
Using Ethereum Blockchain for Distributed
Attribute-Based Access Control

in the Internet of Things
Mirei Yutaka, Yuanyu Zhang, Masahiro Sasabe and Shoji Kasahara

Graduate School of Science and Technology, Nara Institute of Science and Technology
8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan.

Email: yutaka.mirei.yj7@is.naist.jp, {yy90zhang, m-sasabe, kasahara}@ieee.org

Abstract—Access control has been recognized as a critical issue
for preventing unauthorized access to the resources in Internet
of Things (IoT) systems. This paper proposes an Attribute-Based
Access Control (ABAC) framework for IoT systems by using the
emerging Ethereum smart contract technology. The framework
consists of one Policy Management Contract (PMC), one Subject
Attribute Management Contract (SAMC), one Object Attribute
Management Contract (OAMC) and one Access Control Contract
(ACC). The PMC, SAMC and OAMC are responsible for storing
and managing the ABAC policies, the attributes of subjects (i.e.,
entities accessing resources) and the attributes of objects (i.e.,
resources being accessed), respectively. When receiving access
requests, the ACC retrieves the subject attributes and object
attributes as well as the corresponding policy from the SAMC,
OAMC and PMC to perform the access control. Combining the
ABAC model and the blockchain technology, this framework
is expected to achieve distributed, trustworthy and fine-grained
access control for IoT systems. To show the feasibility of the
proposed framework, we construct a local private Ethereum
blockchain system to implement the four smart contracts and
also conduct experiments to test the monetary and time cost.

Index Terms—Ethereum Blockchain, Internet of Things (IoT),
Attribute-Based Access Control (ABAC)

I. INTRODUCTION

With the rapid development of the Internet technology, an
increasing number of smart devices, like personal computers,
smart phones and home appliances, are now being connected
to the Internet, forming a huge Internet of Things [1]. Although
these devices are making our life increasingly intelligent
and convenient, their vulnerability to cyber attacks puts our
property and lives in danger as well. An example of the cyber
attacks is a malware called Mirai [2], which was reported in
2016. Mirai can illegally access and control a huge number of
IoT devices to launch large-scale Distributed Denial-of-Service
(DDoS) [3] attacks to servers. Another attack by illegally
accessing and controlling a web camera was reported in [4],
which significantly threatened the privacy of the users. The
main cause of these attacks is the illegal access to IoT devices,
through which adversaries can illegally access private infor-
mation, control unit (e.g., car brake) and computer programs.
Therefore, designing effective access control schemes that can
prevent such illegal access in IoT systems has been regarded
as a crucial research issue [5].

Most current IoT access control schemes are centralized,
i.e., relying on a central server to control all the access requests
in the system [6]–[8]. Although such schemes are easy to
manage, the server itself becomes a single point of failure. This
means that once the server is compromised by adversaries or
destroyed by man-made or natural disasters, the data for access
control (e.g., access rights assigned to entities, access records)
may be falsified or lost. As a result, the access control scheme
fails to function normally. Besides, modern IoT systems are
distributed and large-scale in nature, which makes centralized
access control schemes scale poorly when applied in these
systems. To address the limitations of centralized schemes,
distributed access control schemes, which rely on multiple
nodes to control access requests in a distributed manner, have
been proposed [9], [10]. Since multiple nodes participate in the
access control process, all these nodes must maintain the same
data for access control and agree on the same results. This
usually requires distributed consensus mechanisms that are
robust to solve the disputes among the participants, especially
when malicious participants exist to deceive the others with
falsified data and results.

