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Abstruct

There has been many results on equivalence problems of geometric structures along with the method
of E. Cartan, which consists of several processes of prolongations to higher order jet space, absorptions of
torsion, extracting curvatures, and so on. In a series of joint works with Prof. H. Sato, we introduced sys-
tems of linear PDFEs in connection with certain geometric structures, such that the integrability condition

of the system is equal to the vanishing of curvatures and its solutions give the equivalence maps.

In this talk, T will discuss on pseudo-Hermitian structure (roughly speaking, a contact form together
with an integrable complex structure J along the contact distribution), and give a system of linear PDEs

that solves the equivalence problem for pseudo-Hermitian structure in dimension three.



Contact structure on Heisenberg group

H=Co®R>(z1t); (2t) (w,s) = (z+w,t+ s — 23(zw))

is the Heisenberg group. Using notation C®R = R? 3 (z,t) = (z,y,t), define right invariant vector fields

R R RS U R
V=90 Yo T 28y o BT o
and 1-forms
ap =2dx, s =2dy, o5=dt+2(xdy—ydr)=dt+—1(zdz — zdz)
are called Heisenberg frame and Heisenberg coframe, which satisfy

[va,v1) = w3, [vs,v1] = [v3,v2] =0,

das = a1 Aag, doay = dag = 0.

Fix a contact form ¢”c;, and denote by D the contact distribution, which is spaned by v; and wvs;
D = {v1, va}.
The Reeb vector field of the contact form ¢”c3) is
T, = e Tva(n)vr — e v (n)ve + e Mvs.

and satisfying ¢’as(T;) =1 and Ly, (¢"a5) = 0.

CR structure based on D

A CR structure on (H, D) is a decomposition
C®D =D, @®Do,)-
For any complex valued functions f and g on H, the line fields
D(1,0) = C(fv1 + gv2) and D(g,1y = C(fv1 + gua)
defines a CR structure if and only if the imaginary part of o = ¢g/f does not vanish;

S(0) =g/ f) # 0.

Let Z = V1 + 0.

{CR structures on (H,D)} +— {o:H —C; (o) #0}
w w

CzZ,eCZ —



Integrability condition is automatic, since H is 3-dimensional.

Given a CR structure Z,, a unique linear complex structure J, of each D, whose complexification
has the same eigenspace decomposition CZ, @ CZ,.

Zy +— o +— J,

Equivalence of pseudo-Hermitian structure

Definition. A on U is a combination
a contact form : e"ag
= (U,o,m).
a CR structure : Z, = v + ovs

A diffeomorphism ® : U; — Uy between two pseudo-Hermitian manifolds (U;, 04, 1m;) (i = 1,2) is an

equivalence map if and only if it satisfies

(1) @, : TU; — TUs commutes with J,,, and (2) ®*(e™a3) =eMag

which is necessarily a contact map.

Regard (V,o0 = —v/—1,7 = 0) as a standard model (V C H).

PROBLEM

Under what conditions does there exist an equivalence map
o:(U,o,n) — (V,—V/—1,0)

for some V' C H? If this is the case, how can one find ® ?

Main Theorem

Let (U, 0,n) be a pseudo-Hermitian structure.

0= Za(f)
0= ZUQ(f) - (U2(‘7) + QZG(U))ZU(JC)



The maximal dimension of the solution space of (F) is 3; an initial condition

(f(p), Zo(f)(P), Zo Z5(f)(p)) € C°.

Theorem 1. (F) is integrable <= 7=r=0

Theorem 2.  Suppose (U,o0,n) satisfies 7 = k = 0. Then for an basis {f1, fa2, f3} with
f1 =1/2 of the solution space of (F),

D= (fo, =(f3)) : (U,0,m) — (H,—/—1,0)

is an equivalence map, where § is the imaginary part.

