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Abstract—Mobile ad hoc network (MANET) is a wireless
network constructed by multiple mobile nodes, which does not
rely on any infrastructure. MANET can be used as an emergent
network when a disaster occurred. Participants of a meeting,
conference, or event can also build a temporal information-
sharing network over MANET. Since there is no central server
in the network, each node must find out its desired information
(objects) by itself. To tackle this problem, some researchers have
proposed construction schemes of mobile P2P networks, such
as Ekta and MADPastry, by modifying distributed hash table
(DHT) schemes. Ekta and MADPastry reduce communication
overhead and path length by integrating application-layer routing
and network-layer routing. Furthermore, MADPastry introduces
a clustering method which groups physically-close nodes to
improves system performance. However, it has also been pointed
out that the system performance deteriorates in highly dynamic
environments. In this paper, we extend MADPastry by adding
a method sharing pointers among nodes in the same cluster to
solve this problem. Through several simulation experiments, we
show that the proposed method improves the success rate up to
40 % compared with MADPastry.

Index Terms—mobile ad hoc network (MANET), distributed
hash table (DHT), MADPastry, performance evaluation

I. INTRODUCTION

With the proliferation of mobile nodes, such as laptop PCs,
PDAs, and mobile phones, mobile ad hoc network (MANET)
have been attracting many users to construct a temporal
wireless network in various situations. For instance, MANET
can be used as an emergent network for communication among
people when a disaster occurred and existing infrastructures
failed. In another case, participants of a meeting, conference,
or event can also build a temporal information-sharing network
over MANET to exchange their own files each other.

In MANET, a source node can communicate with its
destination node through a multi-hop path. The path between
them is determined by a routing protocol such as DSR [1],
AODV [2], or etc. However, these protocols do not provide
the source node with the location of its desired information
(objects). Broadcast is a simple scheme to find out the object.
In broadcast, nodes forward queries to all of their neighbors.
Since all nodes in the network are the target of search, the
search tends to success with a high probability. However, as
the network size becomes large or the number of queries

increases, the success rate of search decreases due to packet
collisions. To efficiently discover objects with low overheads,
some researchers have been proposed construction schemes of
mobile P2P networks based on distributed hash table (DHT)
which is based on a unicast communication [3], [4]. Typical
DHT schemes are Pastry [5], Chord [6], Tapestry [7], and
CAN [8]. The main contribution of them is keeping low search
cost with the increase of network size. For example, Pasty,
Chord, and Tapestry guarantee O(logN) search costs, that is
hop count, for any object. Here, N is the network size.

However, the topological structure of MANET dynamically
varies due to node mobility, participation, or departure. It
has been pointed out that the success rate of search doesn’t
improve when DHT is simply constructed on the top of
MANET and a cross layer approach is significant [9]. To solve
this problem, Ekta and MADPastry integrate Pastry with DSR
and AODV to share routing information between network-
layer and application-layer. This integration contributes to
adaptability to the topological changes in MANET and re-
duction of communication overheads in the system. Further-
more, MADPastry proposes a clustering method which groups
overlay nodes taking into account the corresponding physical
distance, that is hop count between nodes in the underlay
network. In MADPastry, queries are forwarded in a unicast
manner between clusters. On the other hand, nodes can also
broadcast queries inside a cluster because the corresponding
pointers exist in the same cluster.

It has been pointed out that the successful probability of
search deteriorates and overheads to maintain the P2P network
increase as node velocities become high [4]. In this paper,
we extend MADPastry by adding a method sharing pointers
among nodes in the same cluster to solve this problem.
Through several simulation experiments, we evaluate how the
proposed method is effective compared with MADPastry.

The rest of the paper is organized as follows. In section II,
we describe overviews of Pastry and MADPastry. Section III
describes problems of MADPastry in highly dynamic environ-
ments. Then, we introduce the proposed method and show the
effectiveness through simulation experiments in section IV.
Finally, we conclude this paper and describe future work in
section V.
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II. RELATED WORK

In this section, we describe overviews of Pastry and MAD-
Pastry.