The blockchain technology, the key enabler of cryptocur-
rency systems like the Bitcoin [11], has been recognized as a
distributed digital ledger with robust consensus mechanisms.
A blockchain consists of a sequence of blocks chained together
and is shared by all the participants of the system. Each block
contains the cryptographic hash of the previous block and a
collection of transactions recording the remittance information
(e.g., sender, receiver and amount). The process of calculating
a valid hash value for a block is called mining and requires
a huge amount of calculations. If the transactions in a cer-
tain block are altered, the hash values of the block and its
subsequent blocks must be re-calculated. This is considered
impossible in general and thus makes the blockchain resis-
tant to tampering. Bitcoin-like blockchains store only static
transactions and thus are considered as distributed databases in
general. Recently, the Ethereum blockchain [12], which stores
not only transactions but also executable programs called
smart contracts on the blockchain, has attracted considerable
attentions. A smart contract consists of variables as its states
and functions called Application Binary Interfaces (ABIs) to
view and change the states [13]. A transaction is required to

Submitted version



run an ABI for changing the states, and all miners receiving
this transaction will execute the ABI as well to reach the same
state. Therefore, the Ethereum’s blockchain provides not only
a distributed database but also a distributed and trustworthy
computing platform.

Motivated by the appealing features of the blockchain, some
recent efforts have been devoted to the design of blockchain-
based access control schemes [14]–[20]. These schemes can
be roughly classified into Bitcoin-based and Ethereum-based.
Due to the limited storage capability of the Bitcoin blockchain,
the Bitcoin-based schemes usually use the blockchains to store
relatively simple access-related data, like the access control
lists (ACL) in [14], the policies in [15] and the tokens in
[16]. On the contrary, the Ethereum-based schemes can use
powerful smart contracts to implement more complex and
user-friendly access control. These schemes mainly employ the
ACL access control model [17], Capability-Based Access Con-
trol (CapBAC) model [18] or Attribute-Based Access Control
(ABAC) model [19], [20]. Compared with other models, the
ABAC model combines the attributes of subjects (i.e., entities
requesting resources), objects (i.e., resources being accessed),
actions (e.g., read, write, execute) and context (e.g., IP address,
time, location) to provide dynamic and fine-grained access
control, and is considered as the next-generation authorization
[21]. The authors in [19] proposed an smart contract-based
ABAC scheme. In this scheme, ABAC policies are stored
in external databases while their URLs are stored on the
blockchain. When accessing an object, subjects send the URL
of the related policy (i.e., the policy that is responsible for the
access control of the subject-object pair) to a smart contract.
The smart contract retrieves the policy from the external
databases and performs the access control. Although storing
only the URLs of the policies on the blockchain can reduce the
storage overhead of the blockchain to some extent, the policies
and attributes face the risk of being falsified, thus resulting in
untrustworthy access control. Besides, the authors provided no
implementations to verify the feasibility of the scheme.

To address the limitations of the scheme in [19], we propose
a novel smart contract-based ABAC framework. The frame-
work consists of one Policy Management Contract (PMC), one
Subject Attribute Management Contract (SAMC), one Object
Attribute Management Contract (OAMC) and one Access
Control Contract (ACC). The PMC, SAMC and OAMC are
responsible for storing and managing access control policies,
the attributes of subjects and the attributes of objects, respec-
tively. When receiving access requests from a subject, the ACC
retrieves the corresponding policy, subject attributes and object
attributes from the PMC, SAMC and OAMC respectively to
perform the access control. To demonstrate the feasibility of
the proposed framework, we construct a local private Ethereum
blockchain system and implement the four smart contracts.

The remainder of the paper is organized as follows. Section
II introduces the related work and Section III presents the
proposed framework. We demonstrate the feasibility of the
framework in Section IV by introducing the implementation
details. Finally, we conclude this paper in Section V.

II. RELATED WORK

The authors in [14] used a Bitcoin-like blockchain to
propose an IoT access control scheme based on the ACL
model in a smart home application. Each home has a local
blockchain to maintain an ACL, where each entry specifies
the allowed access rights of an internal or external subject to
an internal object. In addition, a miner is placed in the home
to receive access requests from the subjects and perform the
access control based on the ACL. However, the access control
inside each home is centralized due to the existence of the
single miner. Besides, the miner does not perform the mining
task, which makes it possible to tamper with the ACL and
thus results in untrustworthy access control. In [15], an ABAC
scheme was proposed based on the Bitcoin blockchain, where
ABAC policies are stored in Bitcoin transactions and fetched
by existing ABAC solutions to perform access control. The
policy inside a transaction can be updated by appending a new
transaction with update information to it or be deleted by sim-
ply spending the coins contained in it. A similar ABAC scheme
based on Bitcoin was proposed in [22], where, different from
[15], the policies are encrypted for privacy and security. In
[16], the authors proposed a CapBAC scheme based on the
Bitcoin blockchain, where the Bitcoin transactions are used to
store capability tokens, each of which records the assigned
access rights of a certain subject to one or more objects.
Similar to the coin transfer, capability tokens can also be
transferred from one subject to another through transactions.
When accessing an object, the subject passes its token to the
owner of the object to prove that it has the access rights.

