all peers join the sys-
tem at t = 0 but we can easily extend the formulation such
that each peer joins in an asynchronous manner, by permit-
ting each peer i ∈ NP to send and receive pieces only after
its join time ti ≥ 0. In other words, the proposed approach
can deal with both live streaming and on-demand streaming.
Note that on-demand streaming is more complicated than live
streaming because it can support multiple controlling methods
(user behavior) in addition to playing, e.g., pausing, skipping,
fast-forwarding, and rewinding. In this paper, we only consider
playing method but other controlling methods under a specific
scenario can also be considered by adding corresponding con-
straints.

Based on piece flow xt,k,i, j (t = 1, 2, . . . ,T , k ∈ M, i, j ∈ N),
the state of piece k’s possession of node i at time t, zt,k,i (t ∈ T ,

Table 1: Notations in the model.
Notation Definition
ND The set of servers, {1, 2, . . . ,ND}

NP The set of peers, {ND + 1, . . . ,ND + NP}

N The set of nodes, {1, 2, . . . ,N}
N = ND+NP, N =ND ∪ NP

M The set of pieces, {1, 2, · · · ,M}
Ci Upload capacity of node i
xt,k,i, j Decision variables of piece transfers
yt,i Variables of nodes’ roles

(1: leechers, 0: servers/seeds)
zt,k,i Variables of piece possession

(1: possession, 0: missing)
wi Play-out delay of peer i
τi File retrieving time of peer i
Q The number of pieces that servers initially have

k ∈ M, i ∈ N), and the role of node i at time t, i.e., yt,i (t ∈ T ,
i ∈ N), can also be defined as follows:

zt,k,i =


z0,k,i +

t∑
s=1

∑
j∈N

xs,k, j,i, if i ∈ NP,

0, if i ∈ ND, k > t + Q,
1, if i ∈ ND, k ≤ t + Q,

(1)

yt,i =


1 −

∏
k∈M

zt,k,i if i ∈ NP,

0, otherwise.
(2)

In case of peers, zt,k,i = 1 if peer i has piece k at time t, and
otherwise zt,k,i = 0. In case of servers, zt,k,i is set to be 0 or 1,
depending on the relationship between k, t, and Q, where Q rep-
resents range [1,Q] of piece id that the servers possess at t = 0.
Q ranges from 1 to M and is determined according to the type
of media, i.e., stored media or live media. If Q = M, the servers
initially store all the pieces, and thus this is a stored-media case.
Otherwise, they initially store Q < M pieces, which can be re-
garded as a live-media case where we assume the servers gener-
ate a new piece at each time step and start the streaming service
after Q pieces are generated. Note that smaller Q will regu-
late the diversity of pieces among peers at the initial stage of
streaming service. yt,i = 1 if peer i is a leecher at time t, and
otherwise yt,i = 0, which indicates that peer i is a seed at time
t. As for the servers, yt,i = 0 (t ∈ T , i ∈ ND). As a result, the
streaming process can be tracked by xt,k, j,i. Table 1 summarizes
notations used.

3.2. First step: Minimization of the average play-out delay

From the viewpoint of social optimum, an optimal piece flow
in P2P streaming can be regarded as a piece flow that minimizes
the average play-out delay among peers:

w =
1

NP

∑
i∈NP

wi.
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Here wi (i ∈ NP) denotes peer i’s play-out delay,

wi = max
k∈M

wi,k, ∀i ∈ NP, (3)

where wi,k =
∑T

t=0
(
1 − zt,k,i

)
−(k−1) is the waiting time for play-

ing out piece k. Note that
∑T

t=0
(
1 − zt,k,i

)
represents the time to

finish retrieving piece k and k − 1 is the time at which peer i
can play out piece k if it has that piece at t = 0. As a result,
peer i can smoothly play out all pieces if it accepts the initial
play-out delay of wi. In other words, wi can also be regarded as
the maximum jitter that peer i experiences if it starts streaming
without any initial play-out delay.

