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. . . . . .

Introduction

First, we consider the simplest example.

(S2, ω0) : the sphere endowed with the canonical symplectic form.

L1 : the equator in S2

(Remark that all of 1-dim submanifolds in S2 are Lagrangian
submanifolds).

Deform L and consider volume variational problem.
 L is not stable under general deformations.

If we derofm L under ”area bisecting”deformation.
 L is stable (volume minimizing) (Poincaré’s theorem).
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Introduction

In this situation, such a deformation is characterized by

”area bisecting” ⇐⇒ V cω0 is an exact form.

where V is the variational vector field.

We call such a special type of deformation Hamiltonian deformation.
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Introduction

In the general situation, we define the Hamiltonian deformation as follows.

.

Definition

.

.

.

. ..

.

.

(P2n, ω), Symplectic manifold.
ι : Ln → P2n, Lagrangian immersion, i .e., ι∗ω = 0.
ιt : Ln → P2n, smooth deformation with variational vector field V .

{ιt} is a Lagrangian deformation. :⇐⇒ αV := ι∗(V cω) is closed .

{ιt} is a Hamiltonian deformation. :⇐⇒ αV = ι∗(V cω) is exact.

Remark. Lagrangian deformations leave Lagrangian submanifolds
Lagrangian.
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H-minimal Lagrangian immersion

The variational problem of Lagrangian submanifolds under Hamiltonian
deformations was first investigated by Y.G.Oh ([Oh1], [Oh2]).

Oh introduced the notion of Hamiltonian-minimal Lagrangian
submanifolds in Kähler manifolds.

.

Definition

.

.

.

. ..

.

.

Let (P2n, ω) be a Kähler manifold.
A Lagrangian immersion ι : Ln → P2n is called a Hamiltonian-minimal
(H-minimal) if

d

dt

∣∣∣
t=0

Vol(ιt(L)) = 0,

for all Hamiltonian deformations {ιt}.
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H-minmal Lagrangian immersion

In the following, we assume (P2n, ω) be a Kähler manifold.

We derive the Euler-Lagrange equation of H-minimal Lagrangian
immersions.

.

Theorem (Euler-Lagrange equation)

.

.

.

. ..

.

.

A Lagrangian immersion Ln → P2n is H-minimal.
⇐⇒ δαH = 0,
where H is the mean curvature vector of L, αH := ι∗(Hcω).
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Examples of H-minimal Lagrangian submanifolds

Examples. (1) Minimal (i .e.,H = 0) =⇒ H-minimal.
(2) The standard tori in Cn,

T n = S1(r1) × · · · × S1(rn)

are H-minimal Lagrangian but not minimal.
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Second variation formula

We derive the second variation formula for H-minimal Lagrangian
immersions ([Oh2]).

.

Theorem (Oh, 1993)

.

.

.

. ..

.

.

(P2n, ω, J), Kähler manifold.
ι : Ln → P2n, H-minimal Lagrangian immersion.
If {ιt} is a Hamiltonian deformation of L such that the variational vector
field V is normal to L, then we have

d2

dt2


t=0

Vol(ιt(L)) =

∫
L
{g(∆αV , αV ) − Ric(V ,V )

−2g(H, B(JV , JV )) + g(H, V )2}.
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Hamiltonian stability

.

Definition

.

.

.

. ..

.

.

A H-minimal Lagrangian immersion Ln → P2n is called Hamiltonian stable
if

d2

dt2

∣∣∣
t=0

Vol(ιt(L)) ≥ 0

for all Hamiltonian deformations {ιt}.

Example. The standard tori T n in Cn are all Hamiltonian stable.
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Legendrian immersion and Sasakian manifold

On the other hand, there is the notion of contact manifolds which is an
odd-dimentional counterpart of symplectic manifolds.

Let (M2n+1, η) be a contact manifold.
An immersion ι : Ln → M2n+1 is called Legendrian if ι∗η = 0.

In contact geometry, there are Sasakian manifolds which can be viewed as
odd-dimentioal version of Kähler manifolds.

We want to consider Legendrian version of above variational problem.
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. . . . . .

Legendrian deformation

In the following, we assume

(M2n+1, φ, ξ, η, g), Sasakian manifold.

ι : Ln → M2n+1, Legendrian immersion, i .e., ι∗η = 0.

ιt : Ln → M2n+1, smooth deformation with ι0 = ι.

.

Definition

.

.

.

. ..

. .

{ιt} is called Legendrian if ιt is Legendrian immersion for each t (i.e., ιt
leave Legendrian submanifolds Legendrian).

.

Proposition

.

.

.

. ..

.

.

{ιt} is Legendrian deformation.
⇐⇒ ι∗(V cdη) = −d(η(V )), where V is the variational vector field.
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L-minimal Legendrian immersion

.

Definition

.

.

.

. ..

.

.