In addition to the above Bitcoin-based access control
schemes, there also exist schemes based on Ethereum smart
contracts. For example, the authors in [17] proposed an ACL-
based access control framework using Ethereum smart con-
tracts, where one smart contract is deployed for each subject-
object pair to store the ACL and implement the related access
control. When a subject wants to access an object, it sends
a transaction including the required access information to
the corresponding smart contract. Once the smart contract is
executed, the access control results will be returned to both the
subject and object. In [18], a smart contract was deployed to
store the capability tokens of subjects as well as the capability
delegation information among the subjects. When receiving a
capability token from a subject, the owner of the object can
decide whether the subject has access rights by simply viewing
the capability information stored in the smart contract. For
dynamic and fine-grained access control, the authors in [19]
proposed an ABAC scheme, which stores the URL links of
ABAC policies on the blockchain and uses a smart contract
to receive the URLs from the subjects and then perform the
access control. However, the trustworthiness of the policies
and the attributes cannot be guaranteed by storing them in
external databases. Besides, the feasibility of the proposed
scheme is not clear due to the lack of implementations. The
authors in [20] also proposed an ABAC scheme based on
Ethereum smart contracts, but the attributes of the objects were

Submitted version



Fig. 1: The proposed ABAC framework.

not considered and only many-to-one access control could be
realized.

III. PROPOSED ABAC FRAMEWORK

A. Smart Contract System

As shown in Fig. 1, the proposed framework consists of
four Ethereum smart contracts, namely the Subject Attribute
Management Contract (SAMC), the Object Attribute Man-
agement Contract (OAMC), the Policy Management Contract
(PMC) and the Access Control Contract (ACC). The SAMC,
OAMC and PMC are responsible for storing and managing
(e.g., updating, adding, deleting) the subject attributes, object
attributes and policies, respectively. The ACC is responsible
for the access control in the IoT system. Each smart contract
is introduced as follows.

1) Subject Attribute Management Contract (SAMC): The
SAMC is deployed on the blockchain to store and manage
the attributes of the subjects in the IoT system. Only admin-
istrators of the subjects have the permissions to execute this
smart contract. For example, if the subjects are citizens, the
administrators can be the city office. If the subjects are IoT
devices, the administrators can be the owners. Each subject
has a unique identifier (i.e., ID) to represent itself in the
system. This paper uses Ethereum account addresses (e.g.,
the 0x3d03... in Table I) as such ID information. In addition,
each subject has multiple attributes associated with its ID. As
illustrated in Table I, this paper considers the Organization
(e.g., Nara Institute of Science and Technology, NAIST)
and Department (e.g., Information Science, IS) to which the
subject belongs as well as the Role (e.g., student, staff) of the
subject as examples of the attributes. The SAMC also provides
the ABIs of subjectAdd(), subjectDelete() to add/update and
delete the attributes of subjects, respectively.

2) Object Attribute Management Contract (OAMC): Sim-
ilar to the SAMC, the OAMC is executed by the object
administrators to store and manage the attributes of the ob-
jects. Each object has multiple attributes, which are uniquely

TABLE I: Examples of subject and object attributes

SubjectList[0x3d03...] ObjectList[0x272a...]
Name “Alice” Name “Camera”
Organization “NAIST” Organization “NAIST”
Department “IS” Department “IS”
Laboratory “LSM” Laboratory “LSM”
Role “student” Place “Room1”
Others “” Others “”

associated with its ID, i.e., its Ethereum account addresses
(e.g., the 0x272a... in Table I). Table I shows some examples
of the object attributes considered in this paper, including
the Organization (e.g., NAIST) and Department (e.g., IS) to
which the object belongs as well as the Place (e.g., Room1,
Room2) where the object is placed. In addition to the attribute
list, the OAMC also provides the ABIs of objectAdd() and
objectDelete() to add/update and delete the attributes of the
objects, respectively.

