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Abstract

In cognitive radio networks (CRNs), it is important for secondary users (SUs) to efficiently reuse spectrum without interfering com-
munication of primary users (PUs). To acquire the communication opportunities, SUs first need become winning, i.e., suppressing
its own miss detection probability under the upper limit imposed by PUs. Collaborative spectrum sensing (CSS) is a promising ap-
proach to improve the detection performance of SUs, where multiple SUs form a group and share their sensing results. In addition,
the probability that winning SUs correctly detect idle state of PUs’ spectrum will affect their communication opportunities. We first
formulate a global optimization problem as integer linear programming (ILP), which maximizes both the number of winning SUs
and average communication opportunities among them. In CSS, we also have to consider the selfishness of SUs because winning
SUs will compete with group members to acquire their own communication opportunities. To cope with this competitive problem
in addition to scalability problem of the global optimization, we further formulate an individual optimization problem, which can
be solved by a user-incentive based CSS mechanism composed of PU selection and group (re)formation among SUs, where com-
munication opportunities are allocated to SUs according to their detection performance. Through simulation experiments, we show
the proposed mechanism considering selfishness of SUs is competitive with the existing scheme based on group-level cooperation,
in terms of both the ratio of winning SUs and average communication opportunities among them. Comparing with the global opti-
mization, we also show that the proposed mechanism can support larger-scale systems with performance improvement. Finally, we
show that the proposed mechanism can achieve stable group formation even under SUs’ selfish behavior.

Keywords: Cognitive radio, cooperative communication, collaborative spectrum sensing, game theory, group formation, integer
linear programming, user incentive

1. Introduction

The radio resources are essential for wireless communication
systems but most frequency bands have already been allocated
to various existing systems. It is important to solve the spectrum
exhaustion problem and to improve the spectrum utilization,
due to the rapid increase in demand on wireless communica-
tion. To tackle this problem, cognitive radio has been studied,
in which unlicensed users, i.e., secondary users (SUs), utilize
the spectrum of a licensed user, i.e., primary user (PU), while
avoiding interference in PU’s communications [2, 3]. Each SU
tries to detect the usage status of the PU’s spectrum by spec-
trum sensing, and attempts to utilize the spectrum only when
it judges that the spectrum is idle. Therefore, the accuracy of
the SU’s spectrum sensing is important to avoid interference in
PU’s communication and to improve the spectrum utilization.
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There are several factors which affect SU’s spectrum sens-
ing results, e.g., propagation loss of the PU signal, fading, and
noise. Spectrum sensing errors are classified into two types:
miss detection and false alarm [4, 5]. The miss detection is a
sensing error that an SU recognizes the spectrum of the PU is
idle even though it is actually used by the PU. Therefore, it is
important for the PU to suppress the probability of miss detec-
tion. In this paper, we assume that a PU imposes the upper
limit of miss detection probability on SUs. The false alarm is
a sensing error that an SU judges the spectrum of the PU is
busy even though it is actually unused by the PU. Note that the
complementary event of false alarm is the detection of the PU’s
idle state of the spectrum. Thus, it is important for the SU to
improve the probability of idle detection, in order to acquire
communication opportunities. From the viewpoint of effective
spectrum reuse, we have to simultaneously achieve two goals:
1) increase of the number of winning SUs, which can satisfy
the upper limit of miss detection probability, and 2) increase of
communication opportunities of winning SUs by improving the
idle detection probability.

Collaborative spectrum sensing (CSS) has been proposed to
improve the accuracy of spectrum sensing [6]. In CSS, multi-
ple SUs share the sensing results and derive a sensing result in
a cooperative manner. For example, the collaborative sensing

Preprint submitted to Journal of LATEX Templates January 14, 2021

Submitted version



PU 1

PU 1

SU 1

usage of PU 1’s spectrum

time
PU 1

SU 2

SU 3

each SU’s individual optimization
- its own throughput maximization
- user incentive based mechanism

group      
(winning)

group (re)formation

global optimization
- overall throughput maximization
- integer linear programming

group 
(winning)

throughput allocation
based on detection prob.

user incentive PU 2

SU 1 SU 3 PU 2

time
PU 2 SU 2

usage of PU 2’s spectrum

PU selection

1

0

1

0

upper limit
of miss
detection
prob.

SU 4

group 
(losing)

PU selectionS1
<latexit sha1_base64="/VF+AviuzgM6rzIisj4YvEDeD0A="></latexit><latexit sha1_base64="/VF+AviuzgM6rzIisj4YvEDeD0A="></latexit><latexit sha1_base64="/VF+AviuzgM6rzIisj4YvEDeD0A="></latexit><latexit sha1_base64="/VF+AviuzgM6rzIisj4YvEDeD0A="></latexit>

S2
<latexit sha1_base64="DW3wMoZwF29/CjBBwQPt1TNHZj8="></latexit><latexit sha1_base64="DW3wMoZwF29/CjBBwQPt1TNHZj8="></latexit><latexit sha1_base64="DW3wMoZwF29/CjBBwQPt1TNHZj8="></latexit><latexit sha1_base64="DW3wMoZwF29/CjBBwQPt1TNHZj8="></latexit>

miss detection prob.
false alarm prob.

collaborative
sensing result

Objective: Maximization of the ratio of winning SUs and system throughput

S4
<latexit sha1_base64="lSZqQk/yawxx4ZERJORm0G3h1Ms="></latexit><latexit sha1_base64="lSZqQk/yawxx4ZERJORm0G3h1Ms="></latexit><latexit sha1_base64="lSZqQk/yawxx4ZERJORm0G3h1Ms="></latexit><latexit sha1_base64="lSZqQk/yawxx4ZERJORm0G3h1Ms="></latexit>

Figure 1: Overview of proposed CSS mechanism.

result based on OR-rule can reduce the miss detection probabil-
ity with increase of false alarm probability [6]. This indicates
that the sensing performance depends on the group formation
among SUs [1, 7, 8, 9, 10, 11, 12, 13]. Most of the existing
studies focused on group (coalition) formation based on coop-
erative game theory [14], where SUs in the same group have the
same objective to reduce group-level miss detection probability,
which will results in acquiring group-level communication op-
portunity. In addition, if there are multiple PUs, each SU also
requires to select an appropriate PU [1, 7, 10, 11].

However, SUs will compete with group members to acquire
their own communication opportunities. In addition, the spec-
trum sensing imposes energy and time consumption on SUs.
As a result, it has been pointed out that some SUs may be free
riders on others’ sensing results [15] and/or gain advantage in
spectrum access over other SUs by claiming the channel to be
busy (while it is not) [16]. These facts indicate that SUs in
the same group (coalition) may not cooperate with each other
in the phase of spectrum sharing. To alleviate such SUs’ self-
ish behavior, incentive mechanisms have attracted much atten-
tion [15, 17, 18, 19].

As mentioned above, the spectrum sensing requires cooper-
ation among SUs while the spectrum sharing causes competi-
tion among them, which makes the design of CSS mechanism
more complex. The detail literature review about CSS will be
given in Section 2 but there are few work that considers all of
the above concerns. In this paper, we establish a CSS mecha-
nism that can maximize both the the number of winning SUs
and communication opportunities among them under the con-
sideration of user incentive. Fig.1 illustrates the overview of
the proposed CSS mechanism. (The detail explanation will be
given in succeeding Sections.) The main contributions of this
paper are as follows:

1. We first formulate a global optimization problem for PU
selection and group formation, which tries to maximize
both the number of winning SUs and communication op-
portunities among them, which can be reduced to integer

linear programming (ILP).
2. To cope with the drawbacks of the global optimization,

i.e., scalability problem and lack of a user incentive mech-
anism, we formulate an individual optimization problem,
which can be solved by a user-incentive based CSS mecha-
nism that consists of PU selection and group (re)formation
among SUs. In the proposed mechanism, SUs first try to
become winning SUs by satisfying PU’s requirement of
miss detection probability and winning SUs can acquire
their communication opportunities according to their de-
tection probabilities.

