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1. Bonnet and Euclidean Surface Theory

Let M2 be oriented and (u, v) : U → R2 oriented local coords.
Let x : M2 → E3 be an immersion. The first fundamental form is

Ix = dx · dx.

It does not determine x up to Euclidean motion. A first-order equivariant
map ux : M2 → S2 is the Gauss map

ux =
xu × xv

|xu × xv|
,

which allows one to define the second fundamental form

IIx = −dx · dux.

Bonnet Uniqueness: The pair (Ix, IIx) determine x : M2 → E3 up to
Euclidean motion.
Too much information? x is locally 3 functions of 2 variables, but (Ix, IIx)
is locally 6 functions of 2 variables.



Compatibility: For balance, there should be 3 relations, and there are:
detIx

(
IIx

)
= K(Ix) (Gauss, 1 equation)

δIx

(
IIx

)
= 0 (Codazzi, 2 equations).

where δI : C∞(
S2(T ∗)

)
→ C∞(

T ∗) is a first order linear operator, defined
for any I > 0.

Bonnet Existence: If M2 is 1-connected and I > 0 and II are quadratic
forms on M that satisfy

detI

(
II

)
= K(I) and δI

(
II

)
= 0,

then there exists an immersion x : M → E3 such that (I, II) = (Ix, IIx).

Bonnet’s Questions:
1. Do we need all of (Ix, IIx) to specify x? For example, would it be

enough to know Ix and the mean curvature Hx = 1
2 trIx

(
IIx

)
?

2. What are the compatibility conditions for (I, H) in order that there
exist x such that (I, H) = (Ix, Hx)?



Assume ‘no umbilics’: H2 − K(I) = r2 > 0. Fix a local I-orthonormal
coframing (ω1, ω2) and seek a function θ such that

I = ω1
2 + ω2

2

II = (H+r cos θ)ω1
2 + 2r sin θ ω1ω2 + (H−r cos θ)ω2

2.

This solves the Gauss equation. The Codazzi equations take the form

0 = δI (II) = r (dθ − α0 − cos θ α1 − sin θ α2)

where the 1-forms αi are computed from (ω1, ω2, H) and their derivatives.
Thus, Bonnet investigated the overdetermined system for θ

dθ = α0 + cos θ α1 + sin θ α2 .

He asked ‘When is this formally integrable?’
Taking the exterior derivative of both sides and using the equation itself,

one obtains
0 = (A0 + A1 cos θ + A2 sin θ)ω1 ∧ω2

where the functions Ai are computed from (ω1, ω2, H) and their derivatives.
Formal integrability is then equivalent to A0 ≡ A1 ≡ A2 ≡ 0.



Bonnet’s Theorem: If (I, H) satisfies A0 ≡ A1 ≡ A2 ≡ 0, then either
• H is constant and I is the first fundamental form of a surface in E3

with constant mean curvature H (Associated Surfaces), or
• Up to diffeomorphism, (I, H) belongs to a 3-parameter family of

data with dH %= 0. (The surfaces of Bonnet)

There are many works on the surfaces of Bonnet (including important work
by É. Cartan). They were eventually shown to be expressible in terms of
ϑ-functions and Painlevé equations by Bobenko and Eitner.

Bonnet mates: If A1
2 + A2

2 > A0
2, there are two solutions θ1 and θ2

to 0 = A0 + A1 cos θ + A2 sin θ, and, hence, at most two realizations x1

and x2 of the data (I, H). These are called Bonnet mates, when they exist.

É. Cartan’s Theorem: The family of surfaces x(M) ⊂ E3 that possess
Bonnet mates depends on 4 functions of 1 variable.

Can be interpreted in terms of pseudo-holomorphic curves and Lax pairs....



2. Unimodular Affine Surface Theory

A3 is (unimodular) affine 3-space, acted on by translations and volume-
preserving linear transformations.

Given an immersion x : M2 → A3, define a second-order invariant (using
local coordinates) by

Bx = det
(
xu xv xuu du2 + 2xuv dudv + xvv dv2

)
⊗ (du ∧dv).

Bx is a section of the bundle S2(T ∗) ⊗ Λ2(T ∗).

