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Today’s thema

1. Rank 2 prolongations of 2nd order

single PDE .

2. Geometric singular solutions

Introduction

Let J2(R2, R) be the 2-jet space:

J2(R2, R) := {(x, y, z, p, q, r, s, t)} . (1)

This space has the canonical differential system (or

higher order contact system)

C2 = {$0 = $1 = $2 = 0} given by the following

1-forms:

$0 : = dz − pdx − qdy,

$1 : = dp − rdx − sdy,

$2 : = dq − sdx − tdy.
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On J2(R2, R), we consider PDEs of the form:

F (x, y, z, p, q, r, s, t) = 0, (2)

where F ∈ C∞(J2(R2, R)). We set

R := {F = 0} ⊂ J2(R2, R), D := C2|R.

If we assume the regularity condition:

(Fr, Fs, Ft) 6= (0, 0, 0) (3)

then,

(i) R is a smooth hypersurface,

(ii) the restriction π2
1|R : R → J1(R2, R) of the

natural projection π2
1 : J2(R2, R) → J1(R2, R) is a

submersion.

Hence, we have the induced differential system D =

{$0|R = $1|R = $2|R = 0} on R.
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Definition 1 Let (R, D) be a differential system

given by D = {$1 = · · · = $s = 0}. Then, the

rank 2 prolongation of (R, D) is defined by

Σ(R) :=
∪

x∈R

Σx, (4)

where

Σx = {v ⊂ D(x)| v is a 2-dim. integ. elem. of D(x)} .

(Integral element v is defined by d$i|v = 0).

Let p : Σ(R) → R be the projection. If Σ(R) is

smooth, we define the canonical system D̂ on Σ(R)

by

D̂(u) : = p−1
∗ (u), (5)

= {v ∈ Tu(Σ(R)) | p∗(v) ∈ u} ,

where u ∈ Σ(R).

This space Σ(R) is a subset of the Grassmann bun-

dle over R

J(D, 2) :=
∪

x∈R

Jx (6)
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where

Jx := {v ⊂ D(x)| v is a 2-dim. subspace of D(x)} .

In general, rank 2 prolongations Σ(R) have singu-

lar points!!

Rank 2 prolongations of regular PDEs

Here, we show that types of equations are charac-

terized by the fiber topology of rank 2 prolonga-

tions of equations. To this purpose, we define

Definition 2

R = {F = 0}: 2nd order regular PDE.

For the discriminant of F :

∆ := FrFt −
1

4
Fs

2,

a point w ∈ R is said to be hyperbolic, parabolic

or elliptic if ∆(w) < 0, ∆(w) = 0 or ∆(w) > 0,

respectively.
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Rank 2 prolongations of hyperbolic equations

(R, D): locally hyperbolic. Then, ∃ a local coframe

{$0, $1, $2, ω1, ω2, π11, π22} around x ∈ R s.t.

D = {$0 = $1 = $2 = 0} (7)

and

d$0 ≡ ω1 ∧ $1 + ω2 ∧ $2 mod $0,

d$1 ≡ ω1 ∧ π11 mod $0, $1, $2 (8)

d$2 ≡ ω2 ∧ π22 mod $0, $1, $2

Theorem 3

Let (R, D) be a locally hyperbolic equation. Then,

the rank 2 prolongation Σ(R) is a smooth subman-

ifold of J(D, 2), and it is a T 2-bundle over R.

Remark 1 In fact, this result (i.e. Σ(R) is torus

bundle) is known by Bryant, Griffiths and Hsu by

using the theory of the hyperbolic exterior differ-

ential system.
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Outline of proof

We use the covering of π : J(D, 2) → R. For

U ⊂ R (open), π−1(U) is covered as follows:

π−1(U) = Uω1ω2∪Uω1π11∪Uω1π22∪Uω2π11∪Uω2π22∪Uπ11π22

(9)

where

Uω1ω2 :=
{
v ∈ π−1(U) | ω1|v ∧ ω2|v 6= 0

}
,

Uω1π11 :=
{
v ∈ π−1(U) | ω1|v ∧ π11|v 6= 0

}
,

Uω1π22 :=
{
v ∈ π−1(U) | ω1|v ∧ π22|v 6= 0

}
,

Uω2π11 :=
{
v ∈ π−1(U) | ω2|v ∧ π11|v 6= 0

}
,

Uω2π22 :=
{
v ∈ π−1(U) | ω2|v ∧ π22|v 6= 0

}
,

Uπ11π22 :=
{
v ∈ π−1(U) | π11|v ∧ π22|v 6= 0

}
.