3. Through simulation experiments in the single-PU cases,
we show that the proposed mechanism considering SUs’
selfishness is competitive with the conventional CF-PD al-
gorithm, which relies on cooperation among group mem-
bers, in terms of both the ratio of winning SUs and av-
erage communication opportunities among them. Com-
paring the proposed mechanism with global optimization,
we also show that the proposed mechanism can support
larger-scale systems with performance improvement.

4. Through simulation experiments in the 2-PUs cases, we
demonstrate that the proposed mechanism can not only in-
crease the communication opportunities of winning SUs
with high detection performance but also the number of
winning SUs with low detection performance. In addition,
we also show that the proposed mechanism can achieve
stable group formation even under SUs’ selfish behavior.

The rest of the paper is organized as follows: Section 2
presents related work. After introducing the system model in
Section 3, we propose global optimization and individual opti-
mization in Section 4 and Section 5, respectively. We also show
simulation results in Section 6. Finally, conclusions and future
work are given in Section 7.

2. Related Work

2.1. Collaborative Spectrum Sensing
There are various studies on CSS [6, 20, 21, 22, 23, 24, 25,

26, 27, 28, 29, 30, 31] and the comprehensive survey can be
found in [4, 5]. CSS in CRNs is an effective method to reduce
the probability of miss detection of PU’s signal by exploiting
spatial diversity [20, 21]. There are several fusion rules, e.g.,
AND, OR, K-out-of-N, and majority rules, to derive a coop-
erative decision from individual decisions of SUs in CSS [20].
In [6], Ghasemi and Sousa showed that an OR-based fusion
method can suppress the probability of group miss detection
with the sacrifice of the probability of group false alarm when
the number of SUs increases. Liang et al. studied the trade-
off between sensing time and throughput [22]. A long sensing
time can reduce the false alarm probability but also results in
shortening the data transmission time. They formulated the op-
timization problem for optimal sensing time that takes account
of the trade-off. They analyzed how various types of decision
functions affect the optimal sensing time and throughput with
increase in the number of SUs. Zhang and Letaief proposed
CSS based on transmission diversity to suppress the channel
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errors, which are caused by fading during information sharing
about sensing results [23]. In [24], Gupta et al. proposed a two-
level decision fusion scheme with collaboration among multiple
fusion centers (FCs). In the first-level decision fusion, an FC
collects the local decisions from SUs whose decision accuracy
is greater than a predefined threshold, and then combines them
using the OR-based fusion rule. In the second level decision
fusion, all the FCs communicate with each other and combine
the decisions using OR rule in order to make a global decision.
Finally, they propagate the global decision to all SUs through
respective FCs.

2.2. Group Formation
Since CSS requires the collection of individual sensing re-

sults from SUs and the distribution of the cooperative deci-
sion to SUs, the communication overhead will increase with the
number of SUs. To tackle this problem, group formation of SUs
for CSS is effective [1, 7, 8, 9, 10, 11, 12, 13]. Such group for-
mation schemes are classified into a centralized approach and
a decentralized approach. In the centralized approach, a server
that manages SUs derives an optimal group formation by calcu-
lating all possible group patterns among all SUs. In [7], a server
calculates all possible group patterns among all SUs and forms
the group with the highest utility. In the succeeding process, the
server continues the same approach until the group formation is
completed. In [8], it was reported that the exhaustive search of
optimal group formation becomes intractable when the number
of SUs is over eight.

In the distributed approach, each SU tries to form a group
with neighboring SUs based on its own incentive for CSS. Be-
cause of the mutual-dependent situation among SUs, there have
been many studies based on game theory [8, 32, 24, 9, 33].
From the viewpoint of spectrum sensing itself, each SU has the
same purpose, i.e., success of detection, and thus most of them
have applied the coalitional game model in cooperative game
theory [14]. Saad et al. proposed a distributed group formation
scheme using a game theoretic approach for single-PU CRNs,
called coalition formation with detection probability (CF-PD)
algorithm [8]. In [8], each SU forms a group based on the util-
ity function that exhibits the trade-off between decrease of the
group miss detection probability and increase of the group false
alarm probability. A coalition-formation (CF) game is a type
of cooperative games in which each player participating in the
game forms a coalition with other players based on the util-
ity of the coalition [14]. The utility of a coalition cannot be
apportioned between the coalition’s players in CF-game with
NTU [14, 34]. In [32], Balaji and Hota proposed a CSS scheme
in which the cost function has been redesigned from [8] to con-
sider the battery power and mobility of SUs. Gupta et al. also
proposed a distributed CSS scheme where each group merges
with other groups based on the utility function that takes ac-
count of throughput and energy/time consumption [24]. In [9],
Wang et al. proposed a group formation scheme that consid-
ers the limited transmission power and bandwidth of SUs. The
group formation among SUs is formulated as an overlapping
CF (OCF) game in which it allows each SU to belong to multi-
ple coalitions. In [33], Jiang et al. proposed both the group for-

mation and spectrum sharing by integrating the coalition forma-
tion game and transmit time allocation game. Although these
distributed group formation schemes are designed for single-PU
CRNs, there may be more than one PU in actual systems.

Some group formation schemes in CRNs with multiple PUs
have been studied [7, 10, 11, 1]. Jing et al. proposed a group
formation scheme for cooperative spectrum prediction in multi-
PU CRNs [7]. Each SU predicts the spectrum status of each
PU, and selects a PU with the highest spectrum prediction ac-
curacy. For each PU, a group is formed by some SUs in a
centralized manner. In [10], a group formation scheme based
on sensing accuracy and energy efficiency in multi-PU CRNs
was proposed. The groups are formed by using the utility func-
tion that takes into account both sensing accuracy and energy
required to communication and sensing. Wang et al. studied a
distributed cooperative multi-channel spectrum sensing scheme
for multi-PU CRNs [11]. Each SU selects the channel with the
highest signal-to-noise ratio (SNR) of PU signals and forms a
group with other SUs selecting the same channel. In [1], we
also proposed a group formation scheme that tries to maximize
the SUs’ communication opportunities under the assumption
that the communication opportunities are equally allocated to
SUs that satisfy the PUs’ requirement for the miss detection
probability.

In this paper, we also consider CSS in CRNs. In most of
the existing works, however, SUs in the same group are coop-
erative with each other and have the same utility function to
succeed CSS itself. After CSS, they, however, will be placed in
a competitive situation where each of them aims to acquire its
own communication opportunities. In this paper, we focus on
this users’ selfishness and propose a CSS mechanism that takes
account of the user incentive. As the main difference from our
previous work [1], we newly design the user incentive for join-
ing CSS and add a group reformation scheme that considers
users’ selfishness.

2.3. Incentive mechanism

Since the spectrum sensing consumes both time and energy
of SUs, it has been pointed out that some SUs may not be
willing to participate in CSS. To tackle this problem, there are
several studies on incentive mechanisms based on game the-
ory [17, 15, 18, 19].

