Comparison Theorems for ODEs and Their Application to Geometry of Weingarten Hypersurfaces

Takashi Okayasu

Ibaraki University

Differential Geometry and Tanaka Theory -Differential System and Hypersurface Theory-

Comparison Theorem A

Assume F(X, Y) satisfies $F(0, 1/y_0) > 0$ and $\partial F/\partial X < 0$ for X > 0. Solve the following equations with the initial conditions $x(0) = x_0, \ y(0) = y_0, \ \alpha(0) = \overline{\alpha}(0) = 0.$

$$(I) \begin{cases} \frac{dx}{ds} = \cos \alpha, \\ \frac{dy}{ds} = \sin \alpha, \\ \frac{d\alpha}{ds} = F(\frac{\sin \alpha}{x}, \frac{\cos \alpha}{y}). \end{cases}$$
$$(II) \begin{cases} \frac{dx}{ds} = \cos \overline{\alpha}, \\ \frac{dy}{ds} = \sin \overline{\alpha}, \\ \frac{d\overline{\alpha}}{ds} = F(0, \frac{\cos \overline{\alpha}}{y}). \end{cases}$$

 $lpha(y) < \overline{lpha}(y)$ for all y satisfying $0 < lpha(y) < rac{\pi}{2}$

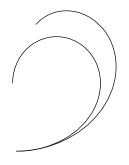
Comparison Theorem B

Assume $F(0, 1/y_0) > 0$ and $\partial F/\partial X$, $\partial F/\partial Y < 0$ for X, Y > 0. Solve the following equations with the initial conditions $x(0) = x_0, y(0) = y_0, \alpha(0) = \overline{\alpha}(0) = \alpha_0 = 0.$

$$(I) \begin{cases} \frac{dx}{ds} = \cos \alpha, \\ \frac{dy}{ds} = \sin \alpha, \\ \frac{d\alpha}{ds} = F(\frac{\sin \alpha}{x}, \frac{\cos \alpha}{y}). \end{cases}$$
$$(II) \begin{cases} \frac{dx}{ds} = \cos \overline{\alpha}, \\ \frac{dy}{ds} = \sin \overline{\alpha}, \\ \frac{d\overline{\alpha}}{ds} = F(\frac{\sin \overline{\alpha}}{x_0}, \frac{\cos \alpha_0}{y}). \end{cases}$$

 $lpha(y) > \overline{lpha}(y)$ for all y satisfying $0 < lpha(y) < rac{\pi}{2}$

$$F(X,Y) = 1 - X - Y$$



Our Aim

We would like to construct new examples of complete Weingarten hypersurfaces in the Euclidean spaces.

Our Aim

We would like to construct new examples of complete Weingarten hypersurfaces in the Euclidean spaces.

Definition

 $M\subset {f R}^{n+1}$ is called a Weingarten hypersurface $\Longleftrightarrow\lambda_1,\cdots,\lambda_n$ have a functional relation

Our Aim

We would like to construct new examples of complete Weingarten hypersurfaces in the Euclidean spaces.

Definition

 $M\subset {f R}^{n+1}$ is called a Weingarten hypersurface $\Longleftrightarrow\lambda_1,\cdots,\lambda_n$ have a functional relation

- ullet constant mean curvature hypersurfaces $\lambda_1+\dots+\lambda_n=$ const
- constant scalar curvature hypersurfaces $\sum_{i \neq j} \lambda_i \lambda_j =$ const
- hypersurfaces whose second fundamental form h have constant length $|h|^2 = \sum_i \lambda_i^2 = \! {\rm const}$

Delauney surfaces

Figure: unduloid

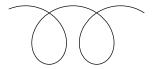
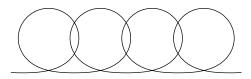