A Legendrian immersion ι : Ln → M2n+1 is called Legendrian minimal
(L-minimal) if

d

dt

∣∣∣
t=0

Vol(ιt(L)) = 0.

for all Legendrian deformations {ιt}.

.

Theorem (Euler-Lagrange equation)

.

.

.

. ..

.

.

ι : Ln → M2n+1 is L-minimal.
⇐⇒ δαH = 0,
where H is the mean curvature vector of L, αH := −1

2 ι∗(Hcdη).
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Examples of L-minimal Legendrian submanifolds

Examples. (1) L-minimal Legendrian curves in (R3, g̃).

γ(s) =
(2

h
cos hs − 2

h
,
2

h
sin hs,−2

h
s +

1

h2
sin 2hs

)
(h 6= 0).

!2.0
!1.5

!1.0
!0.5

0.0

!1.0

!0.5

0.0

0.5

1.0

!6

!4

!2

0

case of h=2.
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Examples of L-minimal Legendrian submanifolds

(2) All of L-minimal Legendrian closed curves in S3(1) is given by as
follows ([SW], [Iriyeh]).

γ(s) =
1√

p + q

(√
qe

√
−1

q

p
q
s
,
√
−1

√
pe

−
√
−1

q

q
p
s
)
, 0 ≤ s ≤ 2π

√
pq,

where (p, q) is a pair of relatively prime positive integers.
They are torus knots of type (p, q).

(3) L-minimal Legendrian flat tori T n
(p1,··· ,pn+1)

in S2n+1(1), these are the

generization of (2) ([Iriyeh]).
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Main result

We derive the second variation formula for L-minimal Legendrian
immersions.

.

Theorem (K)

.

.

.

. ..

.

.

(M2n+1, φ, ξ, η, g), Sasakian manifold.
ι : Ln → M2n+1, L-minimal Legendrian immersion.
If {ιt} is a Legendrian deformation of L such that the variational vector
field V is normal to L, denote V=VH + f ξ, then we have

d2

dt2


t=0

Vol(ιt(L)) =

∫
L
{g(∆αV , αV )−2g(αV , αV )−Ric(VH, VH)

−2g(H, B(φVH, φVH)) + g(H, VH)2},

where αV := −1
2 ι∗(V cdη).
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Legendrian stability

.

Definition

.

.

.

. ..

.

.

L-minimal Legendrian immersion Ln → M2n+1 is called Legendrian stable if

d2

dt2


t=0

Vol(ιt(L)) ≥ 0,

for all Legendrian deformations {ιt}.
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Applications

We apply the second variation formula to study the stability of L-minimal
Legendrian submanifolds.
First we prepare some basic curvature properties.

A Sasakian manifold (M2n+1, φ, ξ, η, g) is called η-Einstein Sasakian
manifold if there exist constant A such that

Ric = Ag + (2n − A)η ⊗ η.

A Sasakian manifold (M2n+1, φ, ξ, η, g) is called Sasakian space form
if φ-sectional curvature is constant (= c). We denote Sasakian space
form M(c).

Sasakian space forms are η-Einstein with constant A = n(c+3)+c−1
2 .

Example. Both R2n+1(−3) and S2n+1(1) are Sasakian space form.
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Applications

For L-minimal Legendrian cuves in 3-dim η-Einstein Sasakian manifolds,
we have the following corollary from the second variation formula.

.

Corollary

.

.

.

. ..

.

.

(M3, φ, ξ, η, g), 3-dim η-Einstein Sasakian manifold.
L1 → M3, cpt L-minimal Legendrian curves.
Then

L1 is Legenderian stable. ⇐⇒ λ1 ≥ A + 2 + h2,

where h2 = |H|2, λ1 is the first eigen value of Laplace-Beltrami operator
∆ acting on C∞(L).

Moreover, M3(c) is Sasakian space form, then

L1 is Legendrian stable. ⇐⇒ λ1 ≥ c + 3 + h2.
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Applications

Examples. (1) L-minimal Legendrian curves in R3(−3) with the length l
are Legendrian stable iff

−π

l
≤ h ≤ π

l
.

The case of l = 2π.

!4 !3 !2 !1 0

!2
!1
0

1
2

!10

!5

0

!4 !2 0

!2

0

2

!15

!10

!5

0

!8 !6 !4 !2 0
01234

!20

!10

0

!8!6
!4!2

0

02468

!40

!20

0

h = 1, unstable h = 3
4
, unstable h = 1

2
, stable h = 1

4
, stable
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Applications

(2) All of L-minimal Legendrian closed curves in S3(1) are unstable.

(3) L-minimal Legendrian tori T 2
(1,1,u) in S5(1) are unstable.

Remark. It is already known that all of minimal cpt Legendrian
submanifolds in S2n+1 are unstable ([H.Ono]).
Since this and above results, I conjecture all of L-minimal Legendrian tori
T n

(p1,··· ,pn+1)
in S2n+1(1) are unstable.
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