In [15], the authors considered the SUs’ selfish behavior
called overclaim selfishness (OS) where bad SUs just share
dummy or slightly modified sensing results obtained from oth-
ers and do not conduct sensing by themselves to avoid their
own energy consumption. To tackle this problem, they pro-
posed an OS detection scheme and a game theoretical incentive
mechanism to enhance cooperation among SUs. However, they
did not focus on the detail of SU’s utility. In [17], the authors
proposed cooperative game based multi-SUs sensing time opti-
mization problem where each SU controls its own sensing time
to maximize the cooperative detection probability while min-
imizing group-level energy consumption. In [18], the authors
proposed cooperative spectrum sensing game (CSSG) based on
Stag Hunt game. They also considered the data throughput is
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the utility of SU but assumed that each SU can exclusively ac-
cess one of sub-bands of the original spectrum. In [19], the au-
thors proposed a pricing scheme where SUs with high sensing
accuracy and frequent sensing participation can acquire more
reputation, which enable them to use the spectrum in lower
prices.

The proposed user incentive is partly similar to some of these
existing work. Since the SU’s main purpose of joining CSS is
acquiring its own spectrum access, we focus on the throughput
allocated to each SU, as in [18]. In addition, we also prioritize
each SU based on its detection performance, as in [19].

3. System Model

We consider a cognitive radio network consisting of L PUs,
labeled from 1 to L, and N SUs, labeled from 1 to N. Let
L = {1, . . . , L} and N = {1, . . . ,N} denote the set of all PUs
and that of all SUs, respectively. Fig. 1 is an example of two
PUs and four SUs. Suppose that each PU has its own licensed
channel. If a PU has multiple channels, the following proposed
mechanism can support such situations by regarding the PU as
multiple virtual PUs, each of which has a single channel. Each
SU recognizes the busy state of PU’s spectrum when it detects
the PU’s signal. Each PU imposes the upper limit of the miss
detection probability, χ (0 ≤ χ ≤ 1), on SUs [35]. SUs that
satisfy this requirement can obtain the communication oppor-
tunities. As in [36], we assume a Rayleigh fading environment,
where SUs will detect signal by energy detectors and signal
transmitted by a node will decrease with distance. Note that the
proposed mechanism can also be applied in other noise case,
e.g., complex-valued phase-shift keying primary signal and cir-
cular symmetric complex Gaussian noise case [22], if both miss
detection probability and false alarm probability are given. In
the Rayleigh fading environment, In [6], SU i’s miss detection
probability to PU l, Pmiss

i,l , and SU i’s false alarm probability,
Pfalse

i , are given by

Pmiss
i,l = 1 − e−

λ
2

m−2∑
n=0

1
n!

(
λ

2

)n

−

(
1 + γ̄i,l

γ̄i,l

)m−1

×

e− λ
2(1+γ̄i,l ) − e−

λ
2

m−2∑
n=0

1
n!

(
λγ̄i,l

2(1 + γ̄i,l)

)n
 , (1)

Pfalse
i = Pfalse =

Γ(m, λ2 )
Γ(m)

, (2)

where m is the time-bandwidth product and λ is the energy de-
tection threshold. Moreover, γi,l represents the average SNR
of received signal from PU l to SU i, which is given by γi,l =

Plhl,i/σ
2, where Pl is the transmit power of PU l, σ2 is the

Gaussian noise variance, and hl,i is the path loss between SU i
and PU l. hi,l is given by hl,i = κ/dµl,i, where κ is the path loss
constant, µ is the path loss exponent, and dl,i is the distance be-
tween PU l and SU i. Γ() is the gamma function and Γ(, ) is the
incomplete gamma function. As a result, Pmiss

i,l becomes small
when the distance between PU l and SU i, called PU-SU dis-
tance, is short. On the contrary, Pfalse

i is independent of PU-SU
distance.

When the SU i’s miss detection probability to PU l, Pmiss
i,l , ex-

ceeds upper limit χ, SU i should form a group with other SUs
and perform CSS to reduce the group miss detection probabil-
ity. For example, in Fig. 1, both SUs 1 and 3 have higher miss
detection probability than χ, and then form group S1. To form
a group, each SU i first requires to discover the candidates of
SUs for the group formation. As in [9], we assume that the
set of SU i’s candidate SUs, Ni, consists of SUs within SU i’s
transmission range d̃,

d̃ =
µ

√
κPSU/γ0σ2,

where PSU is the SU’s transmit power to report its sensing re-
sult and γ0 is the minimum average SNR set to be 0 [dB] as
in [9]. As in [20, 8, 9], we assume that this communication is
conducted through a control channel, which can be temporar-
ily established over ad hoc networks [37] and cognitive net-
works [38]. In what follows, sensing report error over the con-
trol channel will be considered but further consideration is fu-
ture work. The details of group formation will be described in
Section 5.1.

Suppose that each group S ∈ 2N elects an SU called head
from all SUs of the group. The head collects individual sensing
results from other SUs in the group, which are called members,
and makes a group decision by combining the obtained results.
We apply the OR-based fusion rule to the group decision, which
is effective to reduce the group miss detection probability.

As in [8], the group S’s miss detection probability to PU l,
Qmiss
S,l , and the group S’s false alarm probability to PU l, Qfalse

S
,

are given by

Qmiss
S,l =

∏
i∈S

[Pmiss
i,l (1 − Pe,i,k) + (1 − Pmiss

i,l )Pe,i,k], (3)

Qfalse
S

= 1 −
∏
i∈S

[(1 − Pfalse)(1 − Pe,i,k) + PfalsePe,i,k], (4)

where Pe,i,k is the error probability on the reporting channel
between member i and head k, which is given as the error
probability of BPSK (binary phase shift keying) modulation in
Rayleigh fading environments [39].

Pe,i,k =
1
2

1 −
√

γi,k

1 + γi,k

 ,
where γi,k represents the average SNR between member i and
head k. As in [8], we select the most reliable SU, which has the
minimum miss detection probability to the corresponding PU,
as the head, in order to avoid the risk that the sensing result of
that SU is wrongly reported during the information sharing.

In terms of Pe,i,k, grouping near SUs can decrease both Qmiss
S,l

and Qfalse
S

. However, there is a trade-off between Qmiss
S,l and

Qfalse
S

: Increasing group size |S| improves Qmiss
S,l but degrades

Qfalse
S

[8]. For example, in Fig. 1, we can observe that group for-
mation among SU 1 and SU 3 group decreases (resp. increases)
their group’s miss detection probability (resp. false alarm prob-
ability) to PU 1.
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As mentioned in Section 1, each SU can use the PU’s spec-
trum only when it satisfies the PU’s requirement for the miss
detection probability. As in [8], we call SUs (resp. groups) that
satisfy the PU’s requirement with CSS winning and the remain-
ing SUs (resp. groups) losing. In particular, we call a winning
SU that does not require to form a group with other SUs single
SU. For example, in Fig. 1, SUs 1, 2, and 3 are winning while
SU 4 is losing. SU 2 is also a single SU.

