THE AFFINE BONNET PROBLEM

ROBERT L. BRYANT
MATHEMATICAL SCIENCES RESEARCH INSTITUTE

JANUARY 24, 2011 — RIMS

il



1. Bonnet and Euclidean Surface Theory

Let M? be oriented and (u,v) : U — R? oriented local coords.
Let x : M? — E2 be an immersion. The first fundamental form is
I, = dx-dx.
It does not determine x up to Euclidean motion. A first-order equivariant
map uy : M? — S? is the Gauss map
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which allows one to define the second fundamental form
I = —dx - duy.

Bonnet Uniqueness: The pair (Iy, IIy) determine x : M? — E3 up to
Euclidean motion.

Too much information? x is locally 3 functions of 2 variables, but (Ix, IIx)
is locally 6 functions of 2 variables.



Compatibility: For balance, there should be 3 relations, and there are:
detr, (Hx) = K(Ix) (Gauss, 1 equation)
or,, (Hx) =0 (Codazzi, 2 equations).

where 67 : C* (5'2 (T*)) — C> (T*) is a first order linear operator, defined
for any I > 0.

Bonnet Existence: If M? is 1-connected and I > 0 and II are quadratic
forms on M that satisfy

det; (II) = K(I) and §7(I) =0,
then there exists an immersion x : M — E? such that (I, II) = (I, II).

Bonnet’s Questions:

1. Do we need all of (I, Ily) to specify x? For example, would it be
enough to know Iy and the mean curvature Hyx = %trjx (Hx)?

2. What are the compatibility conditions for (I, H) in order that there
exist x such that (I, H) = (Ix, Hx)?



Assume ‘no umbilics’: H? — K(I) = r*> > 0. Fix a local I-orthonormal
coframing (wy,ws) and seek a function 6 such that

I =w®+w?

II = (H+rcos 0) wi? + 2rsinQ wyws + (H—7 cos ) wy?.
This solves the Gauss equation. The Codazzi equations take the form

0=46;(II) =r(df —ap — cosf a1 —sinb ay)
where the 1-forms «; are computed from (wq,we, H) and their derivatives.
Thus, Bonnet investigated the overdetermined system for 6
df = ag + cosb a1 +sinf as .

He asked ‘When is this formally integrable?’
Taking the exterior derivative of both sides and using the equation itself,
one obtains
0= (Ag+ A; cosf + Ay sinf) wy Awsy
where the functions A; are computed from (wy,ws, H) and their derivatives.
Formal integrability is then equivalent to A9 = A1 = A2 = 0.



Bonnet’s Theorem: If (I, H) satisfies Ag = A1 = Ay = 0, then either
e H is constant and I is the first fundamental form of a surface in E3
with constant mean curvature H (Associated Surfaces), or

e Up to diffeomorphism, (I, H) belongs to a 3-parameter family of
data with dH # 0. (The surfaces of Bonnet)

There are many works on the surfaces of Bonnet (including important work
by E. Cartan). They were eventually shown to be expressible in terms of
Y-functions and Painlevé equations by Bobenko and Eitner.

Bonnet mates: If A;2 + A2 > Ay?, there are two solutions #; and 0y
to 0 = Ag + A1 cos@ + As sinf, and, hence, at most two realizations x
and xz of the data (I, H). These are called Bonnet mates, when they exist.

E. Cartan’s Theorem: The family of surfaces x(M) C E3 that possess
Bonnet mates depends on 4 functions of 1 variable.

Can be interpreted in terms of pseudo-holomorphic curves and Lax pairs....



2. Unimodular Affine Surface Theory

A3 is (unimodular) affine 3-space, acted on by translations and volume-
preserving linear transformations.

Given an immersion x : M? — A3, define a second-order invariant (using
local coordinates) by

By =det (x4 Xy Xuu du? + 2%y dudv + Xyy dv2) ® (du A dv).
By is a section of the bundle S?(T*) ® A%(T*).