Note that T should be large enough to finish distributing all
pieces to all peers, which can be bounded by Tmax:

Tmax =

MNP

∑
i∈ND

Ci

−1 , (4)

which is the time required for the servers to directly distribute
all pieces to all peers.

As a result, the first-step problem P1 to minimize the average
play-out delay is formulated as follows.

min w, (5)
s.t. z0,k,i = 1, ∀k ∈ M,∀i ∈ ND, (6)

z0,k,i = 0, ∀k ∈ M,∀i ∈ NP, (7)
xt,k,i,i = 0, ∀t ∈ T +,∀k ∈ M,∀i ∈ N , (8)
xt,k,i, j ∈ {0, 1}, ∀t ∈ T +,∀k ∈ M,∀i, j ∈ N , i , j, (9)
xt,k,i, j ≤ zt−1,k,i, ∀t ∈ T +,∀k ∈ M,∀i, j ∈ N , i , j, (10)
xt,k,i, j ≤ 1 − zt−1,k, j,

∀t ∈ T +,∀k ∈ M,∀i, j ∈ N , i , j, (11)∑
j∈N

∑
k∈M

xt,k,i, j ≤ Ci, ∀t ∈ T +,∀i ∈ N , (12)∑
j∈N

xt,k, j,i ≤ 1, ∀t ∈ T +,∀k ∈ M,∀i ∈ N , (13)∑
i∈NP

yT,i = 0, (14)∑
k∈M

(xt,k,i, j − xt,k, j,i) ≤ M
(
1 − yt−1,iyt−1, j

)
,

∀t ∈ T +,∀i, j ∈ N , (15)
wi ≤ w j, ∀i, j ∈ NP, i < j, Ci ≥ C j. (16)

Since both P2P streaming and P2P file distribution share the
nature of P2P systems, (6) through (15) become the same con-
straints in P2P file distribution [31]. The basic constraints in
P2P streaming are given by (6) through (14). (6) and (7) rep-
resent that each server has all pieces at t = 0 while each peer
has no piece at t = 0, respectively. (8) forbids nodes to send
any pieces to themselves at time t. (9) allows nodes to send
pieces to others at time t. (10) indicates that at time t each node
can transfer only pieces which the node has at time t − 1. (11)
limits transferred pieces to ones which the receiver node do not
have. Note that (9) and (11) ensure that only leechers can re-
trieve pieces. The upload capacity constraint is given by (12).

(13) ensures that every node receives a piece from at most one
node. (14) ensures that all peers will finish file retrieving, i.e.,
become seeds, until t = T .

(15) gives the TFT strategy where any pair of leechers should
exchange the same number of pieces. The left hand side of (15)
is the difference of the numbers of piece exchanged between
node i and node j at time t. Simply, this should be zero but the
right hand side of (15) is generalized to support the case when
at least one of nodes i and j is a server or seed. In such a case,
the right hand side becomes the number of pieces, M, and thus
(15) is always satisfied.

(16) ensures that the play-out delay should be in descending
order of peers’ upload capacity by taking account of the fact that
peers with higher upload capacity can contribute to faster piece
distribution. This constraint can also be replaced according to
the policy of the server, e.g., prioritization of accounting peers.

Finally, yt,i in (2) and (15) are nonlinear but they can be lin-
earized (See Section A). Consequently, problem P1 can be for-
mulated as ILP.

3.3. Second step: Minimization of the maximum play-out delay
among peers

By solving problem P1, we may obtain more than one opti-
mal solution, all of which minimize the average play-out delay
among peers. In such cases, there may be a chance to refine the
optimal piece flow in terms of reducing the maximum play-out
delay among peers while keeping the minimized average play-
out delay. The maximum play-out delay can be defined as

wmax = max
i∈NP

wi.