4. Global Optimization: Maximization of The Number of
Winning SUs and Average Communication Opportuni-
ties among them

We first focus on global optimization, i.e., maximization of
the number of winning SUs and average communication op-
portunities among them, as mentioned in Section 1. This can
be achieved when there is a server that can manage the group
formation among all SUs. In what follows, for simplicity of
explanation, we assume the single-PU scenario but the problem
can be extended to multiple-PUs scenario, with the sacrifice of
complexity. The global optimization problem OP(N) can be
formulated as follows:

max N−1
∑
i∈N

I(P̃miss
i ≤ χ)(1 − P̃false

i ) (5)

s.t. si,k = {0, 1}, ∀i, k ∈ N , (6)∑
k∈N

si,k = 1, ∀i ∈ N , (7)∑
j∈N

si, jsk, j ≤ ai,k, ∀i, k ∈ N . (8)

(5) represents the objective function that maximizes the num-
ber of winning SUs and average communication opportunities
among them. Recall that SUs can acquire the communication
opportunities only if they are winning SUs and correctly detect
the idle state of PU’s spectrum. I(P̃miss

i ≤ χ) is an indicator
function: If SU i is a winning SU, I(P̃miss

i ≤ χ) = 1; Otherwise,
I(P̃miss

i ≤ χ) = 0. If I(P̃miss
i ≤ χ) = 1, winning SU i can ac-

quire communication opportunities in proportion to probability
1 − P̃false

i .
As in (6), si,k’s (i, k ∈ N) are binary decision variables that

represent group formation: If SU i belongs to group k whose
head is SU k, si,k = 1; Otherwise, si,k = 0. Each SU i can belong
to only one group as in (7). Based on si,k, SU i’s group-level
miss detection probability and group-level false alarm proba-
bility can be derived as P̃miss

i and P̃false
i , respectively.

P̃miss
i =

∏
k∈N

1 − (1 − Pmiss
k )

∑
j∈N

si, jsk, j

 , (9)

P̃false
i = 1 −

∏
k∈N

1 − Pfalse
∑
j∈N

si, jsk, j

 . (10)

Note that (9) and (10) are equivalent to (3), (4), respectively, un-
der the assumption that error probability on the reporting chan-
nel between group member i and head k, Pe,i,k, is negligible,
i.e., Pe,i,k = 0.

(8) represents the possibility of group formation between
SU i and SU k. If SUs i and k belong to the same group,∑

j∈N si, jsk, j = 1. Otherwise,
∑

j∈N si, jsk, j = 0. As mentioned in
Section 3, each SU i can only communicate with neighboring
SUs k ∈ Ni, and thus if k ∈ Ni, ai,k = 1, and otherwise, ai,k = 0.

Although the above optimization problem has nonlinear fea-
tures, i.e., indicator function and products of binary variables,
it can be reduced to ILP, with the help of two kinds of transfor-
mation techniques [40]. See the detail in Appendix A. Since
ILP is NP-hard, OP(N) can be solved by existing solver, e.g.,
CPLEX [41], when N is relatively small.

5. Individual Optimization: User Incentive Based Collabo-
rative Spectrum Sensing Mechanism

The global optimization in Section 4 has not only the scala-
bility problem but also the lack of a user incentive mechanism,
which is important for each SU to be willing to join CSS. In
CRNs with multiple PUs, the SU’s miss detection probability
and the PU’s utilization of its own spectrum may be different
among PUs. Moreover, after SUs conduct CSS, they individu-
ally aim to use the idle spectrum, which is a kind of competitive
situations. Therefore, it is required for each SU to appropri-
ately select a PU and form a group with other SUs such that it
can maximize its own communication opportunities without in-
terfering with the corresponding PU’s communication. In this
paper, we propose a user incentive based CSS mechanism for
multi-PU CRNs, in which communication opportunities are al-
located to SUs according to their detection performance. In
addition, we also propose a group reformation scheme where
SUs try to select better groups based on their own utility.

In what follows, we propose the basis of user incentive based
CSS mechanism and selfish group reformation. Finally, we also
discuss computation complexity and communication overhead.

5.1. Collaborative Spectrum Sensing Mechanism Based on
User Incentive

Each SU i tries to maximize its own communication oppor-
tunity ri,Si,l while meeting the constraint on the miss detection
probability. This can be formulated by the following individual
optimization problem OPi(Si,L), which returns optimal group
Si and PU l:

max
Si∈Si, l∈LSi ,χ

ri,Si,l, (11)

s.t. LSi,χ = {l ∈ L | Qmiss
Si,l ≤ χ},

where Si is the set of all possible groups for SU i andLSi,χ is the
set of PUs to which SU i’s group Si ∈ Si can meet the constraint
on the miss detection probability.

The objective function is the maximization of SU i’s commu-
nication opportunity, which can be expressed by the product of
three factors:

ri,Si,l = (1 − Ruse,PU
l )(1 − Qfalse

Si
)

1
Ngroup

l

Pdetect
i,l∑

j∈Si
Pdetect

j,l

. (12)
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Algorithm 1 PU selection and group formation (computation complexity (CP): O(2W LS NT ), communication overhead (CM):
O(S (S − 1)NT )).

1: ∀i ∈ N , Si = {i} . Initialization (CP : O(N),CM : −)
2: ∀i ∈ N discovers their neighboring SUs Ni . Discovery (CP : O(N iN),CM : O(N iN))
3: for all i ∈ N do . Trying non-cooperative sensing (CP : O(LN),CM : −)
4: if LSi,χ , ∅ then . Winning case (CP : O(L),CM : −)
5: i selects PU by solving OPi({Si},L)
6: else . Losing case (CP : O(L),CM : −)
7: i selects PU according to argminl∈L Pmiss

i,l

8: repeat . Group update (CP : O(2W LS NT ),CM : O(S (S − 1)NT ))
9: T winning = {Si | i ∈ N ,LSi,χ , ∅}

10: for all i ∈ N do . Trying group update (CP : O(2W LS N),CM : O(S (S − 1)N))
11: if LSi,χ == ∅ then . Trying cooperative sensing (CP : O(2S LS ),CM : O(S (S − 1)))
12: i collects S j from ∀ j ∈ Ni . (CP : O(D),CM : O(D))
13: Wi = ∅ . Calculating candidates of cooperation
14: for all j ∈ {m ∈ Ni | LSm,χ == ∅} do . (CP : O(D),CM : −)
15: if LSi∪S j,χ , ∅ then
16: i adds {Si ∪ S j} toWi

17: if Wi , ∅ then . Winning case
18: i selects Si and PU by solving OPi(Wi,L) . (CP : O(2W LS ),CM : −)
19: i informs ∀ j ∈ Si of group merge . (CP : O(S ),CM : O(S ))
20: ∀ j ∈ Si conducts selfish group reformation (Algorithm 2) . (CP : O(2S LS ),CM : O(S (S − 1)))
21: else . Losing case
22: i replaces Si with Si ∪ S j such that j ∈ Ni,LS j == ∅, and (3) is minimized, and informs ∀k ∈ Si of Si

23: . (CP : O(DS ),CM : O(S ))
24: else . Trying group reformation
25: ∀ j ∈ Si conducts selfish group reformation (Algorithm 2) . (CP : O(2S LS ),CM : O(S (S − 1)))
26: until {Si | i ∈ N ,LSi,χ , ∅} == T winning

The first factor is the probability that the spectrum is unused
by PU l, i.e., 1 − Ruse,PU

l . In this paper, we assume that the PU
activity follows a simple ON/OFF model [42], where PU l is
active (ON/BUSY state) with probability Ruse,PU

l and inactive
(OFF/IDLE state) with probability 1 − Ruse,PU

l . There has been
extensive survey on PU activity models [42]. The second fac-
tor is idle detection probability that is the probability SU i can
notice the idle state of spectrum, i.e., 1 − Qfalse

Si
. The third fac-

tor is the communication opportunity allocated to SU i. Since
each group individually conducts the CSS, we assume that com-
munication opportunities are equally allocated to the winning
groups with the fraction of 1/Ngroup

l , where Ngroup
l is the num-

ber of winning groups selecting PU l. On the other hand, in
each group, communication opportunities are allocated to each
SU corresponding to its own detection performance by taking
account of the user incentive, i.e., Pdetect

i,l /
∑

j∈Si
Pdetect

j,l . For ex-
ample, in Fig. 1, SU 1 has higher detection probability than its
group member SU 3, and thus SU 1 can acquire more commu-
nication opportunity than SU 3.