3) Policy Management Contract (PMC): The PMC is used
to store and manage the ABAC policies defined in this paper
and can only be executed by the policy administrators (e.g,
the object owners). A policy is a statement that combines a
set SA of subject attributes, a set OA of object attributes
and a set A of actions to state that subjects with attributes
in the SA can perform the actions in A on objects with
attributes in the OA. Table II shows an example of the ABAC
policy defined in this paper with SA = {Organization :
NAIST,Department : IS, Laboratory : LSM}, OA =
{Organization : NAIST,Department : IS, Laboratory :
LSM} and A = {Read,Write}. The policy states that any
student belonging to the LSM laboratory of the IS department
of the NAIST organization can read and write any object
at any place of the same laboratory of the same depart-
ment and organization. The PMC uses a list structure to
store the policies and also provides the ABIs of policyAdd(),
policyDelete(), policyUpdate() to add, delete and update the
policies respectively. In addition, the PMC provides the ABIs
of findExactMatchPolicy() and findMatchPolicy() for searching
policies. These two types of policy search will be introduced
in Section III-B2 in greater details.

TABLE II: Example of an ABAC policy.

Subject Attributes Object Attributes Action
Name:“” Name:“” Read:True
Organization:“NAIST” Organization: “NAIST” Write: True
Department:“IS” Department: “IS” Execute: False
Laboratory:“LSM” Laboratory: “LSM”
Role: “Student’ Place:“”

4) Access Control Contract (ACC): The ACC acts like the
“brain” of the access control system to control the access
requests from the subjects to the objects in the IoT system. The
ACC can be executed by the subjects by sending transactions
containing the required request information. When the ACC
receives access requests from a subject, it will retrieve the
attributes of the subject and object as well as the corresponding
policy from the SAMC, the OAMC and PMC, respectively.

Submitted version



Using the attributes and policy, the ACC verifies the access
right of the subject, determines the access results and returns
the results to both the subject and object. A more detailed
access control flow is described in Section III-B4.

B. Main Functions of the Framework

The proposed ABAC framework provides the following
main functions.

1) Adding, Updating and Delete Attributes: As mentioned
in Section III-A, the proposed framework provides the sub-
ject/object administrators with functions of managing the
attribute information of their subjects/objects. For example,
when adding/updating the attributes of a subject, the subject
administrator can send the ID of the subject and the attributes
to add/update via a transaction to the subjectAdd() ABI of the
SAMC. The ABI will create a new entry in the subject list
if no existing entry associated with the subject ID is found.
Otherwise, the ABI will update the subject’s attributes with the
new ones. Similarly, to delete some attributes of a subject, the
administrator sends to the subjectDelete() ABI the subject’s
ID and attributes to delete.

2) Searching Policies: Since the policies are stored in the
structure of a list (i.e., array) in the PMC, policy search
is required when deleting, updating and retrieving a certain
policy. The framework provides two types of policy search,
i.e., search by complete match and search by partial match,
which are implemented by the ABIs findExactMatchPolicy()
and findMatchPolicy(), respectively.

• Search by Complete Match: Search by complete match
searches for the policy whose subject and object attributes
match completely with the subject and object attributes
provided by the caller. For example, when searching for
the policy illustrated in Table II through the search by
complete match, the caller needs to provide exactly the
same attribute information as listed in Table II. This
search is mainly used for deleting a policy.

• Search by Partial Match: Different from search by com-
plete match, search by partial match returns all the
policies whose subject and object attributes are contained
by those provided by the caller. This means that the sets
of attributes in the returned policies are subsets of those
provided by the caller. Consider a case where the caller
calls the search by partial match with a subject attribute
set SA and an object attribute set OA. In this case,
the search will return any policy with SA′ ⊆ SA and
OA′ ⊆ OA. This is because that any returned policy
can handle the access request associated with the SA
and OA. The search by partial match is mainly used
for adding/updating policies and retrieving policies by
the ACC. A list of indices of matched policies will be
returned after the search.