The second-step minimization of the maximum play-out delay
among peers can be formulated as problem P2 by slightly mod-
ifying P1, i.e., the objective function is replaced with

min wmax

and the following constraint is added.

1
NP

∑
i∈NP

wi = w∗,

where w∗ denotes the average play-out delay minimized by
solving problem P1.

3.4. Third step: Minimization of the average file retrieving time

By solving problem P2, we may still obtain more than one
optimal solution that achieves w∗ and w∗max. In such situations,
finding out a simpler optimal piece flow will be important to
obtain the knowledge to design a sophisticated TFT-based P2P
streaming protocol. In addition, it has been pointed out that
video watching time tends to be shorter than video length in
case of video streaming services [32]. This indicates that there
is a potential risk that other peers may disappear from the sys-
tem during the service. Furthermore, in case of on-demand
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streaming, some controlling methods, e.g., skipping and fast-
forwarding, suddenly require a piece of future play-out posi-
tion. Shortening the file retrieving time can be one of the coun-
termeasures against these risks. Considering the above points,
we set the third objective to be the minimization of the average
file retrieving time among peers:

τ =
∑
i∈NP

τi,

where τi (i ∈ NP) is the file retrieving time of peer i, which is
equal to the length of the period where peer i is a leecher [31]:

τi =

T∑
t=0

yt,i.

The third optimization can be formulated as problem P2 by
slightly modifying, i.e., the objective function is replaced with

min τ

and the following constraint is added.

max
i∈NP

wi = w∗max,

where w∗max is the optimal maximum play-out delay among
peers, which is obtained by solving P2. We also define τ∗ is
the optimal average file retrieving time, which is obtained by
solving P3. The impact of the third step optimization will be
demonstrated by numerical results (Section 4.3).

3.5. Peers’ behavior after file retrieving
When peers finish retrieving all the pieces, they can freely

determine whether they leave the system. In actual P2P file re-
trieving systems, many seeds tend to stay in the system during
a relatively short time [33]. In order to examine how peers’ be-
havior after file retrieval affects the system performance, we ap-
ply two extreme scenarios, i.e., seed sojourn scenario and seed
departure scenario. In the seed sojourn scenario, all peers are
altruistic and serve as seeds after finishing the file retrieval. On
the contrary, the seed departure scenario is a severe one where
all peers are selfish and leave the system immediately after the
file retrieval. Since there is no contribution from seeds in the
seed departure scenario, the analysis under the seed departure
scenario seems to be more important than that under the seed
sojourn scenario.

We do not need any additional constraint in the seed sojourn
scenario. On the contrary, the seed departure scenario requires
to add the following constraint to P1, P2, and P3.

xt,k,i, j ≤ yt−1,i, ∀t ∈ T +,∀k ∈ M,∀i ∈ NP,∀ j ∈ N ,

which indicates that seeds do not transfer any pieces to others.

4. Analysis of optimal piece flow through numerical results

In this section, analysis of optimal piece flow will be given
through numerical results, which are obtained by sequentially
solving P1, P2, and P3, with an existing solver CPLEX on a
server with 10-core Intel Xeon CPU 3.0 GHz and 64 GB mem-
ory.

0.0 0.5 1.0 1.5 2.0
Average upload capacity of peers, N−1

P

∑
i∈NP

Ci

0

2

4
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8

10

12

14

16

w
∗ ,
w
∗ m
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w∗max

w∗

Figure 1: Impact of average upload capacity of peers (NP = 5, M = 10, CS = 2,
with TFT, seed departure).

