Second variation formula and the stabilities of Legendrian minimal submanifolds in Sasakian manifolds

Toru Kajigaya

Tohoku University

January 27,2011

- (S^2, ω_0) : the sphere endowed with the canonical symplectic form.
- L¹ : the equator in S² (Remark that all of 1-dim submanifolds in S² are Lagrangian submanifolds).

Deform L and consider volume variational problem. ~> L is not stable under general deformations.

If we derofm *L* under "<mark>area bisecting</mark>" deformation. → *L* is stable (volume minimizing) (Poincaré's theorem).

- (S^2, ω_0) : the sphere endowed with the canonical symplectic form.
- L¹ : the equator in S² (Remark that all of 1-dim submanifolds in S² are Lagrangian submanifolds).

Deform L and consider volume variational problem.

 \rightsquigarrow *L* is not stable under general deformations.

lf we derofm *L* under "<mark>area bisecting</mark>" deformation. → *L* is stable (volume minimizing) (Poincaré's theorem).

- (S^2, ω_0) : the sphere endowed with the canonical symplectic form.
- L¹ : the equator in S² (Remark that all of 1-dim submanifolds in S² are Lagrangian submanifolds).

Deform L and consider volume variational problem. $\rightsquigarrow L$ is not stable under general deformations.

lf we derofm *L* under "<mark>area bisecting</mark>" deformation. →→ *L* is stable (volume minimizing) (Poincaré's theorem).

- (S^2, ω_0) : the sphere endowed with the canonical symplectic form.
- L¹ : the equator in S² (Remark that all of 1-dim submanifolds in S² are Lagrangian submanifolds).

Deform L and consider volume variational problem. $\rightarrow L$ is not stable under general deformations.

If we derofm *L* under "area bisecting" deformation. ~ *L* is stable (volume minimizing) (Poincaré's theorem).

- (S^2, ω_0) : the sphere endowed with the canonical symplectic form.
- L¹ : the equator in S² (Remark that all of 1-dim submanifolds in S² are Lagrangian submanifolds).

Deform L and consider volume variational problem. $\rightarrow L$ is not stable under general deformations.

If we derofm L under "area bisecting" deformation. $\rightarrow L$ is stable (volume minimizing) (Poincaré's theorem). In this situation, such a deformation is characterized by

" area bisecting" $\iff V \rfloor \omega_0$ is an exact form.

where V is the variational vector field.

We call such a special type of deformation Hamiltonian deformation.

In this situation, such a deformation is characterized by

" area bisecting" $\iff V \rfloor \omega_0$ is an exact form.

where V is the variational vector field.

We call such a special type of deformation Hamiltonian deformation.

In the general situation, we define the Hamiltonian deformation as follows.

Definition

 (P^{2n}, ω) , Symplectic manifold. $\iota : L^n \to P^{2n}$, Lagrangian immersion, *i.e.*, $\iota^* \omega = 0$. $\iota_t : L^n \to P^{2n}$, smooth deformation with variational vector field V.

 $\{\iota_t\}$ is a Lagrangian deformation. : $\iff \alpha_V := \iota^*(V \rfloor \omega)$ is closed. $\{\iota_t\}$ is a Hamiltonian deformation. : $\iff \alpha_V = \iota^*(V \rfloor \omega)$ is exact.

Remark. Lagrangian deformations leave Lagrangian submanifolds Lagrangian.

In the general situation, we define the Hamiltonian deformation as follows.

Definition

 (P^{2n}, ω) , Symplectic manifold. $\iota : L^n \to P^{2n}$, Lagrangian immersion, *i.e.*, $\iota^* \omega = 0$. $\iota_t : L^n \to P^{2n}$, smooth deformation with variational vector field V.

 $\{\iota_t\}$ is a Lagrangian deformation. : $\iff \alpha_V := \iota^*(V \rfloor \omega)$ is closed. $\{\iota_t\}$ is a Hamiltonian deformation. : $\iff \alpha_V = \iota^*(V \rfloor \omega)$ is exact.

Remark. Lagrangian deformations leave Lagrangian submanifolds Lagrangian.

In the general situation, we define the Hamiltonian deformation as follows.

Definition

 (P^{2n}, ω) , Symplectic manifold. $\iota : L^n \to P^{2n}$, Lagrangian immersion, *i.e.*, $\iota^* \omega = 0$. $\iota_t : L^n \to P^{2n}$, smooth deformation with variational vector field V.