O Hermitian product on the solution space of (F)

:9) oy = —V=1(fTy(9) = T,(f)g) + 1" Zo(f) Z5()

where h is the coefficient of the Levi form with respect to {Z,, Zs };

hi=1(Z,,Z,) = —/—1d(e"3)(Zs, Zs) = \/—1(0 — &)e".

© p-H torsion 7 and T-W curvature « of (U,0,7)

7= 22 (na(ma(8) — i ()a() — (0a(n) + 502(n))’

g —0

+ o101 (1) + 52vaw(n) + v3(5) + av4(n))
Kk = —2(5 va(0) — 0v2(5))2/ (0 — 7)?
+ (4 (0v2(3) — 5 va(0)) v1(1) + 4 (02 v2(5) — 52 va(0)) V()
—v1(F)va(0) + v1(0)v2(F) — vivi (0 — T)
+ 02 0309(5) — 72 vaa(0) — Fua(0) + 01}4(6)) / (0 —3)
- (2 (0101 + 0Gva02) (1) + (0 + 5) va (1)

+ 1}1(77)2 + a&vg(n)2 + (o +3)v1(n) va(n) + v1(c +7) vg(n))

where vg = v1V9 + VoU1.



Standard model

Real hypersurfaces. For a real hypersurface M in the 2-dimensional complex space (C? or CP?),

the intersection
Dy =T,MN~-1T,M

is always 2-dimensional, which gives a contact structure on M.

D, is closed under the multiplication J := x+/—1, and J defines a CR structure on M.

(HaU:—\/jl,U:O)

Our model

(z,t) =  (z|zP=—V-1t) € {R(w) = |2*} C  ClL.
~ I )
Ps o Loz 22—v=1t] € {2m+zmi=|ul?} c C

H >
P2

[20,21,22]

e'ag = ag = dt + v/—1(zdz — zdz) is the standard contact form on H.
The map ¢ : H — CP? consists of functions %, z, 2Z — y/—1t, which form an orthnormal basis of

the solution space of equation

= (v1 +V—1v2)(f)
= (v1—v~=1v2)*(f)

Remark. If n = 0(i.e. a3 were chosen as the contact form), then the Reeb field is T~ = vs.

If o = —v—1, then J_ ,— maps v; and vz to

J_\/_T(m) =wvy and J_\/_—l(UQ) = —u.

Remark.

Introduce a Hermitian structure ( , )

(f,9)s
=Z 7 =) -9+ f-Z2 =72 ;=0 -2 =) Z_ =)

Then the 3 functions fy = %, f1 =2z, fo =2z —/—1t satisty

0 0 1
<<fl,fj>5) = 0 -1 0 <~ 2022 + 2220 — |Z1|2 =0
N 1 0 0

Remark. A 4-dimensional Lie group acts on CP? preserving (S, ¢.(a3)) invariant.



Idea to solve the problem

(H,—/—1,0) 2% CP?
1 e
(U, a,m)

On the standard model (H, —+v/—1,0), we have

0=2_,/=(f)
(F.) { 0:(Z_\/_1f1)2(f) and  (, )son Sol(Fy)

(s=(0=-v-1,n=0)

Imagine we have a contact diffeomorphism ® : U — H, and pull back the standard CR structure

and the standard contact form;
e Z, = e*(vy + ovg) == (Z_ j=1), €'az = 0" (az)

getting &, o, 7).



Key Lemma

Lemma. Let ¢ be a contact diffeomorphism. Put p(asz) = e"as, and ¢*(Zs) = €5 Z,. Then it holds that

Zs(&) = =2Z,(n) —v2(0) and Z,(€) = Z,(n) — M_

Proof. Let e"as = ¢*(as) be the pullback of the contact form «3. The vector fields v and
e Ma(n)vy — e "vi(n)ve + e Tug

are the Reeb vector fields with respect to the contact forms a3 and e"as, respectively. Therefore, one

obtains
e Mg (n)vr — e v (n)ve + e vz = " (v3). (1)
Since ¢*(Zs) = €*Z,, one has
" ([Zs, Zs]) = [ Zo, ¢ Z5]). (2)
An easy calculation shows that
[Zs, Zs] = =2/ —1v3 (3)
and
62,657, = e+ (Z,(8) = Z,(6)) m (4)