4.1. Evaluation model

As mentioned in Section 3.1, the proposed approach can be
applied to both live streaming and on-demand streaming. In
case of live streaming, peers tend to join the system at the same
time. On the other hand, in case of on-demand streaming, each
peer can enjoy the streaming service in an asynchronous fash-
ion at steady state. However, if a popular file is released, a surge
in peer arrival, called a flash crowd, will occur even in case of
on-demand streaming [34, 35]. Under such a flash crowd, the
upload capacity of server tends to be the bottleneck. Since it is
important to reveal the potential of TFT-based P2P streaming,
we consider the severest flash crowd, where all peers simultane-
ously join the system without any piece and start the streaming
service. Note that the live streaming can support both stored
media (Q = M) and live media (1 ≤ Q < M) while the on-
demand streaming can only support stored media (Q = M). In
what follows, we mainly use the stored-media case (Q = M)
and the impact of Q on system performance will be discussed
in Section 4.7.

Since the objective is to analyze the optimal piece flow to
discover the mechanism yielding it, a relatively small system
is considered, i.e., one server S provides five peers, A, B, C,
D, and E, with a streaming content composed of ten pieces
(ND = 1,NP = 5, and M = 10). The validity of small-scale
systems for analysis will be discussed in Section 4.2. The seed
departure scenario is used as a default scenario because it is
severer than the seed sojourn scenario. As for the upload ca-
pacities of server and peers, we have to find out universal na-
ture of TFT-based P2P streaming but it is difficult to consider
all possible patterns. In general, the upload capacity of server
S becomes the bottleneck of streaming services because it will
be not enough to provide a piece for every peer at every time,
which requires CS ≥ NP. To investigate the impact of the up-
load capacities of peers on the system performance and the roles
of peers, we assume that the upload capacities of the peers are
heterogeneous, i.e., CA = CB = 3, CC = 2, and CD = CE = 1,
as in [31].

At first, we investigate how the average upload capacity of
peers, CP = N−1

P
∑

i∈NP
Ci, affects optimal average play-out de-
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lay w∗ and optimal maximum play-out delay w∗max, when CS is
fixed to 2, as shown in Fig. 1. In Fig. 1, we decrease the upload
capacity of a peer with the highest upload capacity one by one
from the above default setting, so as to control the average up-
load capacity of peers. We can confirm that both w∗ and w∗max
converge, that is the upload capacity of server S becomes the
bottleneck, when the average upload capacity of peers is over
0.8. In what follows, as one of the server bottleneck cases, we
set the default value of CS to be 2.

Someone may also wonder whether the distribution of upload
capacities of peers affects the system performance. To clarify
this point, we compare w∗ and w∗max among three cases: above
mentioned heterogeneous case, homogeneous case (CA = CB =

CC = CD = CE = 2), and biased case (CA = 6, CB = CC =

CD = CE = 1). Note that all the three cases have the same
average upload capacity of peers. We obtained the same results,
i.e., w∗ = 2.4 and w∗max = 3.0, among all these cases. In the
succeeding evaluations, we use the scenario (CS = 2,CA =

CB = 3, CC = 2,CD = CE = 1) as the default, and keep the
average upload capacity among peers and distribution of upload
capacities among peers even when we change NP.

4.2. Validity and complexity of formulation
Since all the above mentioned problems, P1, P2, and P3, are

ILP, they are NP-hard. CPLEX solves ILP using a general
and robust algorithm based on branch-and-cut algorithm [36].
When CPLEX solves ILP, it builds a tree with the linear relax-
ation of the original ILP, i.e., linear programming (LP) relax-
ation, at the root and sub-problems to optimize at the nodes of
the tree. Note that the LP relaxation is LP that has the same
objective function and same constraints as the original ILP but
each integer variable is replaced by a continuous variable with
the same lower and upper bounds. During the iterative solution
search, CPLEX tries to find out an optimal solution by updating
the upper bound and lower bound of objective function. Upper
bound vub of objective function is updated by the minimum ob-
jective function value among feasible solutions of original ILP,
which were found so far. On the other hand, lower bound vlb of
objective function is updated by the best solution of LP relax-
ation, which were found so far. As a result, CPLEX can define
the optimality (quality) of the best feasible solution as gap g
between upper bound and lower bound, i.e., g = vub − vlb.