 $\{\iota_t\}$ is a Lagrangian deformation. : $\iff \alpha_V := \iota^*(V \rfloor \omega)$ is closed. $\{\iota_t\}$ is a Hamiltonian deformation. : $\iff \alpha_V = \iota^*(V \rfloor \omega)$ is exact.

Remark. Lagrangian deformations leave Lagrangian submanifolds Lagrangian.

The variational problem of Lagrangian submanifolds under Hamiltonian deformations was first investigated by Y.G.Oh ([Oh1], [Oh2]).

Oh introduced the notion of *Hamiltonian-minimal* Lagrangian submanifolds in Kähler manifolds.

Definition

Let (P^{2n}, ω) be a Kähler manifold. A Lagrangian immersion $\iota : L^n \to P^{2n}$ is called a *Hamiltonian-minimal* (*H-minimal*) if

$$\frac{d}{dt}\Big|_{t=0} \operatorname{Vol}(\iota_t(L)) = 0,$$

for all Hamiltonian deformations $\{\iota_t\}$.

The variational problem of Lagrangian submanifolds under Hamiltonian deformations was first investigated by Y.G.Oh ([Oh1], [Oh2]).

Oh introduced the notion of *Hamiltonian-minimal* Lagrangian submanifolds in Kähler manifolds.

Definition

Let (P^{2n}, ω) be a Kähler manifold. A Lagrangian immersion $\iota : L^n \to P^{2n}$ is called a *Hamiltonian-minimal* (*H-minimal*) if

$$\frac{d}{dt}\Big|_{t=0} \operatorname{Vol}(\iota_t(L)) = 0,$$

for all Hamiltonian deformations $\{\iota_t\}$.

The variational problem of Lagrangian submanifolds under Hamiltonian deformations was first investigated by Y.G.Oh ([Oh1], [Oh2]).

Oh introduced the notion of *Hamiltonian-minimal* Lagrangian submanifolds in Kähler manifolds.

Definition

Let (P^{2n}, ω) be a Kähler manifold. A Lagrangian immersion $\iota : L^n \to P^{2n}$ is called a *Hamiltonian-minimal* (*H-minimal*) if

$$\frac{d}{dt}\Big|_{t=0} \operatorname{Vol}(\iota_t(L)) = 0,$$

for all Hamiltonian deformations $\{\iota_t\}$.

In the following, we assume (P^{2n}, ω) be a Kähler manifold.

We derive the Euler-Lagrange equation of H-minimal Lagrangian immersions.

Theorem (Euler-Lagrange equation)

A Lagrangian immersion $L^n \to P^{2n}$ is *H*-minimal. $\iff \delta \alpha_H = 0$, where *H* is the mean curvature vector of *L*, $\alpha_H := \iota^*(H \rfloor \omega)$. In the following, we assume (P^{2n}, ω) be a Kähler manifold.

We derive the Euler-Lagrange equation of H-minimal Lagrangian immersions.

Theorem (Euler-Lagrange equation)

A Lagrangian immersion $L^n \to P^{2n}$ is H-minimal. $\iff \delta \alpha_H = 0$, where H is the mean curvature vector of L, $\alpha_H := \iota^*(H \rfloor \omega)$. *Examples.* (1) Minimal $(i.e., H = 0) \Longrightarrow$ H-minimal. (2) The standard tori in \mathbb{C}^n ,

$$T^n = S^1(r_1) \times \cdots \times S^1(r_n)$$

are H-minimal Lagrangian but not minimal.

We derive the second variation formula for H-minimal Lagrangian immersions ([Oh2]).

Theorem (Oh, 1993)

 (P^{2n}, ω, J) , Kähler manifold. $\iota : L^n \to P^{2n}$, H-minimal Lagrangian immersion. If $\{\iota_t\}$ is a Hamiltonian deformation of L such that the variational vector field V is normal to L, then we have

$$\frac{d^2}{dt^2}\Big|_{t=0} \operatorname{Vol}(\iota_t(L)) = \int_L \{g(\Delta \alpha_V, \alpha_V) - \overline{\operatorname{Ric}}(V, V) - 2g(H, B(JV, JV)) + g(H, V)^2\}.$$

Definition

A H-minimal Lagrangian immersion $L^n \to P^{2n}$ is called Hamiltonian stable if

$$\frac{d^2}{dt^2}\Big|_{t=0} Vol(\iota_t(L)) \ge 0$$

for all Hamiltonian deformations $\{\iota_t\}$.