We assume that each SU can obtain or estimate Ruse,PU
l and

Ngroup
l with the help of existing approaches. For example, an

reinforcement learning approach is proposed, which can esti-
mate the PU’s spectrum utilization from historical sensing re-
sults [43]. On the other hand, the number of winning groups

can be directly shared among SUs through the control channel
in a multi-hop manner.

The objective function indicates that each SU can maximize
its own communication opportunities if it can become a single
SU. If the SU cannot meet the constraint on the miss detection
probability by itself, it attempts to form a group with other SUs
for CSS to meet the constraint. When each SU forms a group
with other SUs, the SU with high detection performance can
acquire more communication opportunities by forming a group
with an SU with low detection performance. On the other hand,
there is also user incentive for the SU with low detection per-
formance because it can become a winning SU by forming a
group. Recall that the miss detection probability increases with
the distance between PU and SU, as shown in (1). As a result,
the proposed mechanism encourages each SU close to a PU in
forming a group with other SUs away from the PU, and vice
versa.

We should note here that the consideration of time and en-
ergy consumption for sensing. Although objective function (11)
does not directly consider these factors, they will be imposed
on SUs. In this paper, we assume that the satisfaction with the
expected communication opportunity of winning SU i, r∗i,Si,l

,
which is given by (11), exceeds the dissatisfaction with the time
and energy consumption. We plan to extend our formulation by
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Algorithm 2 Selfish group reformation (computation complex-
ity (CP): O(2S LS ), communication overhead (CM): O(S (S −
1))).

Require: winning group S
1: for all i ∈ S do . Search for the best group for i

(CP : O(2S LS ),CM : O(S (S − 1)))
2: i calculates new candidate group SA

i by solving
OPi(2S,L)

3: i informs members ∀ j ∈ S of SA
i

4: Y = S

5: repeat . Confirm consensus of group reformation
(CP : O(S ),CM : −)

6: i ∈ Y
7: if ∀ j ∈ SA

i ,S
A
i == SA

j then . Consensus is built
8: ∀k ∈ SA

i replaces Sk with SA
i

9: ∀m ∈ S \ SA
i replaces Sm with {m}

10: Y = Y \ SA
i

11: else . Consensus fails
12: Y = Y \ {i}
13: until Y == ∅

taking account of this relationship.
Algorithm 1 shows SU i’s control procedure for PU selec-

tion and group formation. We also give computation complex-
ity (CP), i.e., the number of calculations, and communication
overhead (CO), i.e., the number of communications, in Algo-
rithm 1, which will be discussed in Section 5.3. First, each
SU i ∈ N forms a group by itself and discovers SUs in its trans-
mission range d̃ as the set of neighboring SUs,Ni (line 2). Next,
each SU i checks whether it meets the constraint on the miss de-
tection probability under single spectrum sensing (lines 3–7). If
SU i can become winning, it selects a PU to maximize the ex-
pected value of its own communication opportunities by solving
OPi(Wi,L) (line 5). Otherwise, it becomes losing and selects
a PU with the minimum miss detection probability (line 7).

Each SU i ∈ N attempts to update its group Si for maximiz-
ing its own communication opportunities (lines 10–25). Note
that the acting order among SUs in lines 10–25 will be random
because each SU acts in a distributed manner. Each losing SU i
attempts to perform CSS with other losing SUs (lines 11–23).
First, each SU i searches for possible group candidatesWi for
cooperation (lines 13–16). Note that the group candidates must
also be losing because winning groups need not to further co-
operate with other SUs. If SU i finds appropriate groups with
which it can become winning, it selects a PU and forms a group
to maximize the expected value of its own communication op-
portunities by solving OPi(Wi,L) (line 18). Otherwise, it still
stays losing and forms a group with a losing group to minimize
the group miss detection probability (line 23). In lines 20 and
25, each winning SU i conducts selfish group reformation ac-
cording to Algorithm 2, which will be described in Section 5.2.

Note that this group updating is repeated until the set of win-
ning groups, T winning, does not change (line 26). Therefore,
there exist two cases after Algorithm 1 has converged. In the
first case, all SUs become winning and do not have further in-

Table 1: Simulation parameters.

Parameter Value
Simulation region 3 [km] × 3 [km] square area
The number of SUs, N 2, 3, 4, 5, 6, 7, 10, 15, 20, 30, 40, 50
Transmit power of SU, PSU 10 [mW]
Transmit power of PU l, Pl 100 [mW]
Gaussian noise variance σ2 -90 [dBm]
Path loss constant κ 1
Path loss exponent µ 3
Time-bandwidth product m 5
Energy detection threshold λ 21.51 [mW]
False alarm probability Pfalse 0.018 (1.8%)
Upper limit of 0.05miss detection probability, χ
Transmission range of SU, d̃ 2,154 [m]

centive to form a new group. In the second case, a part of SUs
can become winning and the remaining SUs are forced to re-
main losing, due to lack of appropriate partner(s). The resulting
case depends on not only the locations of PUs and SUs but also
the processing order of Algorithm 1 among SUs.

5.2. Selfish Group Reformation

Algorithm 1 has the randomness in acting order among SUs
(lines 10–25). This may result in different group formation and
also leave opportunities for some SUs to improve their own
communication opportunities by reforming their groups. Al-
gorithm 2 shows the selfish group reformation with computa-
tion complexity and communication overhead. Given winning
group S, each SU i in S individually calculates SA

i that max-
imizes its own communication opportunities (lines 1–3). The
group reformation requires the consensus among all SUs that
will form the group. From lines 5–13, each SU i confirms the
consensus of group reformation. If SU i can build the consen-
sus with all the other SUs in SA

i , they leave S and make new
group SA

i (line 8). The remaining SUs in S temporarily form
independent groups and confirm the possibility of group refor-
mation in the succeeding iterations (line 9). If SU i fails to build
the consensus, the group reformation does not occur (line 12).

5.3. Computation Complexity and Communication Overhead

We focus on the computation complexity and communica-
tion overhead of proposed scheme given by Algorithms 1 and 2.
We give the computation complexity (CP) and communication
overhead (CM) in Algorithms 1 and 2. Note that T represents
the number of repetitions from line 8 to 26 in Algorithm 1. Let
D, S , and W denote the average number of neighboring SUs,
that of group members, and that of candidates of group mem-
bers, respectively. In ordinary cases, the number of PUs is much
smaller than that of SUs, (L � N), and the number of neighbor-
ing SUs is limited (D � N). Furthermore, objective function
(11) leads to lower Qfalse

Si
as in (12), which makes the group size

smaller, i.e., S � N and W � N. As a result, both the com-
putation complexity and communication overhead of proposed
scheme are given by O(NT ).
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We focus on the number of repetitions, T . If the selfish group
reformation (Algorithm 2) is not used, Algorithm 1 only ap-
plies operations for merging groups. The number of groups
starts from that of SUs, N, and each merge operation reduces
the number of groups by one. As a result, the merge operation
speedily converges. Next, we consider the selfish group refor-
mation. In Algorithm 2, the selfish group reformation replaces
an existing group with a group that is more strongly banded to-
gether while yields some losing SUs, which will retry the group
merge process in Algorithm 1. The convergence property of
proposed scheme will be shown in Section 6.5.

6. Simulation Results

We evaluate the effectiveness of the proposed mechanism
through several simulation experiments.