A. Pastry

Pastry is one of the structured P2P protocols based on DHT.
Each node is randomly assigned a unique 128-bit identifier
(nodeId) that is generated by a hash function with its IP
address and allocated into a circular overlay ID space which
ranges from 0 to 2128 − 1. Each object is also assigned a
unique 128-bit object identification (key) by using the same
hash function to its name and allocated into the same overlay
ID space. NodeIds and keys are regarded as a sequence of
digits with base 2b where b is a configuration parameter with
typical value 4.

Each Pastry node maintains a routing table, a neighborhood
set, and a leaf set. The Pastry’s routing table consists of
log2b N (N is the number of nodes in the network) rows each
of which has 2b−1 entries (a pair of nodeId and its IP address),
as shown in the lower part of Fig. 1. nth row has entries
whose nodeIds share the first n − 1 digits with the present
node’s nodeId. Since nth digit has 2b possible numbers, nth
row has 2b−1 entries. The leaf set L is a set of nodes with the
L
2 numerically closest larger nodeIds, and the L

2 nodes with
numerically closest smaller nodeIds, relative to the present
node’s nodeId. The neighborhood set M contains the nodeIds
and IP addresses of the M nodes that are closest (according
the proximity metric) to the local node. The neighborhood
set is not normally used in routing messages; it is used in
maintaining locality properties, joining method.

Figure 1 illustrates a routing example. To search a key, each
node forwards the query to the node which has the nodeId
sharing one more digit with the key based on the routing
table. If there is no appropriate entry, the node forwards the
query to the node in the neighbor or leaf set which has the
nodeId sharing at least one more bit with the key. Therefore,
Pastry guarantees the query forwarding unless L

2 former or
latter nodes in the leaf set fail simultaneously. Since the routing
is normally processed every digit, overlay hop count can be
expressed as O(log2b N). Each node needs to maintain the
routing table, neighbor set, and leaf set by pinging to each
entry in them.

When the query arrives at a node whose nodeId is the
numerically closest to key, the search will success if the node
has a pointer about the key (a pair of key and IP address of
the node that maintains the corresponding object). We should
note here that a registration of a pointer can be accomplished
by the object owner using the same mechanism as the query
search.

B. MADPastry

MADPastry is an integrated scheme of Pastry and AODV.
It introduces the following two kinds of methods.
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Routing from nodeId: 37A0F1 to Key: B57BD0

Each entry has the pair of nodeId and IP address

Fig. 1. Pastry routing table

1) Updating information by packets overheard at nodes:
In MADPastry, each packet contain AODV sequence number,
nodeId, and IP address for each last node in the Pastry and
AODV routings. Whenever a node overhears or receives any
packet, it updates its AODV routing table, Pastry routing table,
and leaf set. It contributes to reducing maintenance overheads
and achieving high adaptability to the environmental change.

2) Clustering nodes taking into account their physical lo-
cations: MADPastry associates the node’s physical location
with its overlay’s location. Specifically, a cluster is formed
with physically-close nodes by coordinating the first digit of
their nodeIds with that of the cluster head. The determination
of the cluster head is described in the next paragraph. Since
the Pastry routing is processed every digit, physical hop count
can be reduced compared with the original Pastry as shown
in Fig. 2. Note that the overlay hop count does not change.

Since there is no central server in MANET, cluster heads
must be elected in a fully-distributed manner. MADPastry uses
landmark key to form a cluster. It generates K landmark
keys that evenly divides the overlay ID space into K sub
spaces. For instance, in case of K = 16 (= 2b), landmark
keys become 0800...000，1800...000，．．．，E800...000，
F800...000. A node whose nodeId is the numerically closest
to landmark key becomes a cluster head and starts to
periodically broadcasting a cluster-head beacon to all nodes
in its cluster.