CPLEX can set a tolerance on gap g to control the trade-off

between optimality and computation time. When gap g falls be-
low predefined threshold gmax, CPLEX stops the optimization
process and guarantees that the difference between objective
function value of found feasible solution and optimal objective
function value is bounded by gmax. In this paper, the default
value of gmax is set to be zero, and thus the obtained results are
strictly optimal.

The proposed approach based on ILP can trace the optimal
behavior of TFT-based P2P streaming in a piece-by-piece man-
ner, which will help us understand it deeply (See the detail in
the succeeding sections). However, this approach also has a po-
tential drawback in terms of complexity (scalability). In each
problem, i.e., P1, P2, and P3, the number of decision variables
xt,k,i, j (t ∈ T , k ∈ M, i, j ∈ N) is T MN2 and that of constraints
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Figure 2: NP vs. CPU time (M = 10, with TFT, seed departure).

Table 2: Impact of clustering structure on system performance.
NP = 5 NP = 10 NP = 15

(CS = 2) (CS = 4) (CS = 6)
w∗ 2.4 2.3 2.3
w∗max 3.0 3.0 3.0

is bounded by O(T MN2). Since xt,k,i, j’s are binary variables,
the search space exponentially grows with increase of system
size. As a result, CPU time quickly increases with NP as shown
in Fig. 2. In Fig. 2, we can also confirm the trade-off between
optimality and CPU time by changing gap tolerance gmax. Note
that CPLEX offers multi-threaded parallel optimization where
the execution time can be shortened according to the number of
CPU cores.

Fig. 2 shows that the proposed approach cannot directly re-
veal the behavior of large-scale systems. However, in what fol-
lows, we will show that the whole system can be divided into
multiple isolated sub-systems, i.e., clusters, where peers can
only communicate with others in the same cluster, without de-
grading the system performance, i.e., w∗ and w∗max. Table 2 il-
lustrates w∗ and w∗max for three systems: (1) NP = 5,CS = 2, (2)
NP = 10,CS = 4, and (3) NP = 15,CS = 6. Note that system 2
(resp. system 3) is twice (resp. three times) as large as system 1
and system 1 can be regarded as one of clusters in system 2
(resp. system 3). We observe that w∗ and w∗max of system 1 is
almost the same as those of systems 2 and 3, which indicates
that, under the optimal piece flow, the whole system can be di-
vided into multiple isolated clusters while keeping the system
performance. In other words, the analytical results for a small-
scale system can be applied to large-scale systems that consist
of any number of the small-scale systems. The small-scale clus-
tering structure will also be attractive to actual P2P protocols
because each peer only requires to grasp a limited number of
peers, which can contribute to reducing the communication and
maintenance overhead.

4.3. Effect of three-step optimization

At first, the effect of three-step optimization is demonstrated.
Figs. 3 through 5 show examples of the optimal piece flow ob-
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Figure 3: Example of first-step optimal piece flow (NP = 5,M = 10, with TFT,
seed departure).

Figure 4: Example of second-step optimal piece flow (NP = 5,M = 10, with
TFT, seed departure).

tained by solving P1, P2, and P3, respectively. Note that there
can be multiple solutions at each-step optimization and CPLEX
gives us one of them, each of which has the optimal value of the
corresponding objective function.