Example. The standard tori T^n in \mathbb{C}^n are all Hamiltonian stable.

Let (M^{2n+1},η) be a contact manifold. An immersion $\iota:L^n o M^{2n+1}$ is called Legendrian if $\iota^*\eta=0.$

In contact geometry, there are Sasakian manifolds which can be viewed as odd-dimentioal version of Kähler manifolds.

Let (M^{2n+1}, η) be a contact manifold. An immersion $\iota : L^n \to M^{2n+1}$ is called Legendrian if $\iota^* \eta = 0$.

In contact geometry, there are Sasakian manifolds which can be viewed as odd-dimentioal version of Kähler manifolds.

Let (M^{2n+1}, η) be a contact manifold. An immersion $\iota : L^n \to M^{2n+1}$ is called Legendrian if $\iota^* \eta = 0$.

In contact geometry, there are Sasakian manifolds which can be viewed as odd-dimentioal version of Kähler manifolds.

Let (M^{2n+1}, η) be a contact manifold. An immersion $\iota : L^n \to M^{2n+1}$ is called Legendrian if $\iota^* \eta = 0$.

In contact geometry, there are Sasakian manifolds which can be viewed as odd-dimentioal version of Kähler manifolds.

In the following, we assume

- $(M^{2n+1}, \phi, \xi, \eta, g)$, Sasakian manifold.
- $\iota: L^n \to M^{2n+1}$, Legendrian immersion, *i.e.*, $\iota^* \eta = 0$.
- $\iota_t: L^n \to M^{2n+1}$, smooth deformation with $\iota_0 = \iota$.

Definition

 $\{\iota_t\}$ is called Legendrian if ι_t is Legendrian immersion for each t (i.e., ι_t leave Legendrian submanifolds Legendrian).

Proposition

 $\{\iota_t\}$ is Legendrian deformation. $\iff \iota^*(V \rfloor d\eta) = -d(\eta(V))$, where V is the variational vector field. In the following, we assume

- $(M^{2n+1}, \phi, \xi, \eta, g)$, Sasakian manifold.
- $\iota: L^n \to M^{2n+1}$, Legendrian immersion, *i.e.*, $\iota^* \eta = 0$.
- $\iota_t: L^n \to M^{2n+1}$, smooth deformation with $\iota_0 = \iota$.

Definition

 $\{\iota_t\}$ is called Legendrian if ι_t is Legendrian immersion for each t (i.e., ι_t leave Legendrian submanifolds Legendrian).

Proposition

 $\{\iota_t\}$ is Legendrian deformation. $\iff \iota^*(V \rfloor d\eta) = -d(\eta(V))$, where V is the variational vector field.

(4月) (4日) (4日)

January 27,2011

11 / 23

In the following, we assume

- $(M^{2n+1}, \phi, \xi, \eta, g)$, Sasakian manifold.
- $\iota: L^n \to M^{2n+1}$, Legendrian immersion, *i.e.*, $\iota^* \eta = 0$.
- $\iota_t: L^n \to M^{2n+1}$, smooth deformation with $\iota_0 = \iota$.

Definition

 $\{\iota_t\}$ is called Legendrian if ι_t is Legendrian immersion for each t (i.e., ι_t leave Legendrian submanifolds Legendrian).

Proposition

 $\{\iota_t\}$ is Legendrian deformation. $\iff \iota^*(V \rfloor d\eta) = -d(\eta(V))$, where V is the variational vector field.

Definition

A Legendrian immersion $\iota : L^n \to M^{2n+1}$ is called Legendrian minimal (L-minimal) if

$$\frac{d}{dt}\Big|_{t=0} \operatorname{Vol}(\iota_t(L)) = 0.$$

for all Legendrian deformations $\{\iota_t\}$.

Theorem (Euler-Lagrange equation)

 $\iota: L^n \to M^{2n+1}$ is L-minimal.

where H is the mean curvature vector of L, $\alpha_H := -\frac{1}{2}\iota^*(H \rfloor d\eta)$

Definition

A Legendrian immersion $\iota : L^n \to M^{2n+1}$ is called Legendrian minimal (L-minimal) if

$$\frac{d}{dt}\Big|_{t=0} \operatorname{Vol}(\iota_t(L)) = 0.$$

for all Legendrian deformations $\{\iota_t\}$.