Say that x is locally strictly convex if Bx is definite. In this case (assumed
henceforth), M has a unique metric Ix and orientation ∗x so that

Bx = Ix ⊗ ∗x1 =
(
ω1

2 + ω2
2
)
⊗ ω1 ∧ω2 .

Ix is the Blaschke metric associated to x; it is second-order in x, and does
NOT determine x up to unimodular affine equivalence (u.a.e.).



The affine normal: Writing dx = e1 ω1 + e2 ω2 and det(e1 e2 e3) ≡ 1 only
determines e3 up to addition of multiples of e1 and e2.

Proposition: There is a unique nx : M → A3 such that det(e1 e2 nx) ≡ 1
and so that dnx ≡ 0 mod e1, e2. This nx is third-order in x.

The affine form IIx: Writing dnx = e1 π1 + e2 π2 and setting

IIx = − π1 ◦ ω1 − π2 ◦ ω2

gives a well-defined quadratic form that is fourth-order in x.

Surprise(?): The affine data (Ix, IIx) does not determine x up to u.a.e.

Missing third order information: One finds that

∇Ix(dx) = e1 ⊗ Q1 + e2 ⊗ Q2 + nx ⊗ Ix

and that Cx = Q1 ◦ ω1 + Q2 ◦ ω2 is a well-defined cubic form on M and is
a third-order invariant of x.



Radon Uniqueness: The pair (Ix, Cx) determine x up to u.a.e.

Too much information? A section of S2(T ∗) ⊕ S3(T ∗) defines 3+4 = 7
functions of two variables, but x consists of 3 functions of two variables.

Compatibility Two sets of conditions are found to hold on the data:

trIx(Cx) = 0 (apolarity)

i.e., Cx is a section of a rank 2 subbundle S3
0(T ∗, Ix) ⊂ S3(T ∗) defined

by Ix. In addition,
DIx(Cx) = 0 (Radon)

where DI : C∞ (
S3

0(T ∗, I)
)
→ C∞(T ∗) is a nonlinear, second-order elliptic

operator (that depends on a metric I and choice of orientation).

Radon Existence: If M2 is 1-connected, oriented, and I > 0 and C are a
quadratic and cubic form on M that satisfy

trI

(
C) = 0 and DI (C) = 0,

then there exists an immersion x : M → A3 such that (I, C) = (Ix, Cx).



Will less information do? Since Hx = trIx

(
IIx

)
= K(Ix)−2

∣∣Cx

∣∣2
Ix

, the data

(Ix, Hx) is equivalent to the data Ix and 2
∣∣Cx

∣∣2
Ix

(aka the Pick invariant).

The affine Bonnet Problem: Determine when, and in how many ways (I, H)
can be realized as (Ix, Hx) for some x : M → A3.
Assume ‘no umbiilics’: Write K(I) − H = 2r2 > 0. Then, fixing an I-
orthonormal, oriented coframe (ω1, ω2), seek a function θ such that

I = ω1
2 + ω2

2

C = r cos θ
(
ω1

3 − 3 ω1ω2
2
)
− r sin θ

(
ω2

3 − 3 ω2ω1
2
)
.

will satisfy Radon’s condition DI(C) = 0, which is then two second-order
equations for θ.
In local coordinates with I = F |dz|2, Radon’s condition takes the form

θzz = E(θ, θz)

for an expression E that depends on I and H . If it were formally integrable,
one could specify (θ, θz , θzz̄) at a point of M and have a unique (local)
solution.



Theorem 1: (B—,2009) The equation DI (C) = 0 is never formally inte-
grable for any pair (I, H).

Theorem 2: (B—,2009) There exist data (I, H) such that the equa-
tion DI(C) = 0 has a 3-parameter family of solutions. These data depend
on 2 arbitrary functions of 1 variable, and the integration of the correspond-
ing system DI(C) = 0 can be linearized as an integrable system.

Application: The surfaces with K and H constant, studied by Vrancken
and Dillen, et al, can now be explicitly constructed.

Theorem 3: (B—,2009) The surfaces x(M) ⊂ A3 that have at least one
affine Bonnet mate depend on 7 arbitrary functions of 1 variable.

Remark: There do exist surfaces x(M) ⊂ A3 that have exactly a 1-parameter
family of affine Bonnet mates. I do not know how many such families there
are or whether an exactly 2-parameter family of affine Bonnet mates is
possible.