Figure: nodoid

A rotational surface with |h| = const



Noncompact Complete Hypersurfaces with Constant Scalar Curvature

Known Examples

- flat generalized cylinders
- ullet cylinders $S^p imes {f R}^{n-p}$
- 1-parameter family of rotational hypersurfaces (Leite, 1990)
- a complete hypersurface with constant negative scalar curvature in E^4 (O, 1989)
- a complete hypersurface with 0 scalar curvature in E^4 (Palmas,2000)
- a complete hypersurface with 0 scalar curvature in E^{2n} (Sato, 2000)

Result & Method

Result

We can construct a new family of complete hypersurfaces with constant positive scalar curvature. They are diffeomorphic to $\mathbf{R} \times S^p \times S^q$.

Result & Method

Result

We can construct a new family of complete hypersurfaces with constant positive scalar curvature. They are diffeomorphic to $\mathbf{R} \times S^p \times S^q$.

Method

Method of equivariant geometry

We use a subgroup

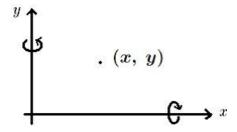
 $O(p+1) \times O(q+1) \subset O(p+q+2) = O(n+1)$ to construct Generalized rotational hypersurfaces. PDF \Rightarrow ODF

 $PDE \Rightarrow ODE$

 This method was used by W.Y. Hsiang et al. to construct many CMC hypersurfaces in the 80's.

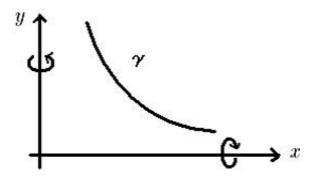
$O(p+1) \times O(q+1)$ -invariant hypersurfaces

- $O(p+1) imes O(q+1) \sim \mathrm{R}^{p+1} imes \mathrm{R}^{q+1}$
- The orbit space= the first quadrant ${f R}^2_+$
- The orbit through $(x, \; y) = S^p(x) imes S^q(y)$



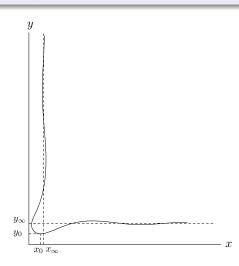
Generalized Rotational Hypersurfaces

 γ : a curve in the first quadrant ${f R}^2_+$ M_γ : O(p+1) imes O(q+1)-invariant hypersurface generated by γ



Main Theorem 1

There exists a new family of complete hypersurfaces $M^n \subset E^{n+1} \ (n \geq 5)$ with constant positive scalar curvature.



principal curvatures

$$x'y''-y'x'', \ rac{y'}{x}, \ -rac{x'}{y}$$
 : multiplicities $1, \ p, \ q$ (the curve is parametrized by the arc length)

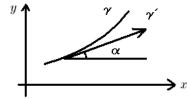
The scalar curvature of M_γ

$$egin{aligned} S &= & \sum_{i
eq j} \lambda_i \lambda_j \ &= & 2(x'y''-y'x'') \left(prac{y'}{x}-qrac{x'}{y}
ight) + p(p-1) \left(rac{y'}{x}
ight)^2 \ &+ q(q-1) \left(rac{x'}{y}
ight)^2 - 2pqrac{y'x'}{x}rac{y'}{y} \end{aligned}$$

Constant Scalar Curvature Equation

S = constant

$$(\mathbf{I}) \begin{cases} \frac{dx}{ds} = \cos \alpha, \\ \frac{dy}{ds} = \sin \alpha, \\ \frac{d\alpha}{ds} = \frac{p(p-1)\left(\frac{\sin \alpha}{x}\right)^2 - 2pq\frac{\sin \alpha}{x}\frac{\cos \alpha}{y} + q(q-1)\left(\frac{\cos \alpha}{y}\right)^2 - S}{2\left(q\frac{\cos \alpha}{y} - p\frac{\sin \alpha}{x}\right)}. \end{cases}$$