3) Adding, Updating and Deleting Policies: Policy admin-
istrators can define policies by combining the attribute infor-
mation of subjects, objects and actions. The more attributes
a policy contains, the more fine-grained and flexible the
access control it can achieve. To add a new policy, the policy

Fig. 2: Access control process.

administrator first needs to execute the findMatchPolicy() to
search similar policies using the policy search by partial match.
After receiving the similar policies from the findMatchPolicy()
ABI, the administrator needs to make sure that no conflicts
exist between the similar policies and the new policy to add.
If conflicts exist, the administrator must resolve them. When
all conflicts are resolved, the administrator then executes the
policyAdd() ABI of the PMC to add the new policy to the
policy list. Similarly, when updating a policy, the administrator
also needs to execute the findMatchPolicy() to find the policy
to update (i.e., the target policy) and other similar policies.
After resolving conflicts (if any) between the similar policies
and the new policy used for update, the administrator then
executes the policyUpdate() ABI to update the target policy
with the new one. Note that there are cases where there is no
need to add new policies or update an policy, because other
existing policies may cover the new ones. This can reduce
the monetary cost and the storage overhead of the scheme.
To delete a policy, the policy administrator first executes the
policy search by complete match to find the index of the target
policy. If the policy is found, the administrator then passes
the index to the policyDelete() ABI, which then removes the
policy from the policy list.

4) Access Control: The core function provided by the
framework is the access control. The process of the access
control is illustrated in Fig. 2, which shows the case where a
student Alice belonging to the IS department of the NAIST
wants to access a camera located in Room 1 of the IS
department of the NAIST. The detailed steps of the process
are introduced as follows.

• Step 1: The subject Alice sends an access request trans-
action containing her ID, the ID of the object camera and
the actions to perform to the ACC.

• Step 2: The ACC sends a message containing the IDs
of the subject and object to the SAMC and OAMC to
retrieve their attribute information.

• Step 3: The SAMC and OAMC return the attributes of

Submitted version



Fig. 3: Access result (Action: Read)

Fig. 4: Access result (Action: Execute)

the subject and object to the ACC respectively.
• Step 4: The ACC sends a message containing the at-

tributes of the subject and object to the PMC to query
the related policies.

• Step 5: The PMC searches the related policies using the
policy search by partial match, and returns the found
policies to the ACC.

• Step 6: Based on the received policies, the ACC deter-
mines if the subject has rights to perform actions on the
object.

• Step 7: The ACC returns the access results to both the
subject and object.

Using the smart contract system, the access control becomes
a distributed application, which is executed by the majority of
the system nodes. In addition, the access history and results are
also stored on the blockchain. Thus, even if some of the nodes
are destroyed by disasters or compromised by adversaries, the
access control framework can still work reliably. This achieves
distributed and trustworthy access control for the IoT.

IV. IMPLEMENTATION

We constructed a private Ethereum blockchain network
with three nodes on a computer server (Intel Xeon CPU
E5-1620 3.60 GHz, 32 GB memory). We implemented the
proposed framework on this private blockchain and conducted
experiments to demonstrate the feasibility of the proposed
framework. Specifically, we installed the geth client [23] on
the server and used it to set up three Ethereum nodes to
form the private blockchain network, as shown in Fig. 5.
One of the three nodes serves as the miner of the blockchain
network and the other two play the role of the subject and
object, respectively. We also used the Remix [24], a browser-
based integrated development environment (IDE), to edit and
compile the smart contracts. The Remix IDE can be configured
to connect to any of the nodes via an Remote Procedure
Call (RPC) connection, so it can also be used to deploy the
smart contracts for any node. To interact with the nodes, we
also installed the web3.js package [25] and used it to create
javaScript programs for sending transactions and viewing the
access result at both the subject and object sides.

Fig. 5: Software used in the proposed framework.

