Value distribution of the Gauss map of improper affine fronts and affine Bernstein problem

Yu Kawakami (Joint work with Daisuke Nakajo) Faculty of Mathematics, Kyushu university

January 26, 2011

[1] (Intro.) Value distribution of Gauss map

 $X : \Sigma^2 \to \mathbb{R}^3$ minimal surface (\Leftrightarrow mean curv. $H \equiv 0$)

Theorem. (S. N. Bernstein, 1915)

$$\Sigma^2 = \mathbb{R}^2$$
, $X(u,v) = (u,v,f(u,v))$ minimal graph
Then $X(\Sigma^2)$ is a plane (i.e. $f(u,v) = au + bv + c$).

 $N: \Sigma^2 \to \mathbf{S}^2 = \mathbf{C} \cup \{\infty\}$ its Gauss map

- N is bounded on $\mathbb{R}^2 = \mathbb{C}$.
- N is constant $\Leftrightarrow X$ is a plane.

The Liouville and Bernstein thms are closely related.

 $\divideontimes(u,v)$: isothermal coord. $\Rightarrow N$ is a mero. fct. on a Riem. surf. Σ^2 .

Theorem. (Fujimoto, 1988)

 $X : \Sigma^2 \to \mathbb{R}^3$ complete non-flat minimal surface

 $N \colon \Sigma^2 \to \mathbf{C} \cup \{\infty\}$ its Gauss map

 $D_N:=\sharp(\mathbf{C}\cup\{\infty\}\backslash N(\Sigma^2))$: the number of exceptional values of N Then

$$D_N \leq 4$$
.

X If the metric $ds^2 = \langle dX, dX \rangle$ is complete, X is called complete.

X The inequality is sharp.

Ex. The Voss surface (The Scherk surface)

 Σ^2 = the universal cover of $\mathbb{C}\setminus\{a_1,a_2,a_3\}$

W-data
$$(\omega, N) = \left(\frac{dz}{\prod_j (z - a_j)}, z\right)$$

Then $D_N = 4$.

Bernstein type results (parametric form)

- Any affine complete improper affine sphere must be an elliptic paraboloid. (Jörgens, Calabi)
- Any cplt flat surf. in ${f H}^3$ must be a horosphere or hyperbolic cylinder. (Sasaki, Volkov-Vladimirova)

Point

If we consider the classes with some admissible singularities (for example, front), then

Bernstein type result ⇔ Lioville property for Gauss map

[2] Preliminaries

Definition (Martínez, 2005)

A smooth map $\psi = (x, \varphi) \colon \Sigma^2 \to \mathbf{R}^3 = \mathbf{C} \times \mathbf{R}$ is an improper affine front (improper affine map) if there exists a special Lagrangian imm. $L_{\psi} := x + \sqrt{-1}n \colon \Sigma^2 \to \mathbf{C}^2$ s.t.

$$\psi = \left(x, -\int \langle n, dx \rangle\right).$$

- % An IA-front is a front in ${f R}^3$. (Nakajo, Umehara-Yamada)

(= Blaschke immersion with its shape operator $S \equiv 0$)

IA-fronts = IA-spheres with some admissible singularities

Fact.

- Every SL-imm. is a minimal L-imm. (see Harvey-Lowson)
- Every mini. L-imm. in ${f C}^2$ is a complex curve. (Chen-Morvan)

For an IA-front $\psi = (x, \varphi) \colon \Sigma^2 \to \mathbf{R}^3 = \mathbf{C} \times \mathbf{R}$, there exists a complex curve $\alpha \colon \Sigma^2 \to \mathbf{C}^2$, $\alpha := (F, G)$ s.t.

$$x = G + \bar{F}, \quad n = \bar{F} - G.$$

Then, the flat fundamental form

$$ds^2 = \langle dx, dx \rangle = |dF + dG|^2$$

and the induced metric of L_{ψ} from ${f C}^2$

$$d\tau^{2} = \langle dx, dx \rangle + \langle dn, dn \rangle$$
$$= 2(|dF|^{2} + |dG|^{2}).$$

Complex representation (Martínez, 2005) -

 Σ^2 : a Riemann surface

(F,G): a pair of holomorphic functions on Σ^2 s.t.

(1)
$$\forall \gamma \in H_1(\Sigma^2, \mathbf{Z})$$
, Re $\int F dG = 0$,

(2) $2(|dF|^2 + |dG|^2)$ is positive definite.

Then the map $\psi \colon \Sigma^2 \to \mathbf{R}^3 = \mathbf{C} \times \mathbf{R}$ given by

$$\psi := \left(G + \bar{F}, \frac{|G|^2 - |F|^2}{2} + \Re\left(GF - \int FdG\right)\right)$$

is an IA-front in ${f R}^3$. Conversely, any IA-front is given in this way. The singular pts of ψ correspond with the pts where |dF|=|dG|.

Examples of IA-fronts

Ex. elliptic paraboloids

$$\Sigma^2 = C$$

W-data (F,G) = (z,kz) (k: constant)

This is also an IA-sphere (i.e. with no singularity).

Ex. rotational IA-fronts (Martínez, 2005)

$$\Sigma^2 = \mathbb{C} \setminus \{0\}$$

W-data
$$(F,G) = \left(z, \pm \frac{r^2}{z}\right) \ (r \in \mathbb{R} \setminus \{0\})$$

Definition (Martínez, 2005)

The meromorphic function $\nu \colon \Sigma^2 \to \mathbf{C} \cup \{\infty\}$ given by

$$\nu := \frac{dF}{dG}$$

is called Lagrangian Gauss map of ψ .

% The singular pts of ψ correspond with the pts where $|\nu|=1$.