6.1. Simulation Settings
We use Netlogo [44] as the simulator. We show the simula-

tion parameters and their default values in Table 1. The values
of N, PSU, Pl, σ

2, κ, µ,m are determined according to [8], and
the value of d̃ is determined according to [9]. In [8], the authors
evaluate the impact of λ on both miss detection probability and
Pfalse. We select one of the desirable value of λ, i.e., λ = 21.51
[m], which can balance between the miss detection probability
and Pfalse. Since Pfalse is given by (2), m = 5 and λ = 21.51
results in Pfalse = 0.018. Fig. 2 (resp. Fig. 3) illustrates an ex-
ample of locations in 1-PU (resp. 2-PU) scenario where 1 PU
(resp. 2-PUs) and 18 SUs (resp. 20 SUs) exist. In both scenar-
ios, N SUs are uniformly distributed in the area. As for the PU
location, one PU is located at the center of simulation area in
the 1-PU scenario. On the other hand, in the 2-PU scenario, two
PUs are located at (0.75, 0.75) and (−0.75,−0.75) such that the
simulation area can be equally divided by the diagonal line.

We use three evaluation criteria. The first one is the ratio
of winning SUs, w, which is the ratio of the number of win-
ning SUs to that of all SUs. The relationship between PU-SU
distance and winning frequency is also investigated, where the
winning frequency describes how often SUs with certain PU-
SU distance can become winning through independent simula-
tion runs. The second one is the average idle detection proba-
bility among winning SUs selecting PU l ∈ L, 1−Q

false
l , where

Q
false
l is the average false alarm probability among SUs select-

ing PU l. As shown in Appendix B, the sum of communication
opportunities among winning SUs, i.e., system throughput, can
be expressed by

∑
l∈L(1 − Ruse,PU

l )(1 − Q
false
l ). The relationship

between each winning SU’s detection probability and through-
put will also be shown. The third one is the computation com-
plexity and convergence property. In what follows, we show the
average of 5000 independent simulation runs.

Although we will only show the results of the 1-PU scenario
and 2-PU scenario, we can qualitatively discuss the tendency of
system performance even under scenarios with more than two
PUs. First, the ratio of winning SUs is mainly determined by
the locations of PUs and SUs. In what follows, we demonstrate
that the ratio of winning SUs of the proposed mechanism will

show the similar tendency in both scenarios where SUs are lo-
cated uniformly. Thus, we can expect that the ratio of winning
SUs will show the similar tendency even under scenarios with
more than two PUs and uniformly located SUs. On the con-
trary, the system throughput will increase with the number of
PUs.

6.2. Performance of Proposed Mechanism in 1-PU Cognitive
Radio Network

We first evaluate the effectiveness of the proposed mecha-
nism in 1-PU CRNs by comparing the results with CF-PD [8],
which is the CSS scheme designed for 1-PU CRNs. Recall
that CF-PD mainly focuses on CSS itself, and thus SUs in a
group have the same objective. CF-PD forms groups by taking
account of the trade-off between the group detection probabil-
ity and the group false alarm probability through the following
group-based utility function [8]:

v(S) = (1 − Qmiss
S

) −C(Qfalse
S

, α), (13)

where Qmiss
S

is the group S’s miss detection probability and
Qfalse
S

is the S’s false alarm probability. These are the same
as (3) and (4), respectively. Moreover, α is a constraint on the
false alarm probability and C(, ) represents the cost function for
the false alarm probability [8], which is given by

C(Qfalse
S

, α) =

−α2 · log(1 − (
Qfalse
S

α
)2), if Qfalse

S
< α,

+∞, otherwise.

The winning SUs, which meet both constraints on the miss de-
tection probability and the false alarm probability, are defined
by the following adjunct utility function [8],

u(S) =

1, if Qdetect
S

≥ (1 − χ) and Qfalse
S

< α,

0, otherwise,

where Qdetect
S

represents the groupS’s detection probability, i.e.,
1−Qmiss

S
, and χ represents the upper limit of the miss detection

probability. If u(S) = 1, group S is winning. In addition, each
winning group performs an adjust operation such that the cor-
responding group can keep winning with the minimum number
of SUs.

In this evaluation, we set the probability that PU 1 uses its
own spectrum, Ruse,PU

1 , to be 0.3. To compare the proposed
mechanism with CF-PD, we set α of CF-PD to be 0.3, which is
the maximum false alarm probability that was observed in the
case of the proposed mechanism.

We also show the global optimal solutions, called Optimal,
which are obtained by solving OP(N) with the help of existing
solver, CPLEX. Note that the optimal solution are obtained in
case of relatively small system scale, i.e., N ≤ 10, due to the
computation complexity.

6.2.1. Ratio of Winning SUs
Fig. 4 illustrates the relationship between the number of SUs,

N, and the ratio of winning SUs for the proposed mechanism,
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Figure 2: An example of PU selection and group formation in 1-PU CRNs when N = 18 (W-SU (PU l) means winning SU selecting PU l and L-SU means losing
SU).

CF-PD, and Optimal. We first focus on the comparison between
proposed mechanism and CF-PD. We observe that the perfor-
mance difference between proposed mechanism and CF-PD is
limited but the proposed mechanism can work better than CF-
PD when N becomes large, e.g., N ≥ 20. For example, the
improvement ratio becomes about 4% in the case of N = 50.
To analyze this difference deeply, we further investigate the re-
lationship between upper limit χ of the miss detection probabil-
ity and the average miss detection probability among winning
groups in the case of N = 50. The average group miss detec-
tion probability of the proposed mechanism is 0.0284, which is
closer to the value of χ, i.e., 0.05, compared with that of CF-
PD, i.e., 0.0228. In the proposed mechanism, each SU tries
to form a group such that the group miss detection probabil-
ity of group does not exceed χ. CF-PD also guarantees this
condition but prefers smaller group miss detection probability
according to (13). As a result, in CF-PD, each group tries to in-
clude SUs that are close to a PU as shown in Fig. 2a, e.g., SU 1.
Such group formation will decrease the chance that SUs distant
from a PU become winning SUs. On the contrary, the proposed
mechanism can alleviate this problem by introducing the user
incentive, which encourages each SU close to a PU in forming
a group with other SUs away from the PU, and vice versa, as
shown in Fig. 2b, e.g., SU 1.

Next, we focus on the comparison between proposed mech-
anism and Optimal. We observe that the results of proposed
mechanism are 0–15% lower than those of Optimal. This comes
from several factors. First, Optimal ignores error probability
on the reporting channel between group member i and head k,
Pe,i,k, i.e., Pe,i,k = 0. Second is the difference of goals between
proposed scheme and Optimal. The goal of Optimal is maxi-
mization of average communication opportunities among SUs

while that of proposed scheme differs among SUs, i.e., max-
imization of its own communication opportunities. Third, in
the proposed mechanism, SUs conduct group formation in a
distributed manner with local knowledge and communications.
On the contrary, Optimal allows a central server to fully manage
group formation among all SUs with global knowledge.

6.2.2. Average Idle Detection Probability
Fig. 5 illustrates the relationship between the number of SUs,

N, and the average idle detection probability. As we expected,
the average idle detection probability of the proposed mecha-
nism becomes higher than that of CF-PD. (Recall that the group
miss detection probability of the proposed mechanism becomes
slightly higher than that of CF-PD, under the constraint of χ,
as mentioned in Section 6.2.1). In CF-PD, SUs close to a PU
want to cooperate together to achieve smaller group miss de-
tection probability. As a result, SUs distant from a PU will be
forced to make groups among them, which tends to increase the
group size, due to a high miss detection probability of each SU.
This results in the decrease (resp. increase) of the average idle
detection (resp. false alarm) probability. On the contrary, the
proposed mechanism considers the idle detection probability as
a part of SU’s communication opportunities given by (12). As
a result, the proposed mechanism can improve the average idle
detection probability, compared to CF-PD. Note that the idle
detection probability is identical among SUs as in (2) and the
group idle detection probability is mainly determined by the
group size as in (4), and thus the improvement is not at major
scale, i.e., 0–2%.