A. Feasibility Validation

We considered that the subject and object have attributes as
shown in Table I. We used the policy in Table II to control
the access request from the subject to the object. From Tables
I and II, we can see that the subject only has rights of read
and write on the object. Fig. 3 and Fig. 4 depict the results
when the subject sent a read request and an execute request,
respectively. Both figures show the information of the address
of the ACC, the transaction hash sent by the subject, the block
hash where the access request transaction is stored, the address
(i.e., ID) of the subject and the access results. The results in
these two figures demonstrate the feasibility of the proposed
ABAC framework.

B. Cost Evaluation

The users need to pay some money to deploy smart contracts
on the blockchain and execute the ABIs of these contracts.
Ethereum uses a unit called gas to measure the amount of
operations needed to perform a task, e.g., deploying a smart
contract or executing an ABI. In general, the more complex
a task is, the more gas it consumes. Gas has price that varies
with time. Thus, the money needed to pay for performing a
task is the product of the amount of consumed gas and the
gas price. Table III lists the money paid for some operations,
like adding a policy/subject/object, deploying the ACC and
executing the ACC. The money is calculated in US dollars
(USD) based on the exchange rate between USD and Gas as
of 2019/04/11 [26].

In the proposed scheme, the amount of gas required for one
access control is 264, 635, which is about 0.141 USDs. We
can see from the table that the proposed ABAC framework
consumes more gas than the scheme in [17], but the monetary

Submitted version



TABLE III: Monetary cost for some operations

Scheme in [17] Propose Scheme
Gas USD $ Gas USD $

Adding a policy 128,777 0.068 363,964 0.193
Adding subject attributes - - 152,863 0.081
Adding object attributes - - 155.246 0.082
Deploying the ACC 1,706,290 0.906 1,301,972 0.691
Access control 75,771 0.04 264,635 0.141
Total 1,910,838 1.015 2,238,680 1.189

gap in USD between these two schemes is small. In [17], one
ACC is deployed for only one subject-object pair (i.e., one-to-
one access control), the monetary cost will increase linearly
as the number of subject-object pairs of the system increases.
However, the proposed framework achieves many-to-many
access control between the subjects and objects, and thus does
not needs to deploy new ACC when the the number of subject-
object pairs increases. This will consume less money than the
scheme in [17].

The average time for access control is about 10 seconds
in the scheme of [17] and about 36 seconds in the proposed
scheme. This gap is due to the relatively complex interactions
between the ACC and other smart contracts for retrieving
attributes and policies. Note that the execution time of the
ABI varies depending on various factors such as the system’s
computing power, network architecture, timing of mining, etc.,
so the execution time may differ within the public Ethereum
network.

V. CONCLUSION

This paper proposed an Attribute-Based Access Control
(ABAC) framework for the IoT by using Ethereum smart
contracts to manage ABAC policies, attributes of subjects and
objects and perform access control. A local private Ethereum
blockchain network was constructed to implement the pro-
posed framework and evaluate its feasibility and cost in terms
of money and time. The results showed that the framework
is feasible to achieve distributed and fine-grained IoT access
control but at some cost of money and time.

ACKNOWLEDGMENTS

This work was supported in part by the JSPS KAKENHI (A)
under Grant 19H01103, the JSPS KAKENHI (C) under Grant
19KT0045, the Telecommunications Advancement Founda-
tion, the Support Center for Advanced Telecommunications
Technology Research Foundation and the Nara Institute of
Science and Technology (NAIST) Big Data Project.

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things
(IoT): A vision, architectural elements, and future directions,” Future
Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[2] “Mirai botnet linked to dyn DNS DDoS attacks,” avail-
able at https://www.flashpoint-intel.com/blog/cybercrime/
mirai-botnet-linked-dyn-dns-ddos-attacks/.

[3] N. Long and R. Thomas, “Trends in denial of service attack technology,”
CERT Coordination Center, 2001.

[4] “Breached webcam and baby monitor site flagged by watchdogs,”
available at https://www.bbc.com/news/technology-30121159.

[5] A. Ouaddah, H. Mousannif, A. A. Elkalam, and A. A. Ouahman, “Access
control in the Internet of Things: Big challenges and new opportunities,”
Computer Networks, vol. 112, pp. 237–262, 2017.