Geometric meaning of ν

 $L_{\psi} \colon \Sigma^2 \to \mathbf{R}^4(\simeq \mathbf{C}^2)$: a special Lagrangian lift of ψ $\mathcal{G} \colon \Sigma^2 \to (\mathbf{C} \cup \{\infty\}) \times (\mathbf{C} \cup \{\infty\})$: the Gauss map of $L_{\psi}(\Sigma^2)$ in \mathbf{R}^4

$$\Rightarrow \qquad \mathcal{G} = \left(1, \frac{dF}{dG}(=\nu)\right) \in (\mathbf{C} \cup \{\infty\}) \times (\mathbf{C} \cup \{\infty\})$$

[3] Main results: Value distribution of ν for weakly cplt

Definition (Umehara-Yamada, 2011)

An IA-front is called weakly complete if the induced metric $d\tau^2 = 2(|dF|^2 + |dG|^2)$ is a complete Riemannian metric on Σ^2 .

Main theorem I (K-Nakajo, 2011)

 $\psi \colon \Sigma^2 \to \mathbf{R}^3$: weakly complete IA-front

If ν is constant, then ψ is an elliptic paraboloid.

Main theorem I. (K-Nakajo, 2010)

 $\psi \colon \Sigma^2 o \mathbf{R}^3$ weakly complete IA-front

 $\nu \colon \Sigma^2 \to \mathbf{C} \cup \{\infty\}$ its L-Gauss map

 $D_{\nu}:=\sharp(\mathbf{C}\cup\{\infty\}\setminus\nu(\Sigma^2))$: the number of exceptional values of ν Then

$$D_{\nu} \leq 3$$
.

X The inequality is sharp.

Ex. Voss type of IA-front (K-Nakajo, 2010)

 Σ^2 = the universal cover of $\mathbb{C}\setminus\{a_1,a_2\}$

W-data
$$(dG, \nu) = \left(\frac{dz}{\prod_j (z - a_j)}, z\right)$$

Then it is weakly complete and $D_{\nu} = 3$.

Sketch of the proof of Main theorem I

- $\cdot \widetilde{\Sigma^2} = \mathbf{C} \to \mathsf{By}$ the little Picard theorem, $D_{\nu} \leq 2$.
- $\cdot \Sigma^2 = D$ (the unit disk)

$$d\tau^2 = 2(|dF|^2 + |dG|^2) = 2(1 + |\nu|^2)|dG|^2.$$

If $D_{\nu} \geq$ 4, then $1/2 < \exists \lambda < 1$, $\exists \Psi : \triangle_R = \{|z| < R\} \rightarrow \mathbf{D}$ isometry s.t.

$$\Psi^* d\tau = C^{\lambda} \left(\frac{R}{R^2 - |z|^2} \right)^{\lambda} |dz| \quad (C: \text{constant}).$$

We set d(p) = the distance from $p \in \mathbf{D}$ to $\partial \mathbf{D}$, then

$$d(p) \le \int d\tau = \int \Psi^* d\tau = C^{\lambda} \int \left(\frac{R}{R^2 - |z|^2}\right)^{\lambda} |dz| < +\infty.$$

It contradicts that $d\tau^2$ is complete.

Main theorem **II.** (K-Nakajo, 2011)

 $\psi\colon \Sigma^2\to \mathbf{R}^3$ weakly complete IA-front with $\int |K_{d\tau^2}|dA_{d\tau^2}<+\infty$

 $\nu \colon \Sigma^2 \to \mathbf{C} \cup \{\infty\}$ its L-Gauss map

 $D_{\nu}:=\sharp(\mathbf{C}\cup\{\infty\}\setminus\nu(\Sigma^2))$: the number of exceptional values of ν Then

$$D_{\nu} \leq 2$$
.

The inequality is also sharp.

Ex. rotational IA-front (Martínez, 2005)

$$\Sigma^2 = \mathbb{C} \setminus \{0, \infty\}$$

W-data
$$(dG, \nu) = \left(\frac{r^2}{z^2}dz, \frac{z^2}{r^2}\right) \ (r \in \mathbb{R} \setminus \{0\})$$

Then it is weakly complete and $D_{\nu}=2$.

Application: the Bernstein type theorem for IA-spheres

Corollary (Jörgens 1954, Calabi 1958) -

Any affine cplt IA-sphere must be an elliptic paraboloid.

% (The affine metric of IA-front) $h := |dG|^2 - |dF|^2$ *Proof.*

Because an IA-sphere has no singularities, it holds that $|\nu| < 1$. On the other hand, we have

$$h = |dG|^2 - |dF|^2 < 2(|dF|^2 + |dG|^2) = d\tau^2.$$

Thus, if an IA-sphere is affine cplt, then it is also weakly complete. By the Main results I and II, it is an elliptic paraboloid.

[4] Further topic : Affine Bernstein problem

```
\psi\colon \Sigma^2 \to \mathbf{R}^3 an affine immersion, S\colon its affine shape operator, - affine maximal surfaces (AM-surfaces) \cdots H_A:=\mathrm{tr}(S)/2\equiv 0. - improper affine spheres (IM-spheres) \cdots S\equiv 0. \Rightarrow { improper affine sphere } \subset { affine maximal surface }
```

The parametric affine Bernstein problem (proposed by Calabi) — A locally strongly convex, affine cplt, AM-surfs in ${f R}^3$ is an elliptic paraboloid.

- * This is solved by Trudinger-Wang and A. M. Li and F. Jia (2002).
- * The previous result is the special case of this problem.

References

- Y. Kawakami and D. Nakajo, "Value distribution of the Gauss map of improper affine spheres", preprint, arXiv:1004.1484.
- A. Martínez, *'Improper affine maps''*, Math. Z. **249**, 755–766, (2005).