Next, we focus on the comparison between proposed mech-
anism and Optimal. We observe that the results of proposed
mechanism shows 0–2% decrease compared with those of Op-
timal, due to the same reasons as mentioned in Section 6.2.1.
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Figure 3: An example of PU selection and group formation in 2-PU CRNs when N = 20 (W-SU (PU l) means winning SU selecting PU l and L-SU means losing
SU).
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Figure 4: Relationship between the number of SUs, N, and the ratio of winning
SUs, w (1-PU scenario).

However, we also find a desirable characteristic where the pro-
posed mechanism can support larger-scale systems compared
with Optimal, with the help of lower computation complexity
and communication overhead. (See the detail in Section 5.3.)
Furthermore, the proposed mechanism works better in terms of
both the ratio of winning SUs and average idle detection prob-
ability with increase of system scale as shown in Figs. 4 and
5.

6.2.3. Relationship between PU-SU Distance and Winning Fre-
quency

Fig. 6 illustrates the relationship between PU-SU distance
and winning frequency in the case of N = 50. Note that we
set the granularity of distance to be 100 [m]: PU-SU distance
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Figure 5: Relationship between the number of SUs, N, and the average idle
detection probability, 1 − Q

false
l (1-PU scenario).

di of SU i is replaced with d′i = ddi/100e · 100, e.g., d′i = 100
for di = 50. We also show the histogram of the number of
SUs located at the corresponding distance. We first observe
that the winning frequency of both schemes becomes 100%
when PU-SU distance is equal or less than 900 [m]. We also
find that the proposed mechanism can significantly improve the
winning frequency for SUs with larger PU-SU distance, i.e.,
1500–2300 [m], compared with CF-PD, with the small sacrifice
of winning frequency for SUs with moderate PU-SU distance,
i.e., 1000–1400 [m]. As a result, the proposed mechanism can
improve the ratio of winning SUs compared to CF-PD as in
Fig. 4.
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6.3. Impact of Cooperation Based on User Incentive in 2-PUs
Cognitive Radio Network

We evaluate the effectiveness of the proposed mechanism
in 2-PU CRNs. For comparison purpose, we use the pro-
posed mechanism without user incentive, which equally allo-
cates communication opportunities to winning SUs, regardless
of their detection performance. This can be achieved by replac-
ing objective function (11) of OPi(Si,L) with the following ob-
jective function:

max
Si∈Si, l∈LSi ,χ

(1 − Ruse,PU
l ) (1 − Qfalse

Si
)

1

Nwinning
l

, (14)

where Nwinning
l is the number of winning SUs selecting PU l.

In this subsection, we evaluate through the above mentioned
three criteria. In the following evaluation, we set Ruse,PU

1 and
Ruse,PU

2 to be 0.3 and 0.5, respectively.

6.3.1. Ratio of Winning SUs and Average Idle Detection Prob-
ability

As mentioned in Section 5.1, the proposed mechanism intro-
duces user incentive, which encourages each SU close to a PU
in forming a group with other SUs away from the PU, and vice
versa, as shown in Fig. 3b, e.g., SU 12. On the other hand, in
the proposed mechanism without user incentive, each SU tends
to form the group among nearby SUs as shown in Fig. 3a, e.g.,
SU 12, because reducing the group false alarm probability has
a large impact on maximizing (14).

Fig. 7 illustrates the relationship between the number of SUs,
N, the ratio of winning SUs, w, and average idle detection prob-
ability, Q

false
, for the proposed mechanism and that without user

incentive. Note that Q
false

is the average of Q
false
l among PUs.

We observe that the proposed mechanism can slightly improve
the ratio of winning SUs, e.g., 1.6% improvement at N = 50,
and achieves almost the same average idle detection probabil-
ity, compared to that without user incentive. The main purpose
of introducing user incentive is giving motivation to SUs to join
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Figure 7: Relationship between the number of SUs, N, the ratio of winning
SUs, w, and average idle detection probability, 1 − Q

false
, (2-PU scenario).

0.0

0.2

0.4

0.6

0.8

1.0

W
in

n
in

g
fr

eq
u

en
cy

Proposal

Proposal w/o user incentive

0 500 1000 1500 2000 2500 3000
Distance from PU [m]

Figure 8: Relationship between PU-SU distance and winning frequency (2-PU
scenario, N = 50).

CSS. In this evaluation, we assume that all SUs tries to join
CSS. This assumption seems to be practical in the proposed
mechanism with user incentive because SUs can acquire com-
munication opportunities according to their contribution to de-
tection performance, which will give much motivation to SUs to
join CSS. On the contrary, in the proposed mechanism without
user incentive, all winning SUs in the same group obtain the
same communication opportunities, and thus some SUs with
high detection performance may leave the system, due to dis-
satisfaction with allocated communication opportunities. The
impact of user incentive on the communication opportunities
of SUs will be given in Section 6.3.2. As in Section 6.2.1,
we investigate the relationship between upper limit χ of the
miss detection probability and the average group miss detec-
tion probability among winning groups in the case of N = 50.
The average group miss detection probability of the proposed
mechanism is 0.033, which is closer to the value of χ, i.e., 0.05,
compared to that of the proposed mechanism without user in-
centive, i.e., 0.027.

Fig. 8 illustrates the relationship between PU-SU distance
and winning frequency in the case of N = 50. As in Sec-
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tion 6.2.3, Fig. 8 shows the proposed mechanism can signifi-
cantly improve the winning frequency for SUs with larger PU-
SU distance, i.e., 1500–2500 [m], compared with the proposed
mechanism without user incentive. Recall that the proposed
mechanism without user incentive encourages each SU in form-
ing a group with nearby SUs. If SUs close to a PU make groups
among them, it is difficult for SUs distant from a PU to become
winning. On the contrary, the proposed mechanism can alle-
viate this problem by introducing user incentive such that each
SU close to a PU wants to form a group with SUs distant from
the PU, and vice versa.

6.3.2. Relationship between Detection Performance and
Throughput

We use the following time-slot based access model for the us-
age of PU’s spectrum. In each time slot, PU l transmits data ac-
cording to the probability that it uses its own spectrum, Ruse,PU

l ,
and transmission request for each SU occurs with probability
0.1. When multiple winning groups detect the idle state of PU’s
spectrum, one of the groups is selected at random, and then an
SU in the group wins the transmission opportunity based on
the contribution to detection performance. If a collision occurs
between the PU and SU(s), both of them do not conduct retrans-
mission.

Fig. 9 illustrates the relationship between the detection prob-
ability and throughput for each winning SU selecting PU 1 in
the case of N = 50. We also show the histogram of the num-
ber of SUs with the corresponding detection probability (resp.
throughput) in the upper (resp. right) area of Fig. 9. As shown
in Figs. 9a and 9b, each single SU i with Pdetect

i,1 > (1 − χ) ob-
tains about 0.03–0.04 throughput in both schemes. On the other
hand, remaining SUs with Pdetect

i,1 ≤ (1 − χ) form a group with
other SUs. In the proposed mechanism without user incentive,
such SUs obtain almost the same throughput (Fig. 9a). In the
proposed mechanism, Fig. 9b shows that SUs with a high de-
tection probability can obtain the high throughput because com-
munication opportunities are allocated to SUs according to their
contribution to detection performance. We also confirmed that
the similar tendency is satisfied in the case of SUs selecting
PU 2.