[6] A. Yavari, A. S. Panah, D. Georgakopoulos, P. P. Jayaraman, and
R. v. Schyndel, “Scalable role-based data disclosure control for the
Internet of things,” in Proc. of 2017 IEEE 37th International Conference
on Distributed Computing Systems, 2017, pp. 2226–2233.

[7] Q. Liu, H. Zhang, J. Wan, and X. Chen, “An access control model for
resource sharing based on the role-based access control intended for
multi-domain manufacturing Internet of things,” IEEE Access, vol. 5,
no. 2, pp. 7001–7011, 2017.

[8] E. Yuan and J. Tong, “Attributed based access control (ABAC) for Web
services,” in Proc. of IEEE International Conference on Web Services,
2005, pp. 561–569.

[9] J. L. Hernandez-Ramos, A. J. Jara, L. Marin, and A. F. Skarmeta,
“Distributed Capability-based Access Control for the Internet of Things,”
Journal of Internet Services and Information Security, vol. 3, no. 3/4,
pp. 1–16, 2013.

[10] S. Sciancalepore, G. Piro, D. Caldarola, G. Boggia, and G. Bianchi, “On
the design of a decentralized and multi-authority access control scheme
in federated and cloud-assisted cyber-physical systems,” IEEE Internet
of Things Journal, vol. 5, no. 6, pp. 5190–5204, 2018.

[11] “Bitcoin - open source p2p money,” available at https://bitcoin.org/en/.
[12] “An introduction to Ethereum patform,” available at http://ethdocs.org/

en/latest/introduction/what-is-ethereum.html.
[13] “A next-generation smart contract and decentralized application

platform,” available at https://cryptorating.eu/whitepapers/Ethereum/
Ethereum white paper.pdf.

[14] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, “Blockchain for
IoT security and privacy: The case study of a smart home,” in Proc. of
IEEE PerCom Workshops, 2017, pp. 618–623.

[15] D. F. Maesa, P. Mori, and L. Ricci, “Blockchain based access control,”
in Proc. of IFIP International Conference on Distributed Applications
and Interoperable Systems, 2017, pp. 206–220.

[16] A. Ouaddah, A. A. Elkalam, and A. A. Ouahman, “Fairaccess: A new
blockchain-based access control framework for the Internet of things,”
Security and Communication Networks, vol. 9, no. 18, pp. 5943–5964,
2016.

[17] Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan, “Smart contract-
based access control for the Internet of things,” to appear in IEEE
Internet of Things Journal.

[18] R. Xu, Y. Chen, E. Blasch, and G. Chen, “BlendCAC: A smart contract
enabled decentralized capability-based access control mechanism for the
IoT,” Computers, vol. 7, no. 3, pp. 39–65, 2018.

[19] C. Dukkipati, Y. Zhang, and L.C.Cheng, “Decentralized, Blockchain
based access control framework for the heterogeneous Internet of
things,” in Proc. of 3rd Workshop on Attribute Based Access Control,
2018, pp. 61–69.

[20] G. Hao, E. Meamari, and C.-C. Shen, “Multi-authority attribute-based
access control with smart contract,” in Proc. of 2019 International
Conference on Blockchain Technology, 2019, pp. 6–11.

[21] V. C. Hu, D. R. Kuhn, and D. F. Ferraiolo, “Attribute-based access
control,” Computer, vol. 48, no. 2, pp. 85–88, 2015.

[22] Y. Zhu, Y. Qin, G. Gan, S. Yang, and W. C.-C. Chu, “TBAC:
Transaction-based access control on blockchain for resource sharing with
cryptographically decentralized authorization,” in Proc. of 2018 42nd
IEEE International Conference on Computer Software & Applications,
2018, pp. 535–544.

[23] “Geth client for building private blockchain networks.” available at https:
//github.com/ethereum/go-ethereum/wiki/geth.

[24] “Remix ide for ethereum smart contract programming.” available at
https://remix.ethereum.org/.

[25] “Web3 javascript api to interact with ethereum nodes.” available at https:
//github.com/ethereum/wiki/wiki/JavaScript-API.

[26] “ETH Gas Station,” available at https://ethgasstation.info/index.php.

Submitted version