By using this covering, p−1(U) for p : Σ(R) → R

is covered as follows:

p−1(U) = Uω1ω2 ∪ Uω1π22 ∪ Uω2π11 ∪ Uπ11π22. (10)

From the covering, we can see that the topological

structure of fibers is T 2 = S1 × S1.
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Rank 2 prolongations of parabolic equations

(R, D); locally parabolic. Then, ∃ a local coframe

{$0, $1, $2, ω1, ω2, π12, π22} around x ∈ R s.t.

D = {$0 = $1 = $2 = 0} (11)

and

d$0 ≡ ω1 ∧ $1 + ω2 ∧ $2 mod $0,

d$1 ≡ ω2 ∧ π12 mod $0, $1, $2

(12)

d$2 ≡ ω1 ∧ π12 + ω2 ∧ π22 mod $0, $1, $2

Theorem 4

Let (R, D) be a locally parabolic equation. Then,

the rank 2 prolongation Σ(R) has singular points,

and it has the structure of pinched torus fibration.

Outline of proof

Similarly to the hyp case, we have the covering of

p : Σ(R) → R

p−1(U) = Uω1ω2 ∪ Uω1π22 ∪ Uπ12ω22. (13)
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Here, Uω1π22 has singular points. By gruing on

p−1(U), we have the statement.

Rank 2 prolongations of elliptic equations

(R, D): locally elliptic. Then, ∃ a local coframe

{$0, $1, $2, ω1, ω2, π11, π12} around x ∈ R s.t.

D = {$0 = $1 = $2 = 0} (14)

and

d$0 ≡ ω1 ∧ $1 + ω2 ∧ $2 mod $0,

d$1 ≡ ω1 ∧ π11 + ω2 ∧ π12 mod $0, $1, $2,

(15)

d$2 ≡ ω1 ∧ π12 − ω2 ∧ π11 mod $0, $1, $2.

Theorem 5

Let (R, D) be a locally elliptic equation. Then, the

rank 2 prolongation Σ(R) is a smooth submanifold

of J(D, 2), and it is a S2-bundle over R.
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Outline of proof

Similarly to the hyp case, we have the covering of

p : Σ(R) → R

p−1(U) = Uω1ω2 ∪ Uπ11π12. (16)

By gruing on p−1(U), we have the statement.

By using these results, we have:

Corollary 6

Let R = {F = 0} be a 2nd order regular PDE and

p : Σ(R) → R be a its prolongation. Then,

(i) w ∈ R is hyperbolic

⇐⇒ p−1(w) is a 2 − dim torus T 2.

(ii) w ∈ R is parabolic

⇐⇒ p−1(w) is a pinched 2 − dim torus.

(iii) w ∈ R is elliptic

⇐⇒ p−1(w) is a 2 − dim sphere S2.
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Note that the fiber p−1(w) is defined by the struc-

ture equation of D at w as a subset in the fiber

Jw
∼= Gr(2, 4) of the fibration π : J(D, 2) → R.

From this view point, the fiber topology of p−1(w)

depends only on the pointwise structure equations.

Geometric singular solution

First, we define the notion of solutions of second

order regular PDEs.

Definition 7

(R, D): second order regular PDE. S: 2-dim in-

tegral manifold of R. If the restricted projection

π2
1|R : R → J1 is an immersion on an open dense

subset in S, then we call S a geometric solution

of (R, D). In particular, if all points of geometric

solutions S are immersion points, then we call S

regular solutions. On the other hand, geometric

solutions S have a nonimmersion point, then we

call S singular solutions.
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Remark 2 From the definition, images π2
1(S) of

geometric solutions S by the projection π2
1 are Leg-

endrian in J1(R2, R), ($0|π2
1(S) = d$0|π2

1(S) = 0).

To consider singular solutions, we consider geomet-

ric decomposition of Σ(R).

Σ(R) = Σ0 ∪ Σ1 ∪ Σ2 (disjoint union),

where

Σi = {w ∈ Σ(R) | dim(w ∩ fiber) = i}

(i = 0, 1, 2), fiber means that of T (R) ⊃ D →

T (J1).

From the decomposition, we have in general

S: integral manifold of (Σ(R), D̂).

(1) If S ⊂ Σ0, S is a regular solution.

(2) If S across Σ1 ∪ Σ2, S is a singular solution.