In these figures, (t, k)th cell includes information iI
R about

peer i retrieving piece k at time t, where I is the remaining
time for peer i to play out piece k at the end of time t, i.e.,
wi + (k−1)− t, and R is the number of peers that have piece k at
the beginning of time t. I (resp. R) ranges from 0 to wi + (k− 1)
(resp. NP). Smaller I (resp. R) indicates that the corresponding
piece is more urgent (resp. rarer), and thus they show the trade-
off between in-order policy and rarest-first policy in the optimal
piece flow. In what follows, we assume three cases: in-order
policy preferred case (I < R), rarest-first policy preferred case
(I > R), and flat case (I = R). To focus on server’s behavior,
peer’s id is underlined when the corresponding piece is directly
received from server S and the corresponding cell is colored ac-
cording to the preferred policy, i.e., light red (in-order policy
preferred case), light blue (rarest-first policy preferred case), or
light gray (flat case). Each black cell means the play-out tim-
ing of piece k for the peer with the maximum play-out delay.
For example, in Fig. 3, (3, 1)th cell indicates that peer E di-
rectly receives piece 1 from S and peers C and D receive piece
1 from other peers at time 3, and peers C, D, and E has maxi-
mum play-out delay among peers, i.e., w∗max = 3.0. In addition,
we can observe that server S gives preference to the in-order
policy over the rarest-first policy because (3, 1)th cell is colored
with light-red.

We observe that Fig. 3 is similar to Fig. 4 but Fig. 5 shows
different characteristic compared with others. Actually, all of
these results show the same performance in terms of aver-
age play-out delay w and maximum play-out delay wmax, i.e.,

Figure 5: Example of third-step optimal piece flow (NP = 5,M = 10, with TFT,
seed departure).

w = w∗ = 2.4, wmax = w∗max = 3.0. However, Figs. 3 through
5 have different average file retrieving time τ, i.e., 10.4, 10.6,
7.4, respectively. This difference comes from the degree of con-
tribution of peers’ uploading. In Figs. 3 and 4, the number of
pieces that server S directly sends to peers is 18 and 20. On the
other hand, that becomes 14 in Fig. 5. This indicates that the
optimal piece flow obtained by the third-step optimization can
sufficiently utilize the peers’ upload capacities.

In what follows, we will deeply analyze the characteristic of
the optimal flow at the third-step optimization.

4.4. Analysis of optimal piece selection

Next, we focus on the optimal balance between in-order pol-
icy and the rarest-first policy. Comparing Fig. 5 with Figs. 3
and 4, we observe that introducing the third-step optimization
can simplify the optimal piece flow and emphasize the server’s
strategy in terms of the balance between in-order policy and the
rarest-first policy. From the viewpoint of streaming services,
in-order policy is important because peers require pieces in as-
cending order of piece ids to shorten their play-out delay. In
other words, pieces are prioritized by the play-out order. On
the other hand, TFT constraint requires peers to have differ-
ent pieces with others. As a result, TFT-based P2P streaming
should correctly select the balance between in-order policy and
the rarest-first policy.

In Fig. 5, we focus on the optimal piece flow from server
S, which is highlighted by the above mentioned three kinds of
colors. We can also find that the corresponding receiving peers,
which are underlined in those cells. We first focus on the char-
acteristics of pieces sent from server S. We observe that server
S strategically sends pieces to peers, taking account of the bal-
ance between in-order policy and the rarest-first policy. At first,
server S basically selects pieces to send in ascending order of
piece id from the rarest pieces, e.g., pieces 1 and 2 at t = 1,
piece 3 and 4 at t = 2, and piece 5 at t = 3. This dissemina-
tion of in-order and rarest pieces will encourage piece exchange
among peers. On the contrary, server S also requires to empha-
size in-order policy to support urgent peers that immediately
require pieces to play out, e.g., piece 1 at t = 3 and piece 5
at t = 7. This contributes the reduction of maximum play-out
delay among peers.
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Figure 6: Impact of the number M of pieces (NP = 5, with TFT, seed departure).
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Figure 7: Peer i’s waiting time wi,k for playing out piece k (NP = 5,M = 10,
with TFT, seed departure).

4.5. Analysis of optimal peer selection

Next, we focus on the characteristics of peers to which server
S sends pieces. In Fig. 5, we observe that server S preferen-
tially sends pieces to peers with higher upload capacities at the
early stage where each peer has no piece, i.e., t = [1, 3]. In
the succeeding stage, i.e., t = [4, 10], server S preferentially
supports piece retrieval of peers with lower upload capacities.
Because of such piece dissemination form server S, the peers
with higher upload capacities can exchange pieces with those
with lower upload capacities.