Whenever a node overhears or receives a cluster-head bea-
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Fig. 2. MADPastry clustering

con, it stores the current cluster head’s nodeId and the physical
hop count to the cluster head. Nodes periodically check the
closest cluster and move to it if it is different from the current
cluster. Since it has to change the first digit of its own nodeId,
changing cluster requires leaving and re-joining MADPastry
network.

Although the routing among different clusters is the same
as that in Pastry, MADPastry uses the leaf set for the rout-
ing inside a cluster. If the leaf set includes a node having
closer nodeId to key and an AODV route to be reached, the
corresponding query is forwarded to the node. Otherwise, the
query is broadcasted inside the cluster. These mechanism ac-
complishes effective searching taking into account the physical
proximity among nodes inside a cluster.

III. PROBLEMS OF MADPASTRY IN HIGHLY DYNAMIC
ENVIRONMENTS

It has been pointed out that the successful probability of
search deteriorates as node velocities become high [4]. The
main reason is that queries tend to be lost due to the disap-
pearances of AODV routes. When the node velocities increase,
it is difficult for nodes to maintain the AODV routing table
consistent with the real topology. According to IEEE802.11
standard, a node continues sending a packet until it receives an
acknowledgement or the number of transmissions reaches the
pre-determined threshold. If the node failed to send the packet
to the next-hop node in the AODV route, it checks the position
in the current AODV route. If it is located on the former part
of the route, it abandons sending the packet that means the
query is lost. Otherwise, it tries to find another AODV route
to the destination with the overhead of broadcasting.

In addition, they did not accurately consider the overheads
and risks of cluster changes. Since each node is responsible
for pointers whose keys are the closest to its nodeId, it
must update pointers in accordance with response to a cluster
change. However, such pointer updating may also fail due to
the disappearances of AODV routes.

 0

 20

 40

 60

 80

 100

 1.5  2  2.5  3  3.5  4  4.5  5

s
u

c
c
e

s
s
 r

a
te

 [
%

]

node velocity [m/s]

w/o pointer exchange
w/ pointer exchange

Fig. 3. Success rate of MADPastry

Periodic re-registration of pointers by their corresponding
object holders seems to reduce the pointer disappearances from
the network. However, the pointer registration is conducted by
the same mechanism as query routing and may also fail.

We conducted simulation experiments to evaluate how the
above mentioned problems affected the search fail. We mod-
ified the source code of MADPastry that was written as a
module of ns-2 [10] and was provided by the authors [4].
Nodes moved in accordance with random waypoint model [11]
with pause time of 0 [sec] and velocity of 1.4, 2.5, and
5.0 [m/s], respectively. At the start of simulations, 250 nodes
were randomly allocated on a two-dimensional square space
whose node density was 100 [nodes/Km2]. MAC layer was
IEEE802.11 with transmission rate of 11 [Mbps] and transmis-
sion range of 250 [m]. 1000 pointers were uniformly allocated
into Pastry network. Thus, each node maintained four pointers
in average. Each node sent a query to an object randomly
chosen from them at interval of 10 [sec]. In the case that
nodes conducted pointer exchanging (w/ pointer exchange),
object holders re-registered pointers relevant to their objects
at interval of 120 [sec] to reduce the disappearances of pointers
from the network. Note that the pointer exchange was achieved
by adding pointers to leave and join messages.

Like Ref. [4], the success rate of search is defined as the
ratio of the number of queries reaching nodes whose nodeIds
are the closest to keys to the whole number of queries if
pointer exchanging is ignored (w/o pointer exchange). On the
other hand, we define the success rate as the ratio of the
number of queries reaching nodes that have the corresponding
pointers to the whole number of queries in the case of w/
pointer exchange. The simulation time was 3600 [sec] and we
show the average of the latter 2000 [sec] simulation in the
following results.