From this property, we construct explicitly singu-

lar solutions of typical equations.
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hyperbolic equations

We consider the model equation R = {s = 0}.

we have the covering of the fibration p : Σ(R) → R:

p−1(U) = Uxy ∪ Uxt ∪ Uyr ∪ Urt,

where

Uxy : =
{
v ∈ π−1(U) | dx|v ∧ dy|v 6= 0

}
,

Uxt : =
{
v ∈ π−1(U) | dx|v ∧ dt|v 6= 0

}
,

Uyr : =
{
v ∈ π−1(U) | dy|v ∧ dr|v 6= 0

}
,

Urt : =
{
v ∈ π−1(U) | dr|v ∧ dt|v 6= 0

}
.

The geometric decomposition Σ(R) = Σ0 ∪Σ1 ∪Σ2

is given by,

Σ0|p−1(U) = Uxy,

Σ1|p−1(U) = (Uxt ∪ Uyr)\Uxy,

Σ2|p−1(U) = Urt\(Uxy ∪ Uxt ∪ Uyr).

We consider integral submanifolds S across Σ1 of

R = {s = 0}. Consequently, we obtain the solution
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of s = 0 given by,

(x, y(t),
∫

qy′dt + z0(x), z′
0(x),∫

ty′dt, z′′
0 (x), t, y′, z′′′

0 (x)).

where y(t) satisfies the condition y′(0) = 0. This

is a geometric singular solution.

parabolic equations

We consider the model equation R = {r = 0}.

we have the covering of the fibration p : Σ(R) → R:

p−1(U) = Uxy ∪ Uxt ∪ Ust,

where

Uxy : =
{
v ∈ π−1(U) | dx|v ∧ dy|v 6= 0

}
,

Uxt : =
{
v ∈ π−1(U) | dx|v ∧ dt|v 6= 0

}
,

Ust : =
{
v ∈ π−1(U) | ds|v ∧ dt|v 6= 0

}
.

The geometric decomposition Σ(R) = Σ0 ∪Σ1 ∪Σ2

is given by

Σ0|p−1(U) = Uxy,

Σ1|p−1(U) = Uxt\Uxy,

Σ2|p−1(U) = Ust\(Uxy ∪ Uxt).
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We consider integral submanifolds S across Σ1 or

Σ2 of R = {r = 0}. Consequently, we obtain the

solution of r = 0 given by

(ty′ + x0(s), y(s), tpy′ + z0(s),∫
sy′ds, tsy′ + q0(s), s, t, xs, y′)

Here, if x′
0(0) = y′(0) = z′

0(0) = q′
0(0) = 0, then

we have the singular solution across Σ2. If x′
0(0) 6=

0, y′(0) = 0, then we have the singular solution

across Σ1.

elliptic equations

We consider the model equation R = {r + t = 0}.

we have the covering of the fibration p : Σ(R) → R:

p−1(U) = Uxy ∪ Urs,

where

Uxy : =
{
v ∈ π−1(U) | dx|v ∧ dy|v 6= 0

}
,

Urs : =
{
v ∈ π−1(U) | dr|v ∧ ds|v 6= 0

}
.

The geometric decomposition Σ(R) = Σ0 ∪ Σ2 is
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given by

Σ0|p−1(U) = Uxy,

Σ2|p−1(U) = Urs\Uxy.

We consider integral submanifolds S across Σ2 of

R = {r + t = 0}. Consequently, we obtain the so-

lution of r + t = 0 given by

(rys + x0(s), y(r, s),
∫
(pys + qyr)dr + z0(s),

r2

2
ys +

∫
syrdr + p0(s), rsys +

∫
ryrdr + q0(s),

r, s, yr, ys),

where x′
0(0) = z′

0(0) = p′
0(0) = q′

0(0) = 0 and

y(r, s) satisfies the condition

yr(0, 0) = ys(0, 0) = 0. This is a geometric singular

solution across Σ2.
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Tower construction by prolongations.

By succesive rank 2 prolongations, we have the fol-

lowing tower structure of differential systems.

Theorem 8

(i) If (R, D) is locally hyperbolic, then the k-th rank

2 prolongation (Σk(R), D̂k) of (R, D) is also T 2-

bundle over (Σk−1(R), D̂k−1).

(ii) If (R, D) is locally parabolic, then

(Σk(R)\ {singular points} , D̂k) is also S1 × R-

bundle over (Σk−1(R)\ {singular points} , D̂k−1).

(iii) If (R, D) is locally elliptic, then (Σk(R), D̂k) of

S2-bundle over (Σk−1(R), D̂k−1).

From this theorem, we have the tower structure by

taking prolongations succesively.