4.6. Impact of system scale

In this section, we reveal how the system scale, i.e., the num-
ber M of pieces and the number NP of peers, affects the perfor-
mance of TFT-based P2P streaming.

We first focus on the impact of the number M of pieces.
Fig. 6 illustrates the relationship between M and the system per-
formance, i.e., w∗ and w∗max, in case of NP = 5. We first observe
that optimal average play-out delay w∗ gradually increases with
M but converges to a certain value, i.e., 2.4 when M = 4. On
the contrary, optimal maximum play-out delay w∗max becomes
constant, regardless of M.
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Figure 8: Impact of the number NP of peers (M = 10, with TFT, seed depar-
ture).

To deeply analyze this characteristics, we also show peer
i’s waiting time wi,k for playing out piece k when NP = 5, in
Fig. 7. Recall that peer i’s play-out delay is given by (3), i.e.,
wi = maxk∈M wi,k. In Fig. 7, we can find that every peer i has
the maximum waiting time for playing out the first piece 1, i.e.,
wi,1 = wi (∀i ∈ NP). This indicates that the fast retrieval of the
first piece is important in TFT-based P2P streaming and domi-
nates optimal maximum play-out delay w∗max. Note that Parvez
et al. have also analyzed the maximum play-out delay in case of
two variants of in-order policy and revealed similar results [17].
We also observe that wi,k tends to decrease with k when k ≥ 2.
This means that piece exchange among peers work well, which
contributes to shorten optimal average play-out delay w∗. As a
result, we can conclude that the number M of pieces does not
much affect the performance of TFT-based P2P streaming ser-
vices.

Next, we focus on the impact of the number NP of peers.
Fig. 8 illustrates the relationship between NP and the system
performance, i.e., w∗ and w∗max, in case of M = 10.

We first observe that w∗max gradually increases with NP while
w∗max increases in a step-by-step manner. w∗max is also bounded
by bNP/CSc+1. Note that dNP/CSe is equivalent to the time that
server S directly sends a piece to all peers. Since the upload ca-
pacity of server S is bottleneck, this result indicates that peers’
piece exchange works well in a cycle of bNP/CSc+1, which can
suppress the increase of w∗max.

We further confirm that this relationship is satisfied even
when the upload capacity of server S changes. Fig. 9 shows the
relationship between server S’s upload capacity CC and system
performance, i.e., w∗ and w∗max, in case of NP = 9 and M = 10.
We also show the upper bound of w∗max, bNP/CSc + 1. We can
confirm that w∗max follows O(NP/CS) as in Fig. 8.

As a result, we can conclude that the number NP of peers
affects the performance of TFT-based P2P streaming services
but w∗max can be bounded by O(NP/CS). Note that the upper
bound of w∗max, bNP/CSc + 1, is also consistent with the results
of Table 2 where all the three cases with the same NP/CS = 2.5
have w∗max = bNP/CSc + 1 = 3.0. As for the play-out delay, the
lower bound of initial play-out delay has been mathematically
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Figure 10: Impact of Q on w∗ and w∗max (NP = 9,M = 10, seed departure).

analyzed to be dlog1+CP
(NP/CS)e+ 1, when server S follows the

in-order policy, all the NP peers follow the newest-first policy,
and there is no TFT constraint [29].

4.7. Impact of media type
In this section, we reveal how the media type, i.e., stored me-

dia and live media, affects the system performance, by changing
range [1,Q] of piece id that server S has at t = 0. Fig. 10 illus-
trates the impact of Q on w∗ and w∗max in case of NP = 9,M =

10. As mentioned in Section 3.1, smaller Q will regulate the
diversity of pieces among peers at the initial stage of streaming
service. This makes the TFT-relationship among peers difficult,
and thus both w∗ and w∗max in the strict live-media case (Q = 1)
become worse than those in the stored-media case (Q = M).
However, we observe that both w∗ and w∗max decrease with Q
and converge at Q = 3, which is much smaller than the number
of pieces, M = 10.