Theorem (Euler-Lagrange equation)

 $\iota: L^n \to M^{2n+1}$ is L-minimal.

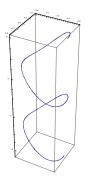
 $\iff \delta \alpha_H = 0$,

where H is the mean curvature vector of L, $\alpha_H := -\frac{1}{2}\iota^*(H \rfloor d\eta)$.

Examples of L-minimal Legendrian submanifolds

Examples. (1) L-minimal Legendrian curves in $(\mathbb{R}^3, \tilde{g})$.

$$\gamma(s) = \left(\frac{2}{h}\cos hs - \frac{2}{h}, \frac{2}{h}\sin hs, -\frac{2}{h}s + \frac{1}{h^2}\sin 2hs\right) \ (h \neq 0).$$



case of h=2.

(2) All of L-minimal Legendrian closed curves in $S^{3}(1)$ is given by as follows ([SW], [Iriyeh]).

$$\gamma(s) = \frac{1}{\sqrt{p+q}} \Big(\sqrt{q} e^{\sqrt{-1}\sqrt{\frac{p}{q}}s}, \sqrt{-1}\sqrt{p} e^{-\sqrt{-1}\sqrt{\frac{q}{p}}s} \Big), \ 0 \le s \le 2\pi\sqrt{pq},$$

where (p, q) is a pair of relatively prime positive integers. They are torus knots of type (p, q).

(3) L-minimal Legendrian flat tori $T^n_{(p_1,\cdots,p_{n+1})}$ in $S^{2n+1}(1)$, these are the generization of (2) ([Iriyeh]).

We derive the second variation formula for L-minimal Legendrian immersions.

Theorem (K)

 $(M^{2n+1}, \phi, \xi, \eta, g)$, Sasakian manifold. $\iota : L^n \to M^{2n+1}$, L-minimal Legendrian immersion. If $\{\iota_t\}$ is a Legendrian deformation of L such that the variational vector field V is normal to L, denote $V=V_{\mathcal{H}} + f\xi$, then we have

$$\frac{d^2}{dt^2}\Big|_{t=0} \operatorname{Vol}(\iota_t(L)) = \int_L \{g(\Delta \alpha_V, \alpha_V) - 2g(\alpha_V, \alpha_V) - \overline{\operatorname{Ric}}(V_{\mathcal{H}}, V_{\mathcal{H}}) - 2g(H, B(\phi V_{\mathcal{H}}, \phi V_{\mathcal{H}})) + g(H, V_{\mathcal{H}})^2\},\$$

where $\alpha_V := -\frac{1}{2}\iota^*(V \rfloor d\eta).$

We derive the second variation formula for L-minimal Legendrian immersions.

Theorem (K)

 $(M^{2n+1}, \phi, \xi, \eta, g)$, Sasakian manifold. $\iota : L^n \to M^{2n+1}$, L-minimal Legendrian immersion. If $\{\iota_t\}$ is a Legendrian deformation of L such that the variational vector field V is normal to L, denote $V=V_{\mathcal{H}} + f\xi$, then we have

$$\frac{d^2}{dt^2}\Big|_{t=0} \operatorname{Vol}(\iota_t(L)) = \int_L \{g(\Delta \alpha_V, \alpha_V) - 2g(\alpha_V, \alpha_V) - \overline{\operatorname{Ric}}(V_{\mathcal{H}}, V_{\mathcal{H}}) - 2g(H, B(\phi V_{\mathcal{H}}, \phi V_{\mathcal{H}})) + g(H, V_{\mathcal{H}})^2\},\$$

where $\alpha_V := -\frac{1}{2}\iota^*(V \rfloor d\eta).$

Definition

L-minimal Legendrian immersion $L^n \rightarrow M^{2n+1}$ is called Legendrian stable if

$$\frac{d^2}{dt^2}\Big|_{t=0}\mathrm{Vol}(\iota_t(L))\geq 0,$$

for all Legendrian deformations $\{\iota_t\}$.

We apply the second variation formula to study the stability of L-minimal Legendrian submanifolds.

First we prepare some basic curvature properties.