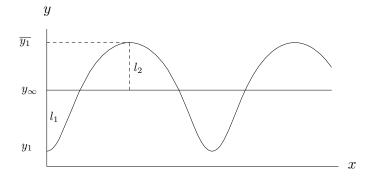


Comparison Equation

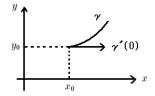
(I)
$$\begin{cases} \frac{dx}{ds} = \cos \alpha, \\ \frac{dy}{ds} = \sin \alpha, \\ \frac{d\alpha}{ds} = \frac{p(p-1)\left(\frac{\sin \alpha}{x}\right)^2 - 2pq\frac{\sin \alpha}{x}\frac{\cos \alpha}{y} + q(q-1)\left(\frac{\cos \alpha}{y}\right)^2 - S}{2\left(q\frac{\cos \alpha}{y} - p\frac{\sin \alpha}{x}\right)}. \end{cases}$$

(II)
$$\begin{cases} \frac{dx}{ds} = \cos \alpha, \\ \frac{dy}{ds} = \sin \alpha, \\ \frac{d\alpha}{ds} = \frac{q(q-1)\left(\frac{\cos \alpha}{y}\right)^2 - S}{2q\frac{\cos \alpha}{y}}. \end{cases}$$

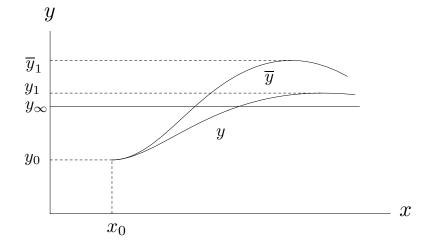
The solution of (II)



Comparison Theorem

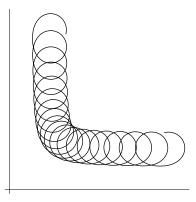


Comparison of Solution Curves



Main Theorem 2

There exists a new family of complete hypersurfaces $M^n \subset E^{n+1}$ $(n \ge 5)$ with |h| =const.



Comparison Theorem for $|h| = h_0$ (const)

Solve the following equations with the initial conditions $x(0) = x_0, \ y(0) = y_0, \ \alpha(0) = \overline{\alpha}(0) = \alpha_0.$

(I)
$$\begin{cases} \frac{dx}{ds} = \cos \alpha, \\ \frac{dy}{ds} = \sin \alpha, \\ \frac{d\alpha}{ds} = \sqrt{h_0^2 - p\left(\frac{\sin \alpha}{x}\right)^2 - q\left(\frac{\cos \alpha}{y}\right)^2}. \end{cases}$$

$$(\mathrm{II}) \begin{cases} \frac{dx}{ds} = \cos \alpha, \\ \frac{dy}{ds} = \sin \alpha, \\ \frac{d\alpha}{ds} = \sqrt{h_0^2 - p \left(\frac{\sin \alpha}{x_0}\right)^2 - q \left(\frac{\cos \alpha_0}{y}\right)^2}. \end{cases}$$

$$\Rightarrow \quad lpha(y) > \overline{lpha}(y), \quad$$
when $\ 0 < lpha < rac{\pi}{2}$

Theorem (Ye, 1991) Let (M^{n+1}, g) be a Riemannian manifold. Suppose that p_0 is a nodegenerate critical point of the scalar curvature of M. Then there exists $r_0 > 0$, such that for all $\rho \in (0, r_0)$, the geodesic sphere $S_{\rho}(p_0)$ may be perturbed to a constant mean curvature hypersurface S_{ρ} with $H = 1/\rho$.

Theorem Let (M^{n+1}, g) be a Riemannian manifold. Suppose that p_0 is a nondegenerate critical point of the scalar curvature of M. Then there exists $r_0 > 0$, such that for all $\rho \in (0, r_0)$, the geodesic sphere $S_{\rho}(p_0)$ may be perturbed to a closed hypersurface S_{ρ} whose second fundamental form are of constant length \sqrt{n}/ρ .