4.8. Impact of relaxation of TFT constraint
TFT constraint in (15) indicates that a pair of leechers should

exchange the same number of pieces each other at time t. In
this section, we reveal how the relaxation of TFT constraint
affects the system performance. For this purpose, we extend
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Figure 11: Impact of γ on w∗ and w∗max (NP = 9,M = 10, seed departure).

Figure 12: An example of third-step optimal piece flow (NP = 5,M = 10, with
TFT, seed sojourn).

(15) by introducing TFT window γ (γ ≥ 1) during which TFT
constraint among leechers should be satisfied:

t∑
s=t−γ+1

∑
k∈M

(xs,k,i, j − xs,k, j,i) ≤ M
(
1 − yt−1,iyt−1, j

)
,

t = γ, 2γ, . . . ,T,∀i, j ∈ N , (17)

where T is assumed to be a multiple number of γ, which is equal
or greater than Tmax given by (4). Note that (17) with γ = 1 is
equivalent to (15) and (17) with γ = ∞ means that there is no
TFT constraint.

Fig. 11 shows the relationship between TFT window γ and
system performance, i.e., w∗ and w∗max, in case of NP = 9 and
M = 10. For comparison purpose, we also show the results in
case of no TFT constraint, which can be regarded as the lower
bound of those in case of TFT constraint. As we expected, both
w∗ and w∗max decrease with γ and converge to the lower bound at
5 and 4, respectively. Although increase of γ can reduce w∗ and
w∗max, it also gives leechers chance to cheat the TFT constraint.

4.9. Impact of peers’ behavior after file retrieval

Finally, we focus on the impact of peers’ behavior after file
retrieval. So far we evaluated the system performance in the
seed departure scenario.

Fig. 12 illustrates an example of the third-step optimal piece
flow in case of NP = 5,M = 10, and seed sojourn scenario.
Comparing Fig. 12 with Fig. 5, we observe that both results are

9

Submitted version



similar, which indicates that peers’ behavior after file retrieval
does not much affect the system performance in TFT-based P2P
streaming services. Actually, both results have the same w∗ and
w∗max.

5. Conclusion

In this paper, a discrete-time model of TFT-based P2P
streaming was developed and ILP was formulated to deter-
mine the optimal piece flow where the average play-out delay
was minimized. By solving the ILP using existing solver, i.e.,
CPLEX, we could obtain numerical examples of optimal piece
flow. Through the analysis of obtained optimal piece flow, the
following characteristics were revealed. (1) Optimal piece se-
lection is based on the balance between in-order piece retriev-
ing and the rarest-first piece retrieving. The server should basi-
cally distribute the rarest pieces in play-out order to encourage
piece exchange among peers but also emphasize in-order policy
to support urgent peers with lack of pieces to play out. (2) In
terms of optimal peer selection, the server should send pieces to
peers with higher upload capacities at the early stage, then sup-
port piece retrieval of peers with lower upload capacities. (3)
The number of pieces does not affect the system performance.
(4) The maximum play-out delay can be bounded by the ratio
of the number of peers to the server’s upload capacity. (5) How
the relaxation of TFT constraint can improve the system perfor-
mance.
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A. Linearization of products of binary variables

If all variables are binary, their product of nonlinear expres-
sion can be transformed into the combination of linear expres-
sions as follows [37].

y = x1x2 · · · xk, xi = {0, 1}, (i = 1, 2, . . . , k)

is equivalent to the following linear expressions:

(k − 1) −
k∑

i=1

xi + y ≥ 0,

xi − y ≥ 0, xi = {0, 1}, (i = 1, 2, . . . , k).

With this technique, nonlinear terms in (2) and (15) can be
linearized.
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