Figure 3 illustrates the success rate of both cases: w/o
pointer exchange and w/ pointer exchange. Note that the
results of w/o pointer exchange are the same as shown in
Ref. [4]. In the case of w/o pointer exchange, the success
rate shows a depreciation of 30 % at the maximum. This
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is mainly caused by query disappearances above mentioned.
On the contrary, we find that additional 3-25 % deterioration
occurs, in the case of w/ pointer exchange. This is because
some pointers vanish in the processes of cluster changes. We
also find that the periodic re-registration of pointers cannot
sufficiently suppress the deterioration of success rate. These
results indicate that it is difficult for nodes to reliably exchange
information with others in highly dynamic environments. In
the following section, we introduce a simple but effective
solution for this problem.

IV. RESILIENT METHOD FOR HIGHLY DYNAMIC
ENVIRONMENTS

In highly dynamic environments where nodes move around
quickly, it is difficult to avoid disappearances of AODV
routes that make queries and pointers lost. In other words,
reliable hop-by-hop data transfer cannot be achieved in such
situations. In this section, we alternatively propose a method
sharing pointers among nodes in the same cluster. This is an
application-level method to cope with query disappearances
inside clusters and pointer disappearances. Through simula-
tion experiments, we show the effectiveness of the proposed
method. We should note here that query disappearances among
clusters cannot be solved by this method. As future work, we
plan to modify AODV routing protocol to tackle this problem.

A. Sharing Pointers among Nodes in the Same Cluster
Each node sends its own pointers to other nodes in the same

cluster by slightly modifying the periodic beacon messages in
MADPastry. Once receiving or overhearing the beacon mes-
sage from other cluster members, the node stores the pointers.
Consequently, we can achieve sharing pointers among nodes
in the same cluster. This simple method is effective in terms
of both search efficiency and traffic overheads as follows.

• Search efficiency
Since nodes in the same cluster are physically close,
they have chances to receive or overhear queries reaching
other destinations. If they possess the pointer relevant
to the overheard or received query, they reply to the
query instead of the destination. This not only increases
the success rate but also shorten the search response.
Furthermore, multiplying pointers can reduce the pointer
disappearances.

• Traffic overheads
MADPastry originally has a beacon mechanism in which
each node periodically sends a beacon to other nodes
in the same cluster. This is essential to autonomously
form clusters in the network. The proposed method can
be accomplished by only adding pointer information to
this beacon message. The beacon size increases with the
growth of the number of objects. However, we expect that
the number of objects is not so large in realistic situations.

B. Simulation Experiments
We conducted simulation experiments to evaluate the ef-

fectiveness of the proposed method. We used the same con-
figurations described in section III. We also focused on the
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performance of broadcast because it has been pointed out that
broadcast was more effective than MADPastry in the highly
dynamic environments. In broadcast, nodes forward queries
to all of their neighbors except for cases that they have the
corresponding objects or received the queries before.

Figure 4 depicts the success rate of the proposed method,
MADPastry with pointer exchange, and broadcast. We find
that the effect of pointer sharing increases as the node velocity
becomes high. Specifically, the proposed method can achieve
up to 40% improvement compared with MADPastry. Further-
more, the overall traffic of the proposed method becomes lower
than that of MADPastry as the node velocity increases (Fig. 5).
Although the proposed method increases the beacon size, the
pointer sharing contributes to reduction of query forwarding
inside the cluster.

On the contrary, the success rate of the proposed method is
about 6 % lower than that of broadcast when the node velocity
is 5 [m/s]. However, broadcast requires at most third times as
much overall traffic as the proposed method to achieve almost
the same success rate.
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V. CONCLUSION AND FUTURE WORK

MADPastry is one of DHT substrates for MANETs and can
achieve high success rate with small overall traffic in relatively
stable environments. In this paper, we extended MADPastry
by adding a method sharing pointers among nodes in the same
cluster to adapt high node mobility. Through simulation exper-
iments, we showed that the proposed method could improve
the success rate up to 40 % compared with MADPastry while
suppressing the volume of the overall traffic.

As future work, we would like to focus on load balancing
among nodes. In MADPastry, landmark keys are uniformly
distributed in the overlay network. However, each cluster
size depends on the physical node distribution. If we can
equalize the cluster size, the fairness in terms of the number of
processing queries per node can be improved and the broadcast
traffic can be further suppressed.
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