6.4. Robustness against Selfish Group Reformation

In this subsection, we investigate how the proposed mecha-
nism is robust against SUs’ selfish behavior. As mentioned in
Section 5.2, the proposed mechanism includes the selfish group
reformation scheme where each SU has a chance to remake the
belonging group to increase its own communication opportuni-
ties. Through simulation experiments, however, we observed
that the group reformation occurred at less than 1% of the win-
ning groups, regardless of N. This is because the selfish group
reformation occurs only when the SUs joining the new group
can build a consensus where all of them can increase their own
communication opportunities by the group reformation. This
condition is severe and each winning group tends to reach a
deadlock. As a result, the proposed mechanism can achieve
stable group formation even under SUs’ selfish behavior.

6.5. Convergence Property and Adaptability to Environmental
Change

Finally, we evaluate the convergence property and adapt-
ability to an environmental change of the proposed mech-
anism. Note that the convergence property also represents
both the computation and communication overhead discussed
in Section 5.3. In the proposed mechanism, each SU tries
to improve its communication opportunity according to Al-
gorithms 1. We define a time step where one SU conducts
group update (lines 11–25 in Algorithm 1). As a result, N
time steps corresponds to one repetition of lines 8–26 in Al-
gorithm 1. Fig. 10 illustrates how the ratio of winning SUs, av-
erage throughput of winning SUs, and the frequency of group
update vary with time step when the PUs’ spectrum utilization
are initially set to be Ruse,PU

1 = 0.3,Ruse,PU
2 = 0.5 and change at

step 150, i.e., Ruse,PU
1 = 0.5,Ruse,PU

2 = 0.3.
We first evaluate the convergence property by focusing on

the first half period of [0, 149]. We observe that the total ra-
tio of winning SUs and average throughput of winning SUs for
respective PUs almost converges when all 50 SUs try group
formation at once, i.e., step 50, which corresponds to T = 1.
As mentioned in Section 5.3, both computation overhead and
communication overhead are given by O(NT ) but this result
shows that actual value of T is much smaller. Moreover, av-
erage throughput of winning SUs for PU 1 can be almost the
same as that for PU 2. We also confirm that the system finally
reaches the steady state at step 120.

Next, we focus on the remaining half period of [150, 300] to
evaluate the adaptability to the environmental change. We find
that the proposed mechanism can smoothly converge to the new
steady state while keeping the total ratio of winning SUs among
two PUs. In ideal, average throughput of winning SUs for PU 1
should be equal to that for PU 2 after the environmental change
at step 150, where Ruse,PU

1 and Ruse,PU
2 are counterchanged with

each other. We, however, observe that there is a gap between
average throughput of winning SUs for PU 1 and that for PU 2.
This is because some SUs (groups) located near PUs will not be
affected by the environmental change. As a result, group update
will partially occur among SUs.

7. Conclusion

In this paper, we have tackled the effective spectrum reuse
problem in multi-PU CRNs. We have first formulated the global
optimization problem as ILP, where the objective function is the
maximization of both the number of winning SUs and the av-
erage communication opportunities among them. To overcome
the drawbacks of the global optimization, i.e., scalability prob-
lem and lack of user incentive mechanism, we have also formu-
lated the individual optimization problem, which can be solved
by the the user-incentive based CSS mechanism consisting of
PU selection and group (re)formation among SUs. In the pro-
posed mechanism, SUs first try to become winning and further
aim to acquire more communication opportunities.

Through simulation experiments, we have first showed that
the proposed mechanism can increase the ratio of winning SUs
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Figure 9: Relationship between the detection probability and throughput for PU 1’s spectrum (2-PU scenario, N = 50).
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Figure 10: Relationship between the number of step, the ratio of winning SUs,
and average throughput among winning SUs (2-PU scenario, N = 50).

by 4% and average idle detection probability by 2%, compared
to CF-PD. Comparing the proposed mechanism with global op-
timization, we also have found that the proposed mechanism
can support larger-scale systems with performance improve-
ment. We have demonstrated that the proposed mechanism can
improve the ratio of winning SUs compared to that without user
incentive while allocating the throughput to SUs according to
their detection performance. In addition, we have also showed
that the proposed mechanism can achieve stable group forma-
tion even under SUs’ selfish behavior. As future work, we plan
to extend the proposed mechanism by considering time/energy
consumption, different PU activity models, and multi-channel
scenarios.

Appendix A. Linearization of global optimization problem

First, I(P̃miss
i ≤ χ) (i ∈ N) can be replaced with binary deci-

sion variable yi = {0, 1} (i ∈ N), which satisfies the following
two equations [40]:

P̃miss
i ≤ χ + 1 − yi, ∀i ∈ N ,

P̃miss
i > χ − yi, ∀i ∈ N .

If SU i is a winning SU, yi = 1. Otherwise, yi = 0. Substituting
yi and (10) to (5), we can update objective function as follows:

max N−1
∑
i∈N

∏
k∈N

yi − Pfalseyi

∑
j∈N

si, jsk, j

 ,
which can be rewritten as

max N−1
∑
i∈N

2∑
l1=1

2∑
l2=1

. . .

2∑
lN =1

∏
k∈N

ai,k,lk , (A.1)

where

ai,k,lk =

yi, if i, k ∈ N , lk = 1,
−Pfalseyi

∑
j∈N si, jsk, j, if i, k ∈ N , lk = 2.

Since Pfalse is constant as in (2) and all variables included in
(A.1), i.e., yi, si, j (i, j ∈ N), are binary, (A.1) consists of the
sum of products of binary variables. P̃miss

i in (9) can also be
rewritten as the sum of products of binary variables.

These products of binary variables can be transformed into
the combination of linear expressions as follows. If a product
of binary variables, which is nonlinear, is given as follows:

y = x1x2 · · · xk, xi = {0, 1}, (i = 1, 2, . . . , k),
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this can be transformed into the following combination of linear
expressions [40]:

(k − 1) −
k∑

i=1

xi + y ≥ 0,

xi − y ≥ 0, xi = {0, 1}, (i = 1, 2, . . . , k).

As a result, all the objective function and constraints can be
expressed by linear expressions and all the variables are binary,
which indicates OP(N) is ILP.

Appendix B. Derivation of system throughput in case of in-
dividual optimization

In case of the individual optimization approach in Sec-
tion 5.1, the system throughput can be derived as follows:∑
l∈L

∑
i∈N

ri,Si,l

=
∑
l∈L

∑
i∈Gl

ri,Si,l

=
∑
l∈L

∑
i∈Gl

(1 − Ruse,PU
l )(1 − Qfalse

Si
)

1
Ngroup

l

Pdetect
i,l∑

j∈Si
Pdetect

j,l

=
∑
l∈L

1 − Ruse,PU
l

Ngroup
l

∑
i∈Gl

(1 − Qfalse
Si

)
Pdetect

i,l∑
j∈Si

Pdetect
j,l

=
∑
l∈L

1 − Ruse,PU
l

Ngroup
l

∑
k∈Ngroup

l

(1 − Qfalse
Sk

)

=
∑
l∈L

(1 − Ruse,PU
l )(1 − Q

false
l ),

where Gl (resp.Ngroup
l ) is the set of winning SUs (resp. winning

cluster heads) selecting PU l.
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