 A Sasakian manifold (M²ⁿ⁺¹, φ, ξ, η, g) is called η-Einstein Sasakian manifold if there exist constant A such that

$$\overline{\mathrm{Ric}} = Ag + (2n - A)\eta \otimes \eta.$$

- A Sasakian manifold $(M^{2n+1}, \phi, \xi, \eta, g)$ is called Sasakian space form if ϕ -sectional curvature is constant (= c). We denote Sasakian space form M(c).
- Sasakian space forms are η -Einstein with constant $A = \frac{n(c+3)+c-1}{2}$.

Example. Both $\mathbb{R}^{2n+1}(-3)$ and $S^{2n+1}(1)$ are Sasakian space form.

For L-minimal Legendrian cuves in 3-dim η -Einstein Sasakian manifolds, we have the following corollary from the second variation formula.

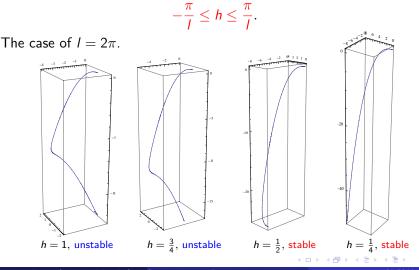
Corollary

 $(M^{3}, \phi, \xi, \eta, g), 3$ -dim η -Einstein Sasakian manifold. $L^{1} \rightarrow M^{3}, cpt L$ -minimal Legendrian curves. Then L^{1} is Legenderian stable. $\iff \lambda_{1} \ge A + 2 + h^{2}$, where $h^{2} = |H|^{2}, \lambda_{1}$ is the first eigen value of Laplace-Beltrami operator Δ acting on $C^{\infty}(L)$.

Moreover, $M^3(c)$ is Sasakian space form, then L^1 is Legendrian stable. $\iff \lambda_1 \ge c + 3 + h^2$.

Applications

Examples. (1) L-minimal Legendrian curves in $\mathbb{R}^{3}(-3)$ with the length *I* are Legendrian stable iff



Toru Kajigaya (Tohoku University) Second variation formula and the stabilities

(2) All of L-minimal Legendrian closed curves in $S^{3}(1)$ are unstable.

(3) L-minimal Legendrian tori $T^2_{(1,1,u)}$ in $S^5(1)$ are unstable.

Remark. It is already known that all of *minimal* cpt Legendrian submanifolds in S^{2n+1} are unstable ([H.Ono]). Since this and above results, I conjecture all of L-minimal Legendrian tori $T^n_{(p_1,\cdots,p_{n+1})}$ in $S^{2n+1}(1)$ are unstable. (2) All of L-minimal Legendrian closed curves in $S^3(1)$ are unstable.

(3) L-minimal Legendrian tori $T^2_{(1,1,u)}$ in $S^5(1)$ are unstable.

Remark. It is already known that all of *minimal* cpt Legendrian submanifolds in S^{2n+1} are unstable ([H.Ono]). Since this and above results, I conjecture all of L-minimal Legendrian tori $T^n_{(p_1,\cdots,p_{n+1})}$ in $S^{2n+1}(1)$ are unstable.

- (2) All of L-minimal Legendrian closed curves in $S^3(1)$ are unstable.
- (3) L-minimal Legendrian tori $T^2_{(1,1,u)}$ in $S^5(1)$ are unstable.

Remark. It is already known that all of *minimal* cpt Legendrian submanifolds in S^{2n+1} are unstable ([H.Ono]). Since this and above results, I conjecture all of L-minimal Legendrian tori $T^n_{(p_1,\cdots,p_{n+1})}$ in $S^{2n+1}(1)$ are unstable.

- Iriyeh H. Iriyeh, Hamiltonian Minimal Lagrangian Cone in C^m, Tokyo J. Math., Vol. 28, No. 1(2005), 91-107
 - Oh1 Y. G. Oh, Second variation and stability of minimal Lagrangian submanifolds, Invent. Math. , 101(1990), 501-519
 - Oh2 Y. G. Oh, Volume minimization of Lagrangian submanifolds under Hamiltonian deformations, Math. Zeit. , 212(1993), 175-192
 - Ono H. Ono, Second variation and Legendrian stabilities of minimal Legendrian submanifolds in Sasakian manifolds, Differential Geometry and its Applications. , 22(2005), 327-340
 - SW R. Schoen, J. Wolfson, *Minimizing area among Lagrangian surfaces: The mapping problem*, J. Differential geometry. , 58(2001) 1-86

Thank you for your attention!