Say that x is locally strictly convex if By is definite. In this case (assumed
henceforth), M has a unique metric Ix and orientation #, so that

Bx = I @ #x1 = (w1 + w2?) @ w1 nws.

I is the Blaschke metric associated to x; it is second-order in x, and does
NOT determine x up to unimodular affine equivalence (u.a.e.).



The affine normal: Writing dx = e; w1 + ea wo and det(e; e2 e3) =1 only
determines ez up to addition of multiples of e; and es.

Proposition: There is a unique ny : M — A3 such that det(e; es ny) = 1
and so that dny =0 mod ey, e5. This ny is third-order in x.

The affine form Il : Writing dnyx = e1 7, + e T2 and setting
IIy = —mowy — Ty 0wy

gives a well-defined quadratic form that is fourth-order in x.
Surprise(?): The affine data (Ix, IIx) does not determine x up to u.a.e.

Missing third order information: One finds that
le(dx) =e1®Q1+e2®Q2+nx®Ix

and that Cx = @1 o w1 + Q2 o ws is a well-defined cubic form on M and is
a third-order invariant of x.



Radon Uniqueness: The pair (Ix, Cx) determine x up to u.a.e.

Too much information? A section of S?(T*) @ S3(T*) defines 3+4 = 7
functions of two variables, but x consists of 3 functions of two variables.

Compatibility Two sets of conditions are found to hold on the data:
trr, (Cx) =0 (apolarity)
i.e., Cx is a section of a rank 2 subbundle S3(T*, ;) C S*(T*) defined
by I,. In addition,
Dy (Cx)=0 (Radon)
where Dj : C* (S3(T*,I)) — C°°(T*) is a nonlinear, second-order elliptic
operator (that depends on a metric I and choice of orientation).
Radon Existence: If M? is 1-connected, oriented, and I > 0 and C are a
quadratic and cubic form on M that satisfy
tr;(C) =0 and D;(C) =0,
then there exists an immersion x : M — A3 such that (I,C) = (Ix, Cx).



Will less information do? Since Hy = try, (Hx) = K(Ix) —2|C’x|ix, the data
(Ix, Hx) is equivalent to the data Iy and 2|C'x|ix (aka the Pick invariant).
The affine Bonnet Problem: Determine when, and in how many ways (I, H)
can be realized as (I, Hy) for some x : M — A3,
Assume ‘no umbiilics”: Write K(I) — H = 2r? > 0. Then, fixing an I-
orthonormal, oriented coframe (w1, ws), seek a function @ such that

I = LU12 + LUQQ

C =rcosf (w13 — 3w1w22) —rsinf (w23 — 3w2w12) .
will satisfy Radon’s condition D;(C) = 0, which is then two second-order
equations for 6.
In local coordinates with I = F'|dz|?, Radon’s condition takes the form

0..=FE@,0,)

for an expression E that depends on I and H. If it were formally integrable,

one could specify (0,6,,60.z) at a point of M and have a unique (local)
solution.



Theorem 1: (B—,2009) The equation D;(C) = 0 is never formally inte-
grable for any pair (I, H).

Theorem 2: (B—,2009) There exist data (I, H) such that the equa-
tion Dy(C) = 0 has a 3-parameter family of solutions. These data depend
on 2 arbitrary functions of 1 variable, and the integration of the correspond-
ing system Dj(C) = 0 can be linearized as an integrable system.

Application: The surfaces with K and H constant, studied by Vrancken
and Dillen, et al, can now be explicitly constructed.

Theorem 3: (B—,2009) The surfaces x(M) C A® that have at least one
affine Bonnet mate depend on 7 arbitrary functions of 1 variable.

Remark: There do exist surfaces x(M) C A3 that have exactly a 1-parameter
family of affine Bonnet mates. I do not know how many such families there

are or whether an exactly 2-parameter family of affine Bonnet mates is

possible.