By (??), (?7), (??) and (?7?), we get

—2V/=Te () = e (Z,(6) - Z,(9)) (5)
2V=Te () = e (62,(€) — 0Zo(€) + (Zo(0) — Zs(0))) (6)
—2v/—1e™" = €&F(0—5). (7)
By (??) and (??), we get
2V =1e " Z,(n) = ¥ (6 = 0)Zo(8) + (Z5(6) = Zo(0)))
and thus by (??) we obtain
2@ = 2,() - 217 = 2o0) ®)
Derivating (??) by Z,, we obtain
2V =Te " Z,(n) = e+ (0 = 8) Zo(§ + €) + Z,(0 — 7)) ,
and thus by (??) we obtain
~Zy(n) = 2,(6) + Z,(6) - Z2 =2 )
From (??) and (??), it follows q.e.d.



The frame {Z,, Z,,T} satisfies

where ¢ = —7 holds.

Suppose 7 = k = 0. Then we have
[Z(n T] = pZ<77

and for a solution f of (F{,,;)) we have equalities

ZO'ZO'(f) = chf(f) + \/jlhT(f),
ZoT(f) = ZoT(f) = TZs(f) + pZo(f) =T*(f) =0

The torsion and the curvature are

L (100) - 0 2o ale ) ~ Zalunle ™))

k= —24(8) + Zs(m) +m(s —m) — /—1hp.
where s = va(0) + 2Z,(n).

T =

How to prove the integrability of (F)

Lemma. Suppose (U,o0,n) is a pseudo-Hermitian structure with 7 = k = 0. Let A, B, and C be matrices
defined by

010 0 0 0 0 0
A=10 s 0|, B=|1 0 m +-1nh |, C=] 0 —-p 0 [,
0 0 0 0 0 0 0 O

0
(s = 2Z4(n) +v2(0)) and let f denote the column vector (f Z(f) T(f))t. Then the system of equations
(F) is equivalent to the following system of equations:

Zs(f) = Af, Z.(f)=Bf, T(f)=Cf

Vector fields: )
[vs, ;] = Z’yfjvk.
k=1
System of linear PDE:
vi(f)=Sif fori=1,---,n,

Zero curvature condition:

’U,(Sj) — ’U](S7) + [SJ,S7] = nyjsk foralli,j=1,---,n.

k=1



Transformation of the fundamental equation

Our fundamental equation (F) is

{ ) = (va(0) + 225 (1)) Z5 (f)

Below, we use the notation o; to mean v;(c). Reminding Z, = v1 + ovs, and derivating the first equation

(F)

Zs(f)
Z,*(f

by v; and v, we get

v ?(f) + aviva(f) = —a109(f)
vau1 (f) + ov2?(f) = —F2v2(f)

v (f) + o(viva(f) + vavi(f)) + 0*0a®(f) = Avi(f) + Bua(f)
v1va(f) — vavi(f) = —v3(f),

where A = g9 + 2(n1 + 01)2), and B = —01 + 20(n1 + on2). Therefore we get

viv(F) =Y Thon(f) +gios(f) (1,5 =1,2),

where
oo o o 1
gi11 = — —, Ji2 = —, 921 = —, J22 = — —
oc—0 o—0 oc—0 o—0
and
ry 1% 52A 5°B —o(0 —26)51 + 0255,
r, I, | 1 —GA —B — 661 — 0263
ry 13, | (0—-0)2| 54 —6B — 56, — 0259
F%Q F%Q A B+6’1-(5’—20’)52

(A=o09+42(m +om2), B=—01 +20(m +012))
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