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1 Introduction

A family of isoparametric hypersurfaces Mt (hypersur-
faces with constant principal curvatures) in Sn ⇢ Rn+1

m Mt = F�1(t) \ Sn

A Cartan-Münzner Polynomial F (x) on Rn+1

• Isop. h’s. are algebraic, but not necessarily homogeneous.



Goal. Express F (x) by using a moment map of a certain
group action.

Most interesting case : deg F (x) = 4
9 isop. h’s. of OT-FKM type obtained from the
representations of Cli↵ord algebras.

• This type includes infinitely many homog. and non-

homog. isop. h’s., on which 9 a Spin action.

Conclusion. We give an expression of F (x) in terms of
the moment map of the Spin action extended to TRn+1.



2 Preliminaries

Definition. Mn�1 : a hypersurface in M = Rn, Hn, Sn

is an isoparametric hypersurface

, M has constant principal curvatures.

The surface case ) trivial

Consider the hypersurface case (n � 4).



En−1 ⊂ En

Hn−1 ⊂ Hn

Sn−1 ⊂ En, Hn

1

× En−kS k−1

S k−1× Hn−k

      Examples



M Mn�1

Rn Rn�1 or Sn�1 Rk ⇥ Sn�k�1 –

Hn Heq or Sn�1 Hk
eq ⇥ Sn�k�1 –

Sn Sn�1 Sk ⇥ Sn�k�1 more

Heq : an equidistant h’s, including a horosphere.

{homogeneous h’surfaces} ⇢ {isoparametric h’surfaces}
The equality holds for Rn and Hn. (É. Cartan, ‘37).

• There exist more homogeneous and non-homogeneous exam-

ples in Sn, most of the cases have been classified.



Fact 1. (Münzner, ‘81) For isop. h’s. Mt in Sn :
(a) g = ]{distinct principal curvatures} 2 {1, 2, 3, 4, 6}.
(b) For the principal curvatures �1 > �2 > · · · > �g,

the multiplicities m1,m2, . . . ,mg satisfy mi = mi+2.
(c) There exists a Cartan-Münzner polynomial F :

Rn+1 ! R, homogeneous and of degree g, such that

(i) kDF (x)k2 = g2kxk2g�2

(ii) 4F (x) =
m2 �m1

2
g2kxkg�2,

(1)

and Mt = F�1(t) \ Sn, �1 < t < 1.



Classification of isoparametric h’s. in Sn:

g 1 2 3 4⇤ 6

M Sn�1 Sk ⇥ Sn�k�1 CF

(hom.)

homog. or

OT-FKM

N6, M12

(hom.)

[g  3] : Cartan. [g = 4] : Cecil-Chi-Jensen, Immervoll except

for 4 cases. [g = 6] : Dorfmeister-Neher, Miyaoka.

• Non-homogeneous case occurs only when g = 4.



Known isoparametric hypersurfaces in Sn with g = 4:

non-homogeneous (m1, m2) = (3, 4k), (7, 8k),

etc.

G/K : non-Hermitian

OT-FKM type (4, 4k � 1)

homogeneous: *Hermitian

isotropy orbits (1, k), (2, 2k � 1), (9, 6)

non OT-FKM of G/K *Hermitian (4, 5)

non-Hermitian (2, 2)

They are all classfied except for (m1, m2) = (4, 5), (6, 9), (7, 8)

(Cecil-Chi-Jensen, Immervoll, and Chi for (3, 4)).



Fact 2. (Hsiang-Lawson, ‘69) Homogeneous h’s. in Sn

are given by isotropy orbits of rank two symmetric spaces.

Fact 3. (Fujii, F.-Tamaru, ‘10) Homogeneous h’s.
associated with Hermitian symmetric spaces G/K have
Cartan-Münzner polynomials F (x) expressed by the
square norm of the moment map of the isotropy action.

Problem. What about the case of non-homogeneous, and

homogeneous ones associated with non-Hermitian symmetric

space?

) Need a new idea.



3 Cli↵ord systems on R2l, OT-FKM type

O(n) : the orthogonal group, o(n): its Lie algebra.

Definition. (1) Cm�1 = {E1, . . . , Em�1}, Ej 2 o(l) :
a representation of a Cli↵ord algebra

, EiEj + EjEi = �2�ij id, 1  i, j  m� 1.

(2) P0, . . . Pm 2 O(2l), symmetric : a Cli↵ord system

, PiPj + PjPi = 2�ij id, 0  i, j  m.



Lemma 3.1 There exists a one-to-one correspondence
between Cm�1 and the Cli↵ord system.

Proof : From Cm�1, putting (u, v) 2 Rl � Rl, we obtain

P0(u, v) = (u,�v), P1(u, v) = (v, u), P1+i(u, v) = (Eiv,�Eiu),

which satisfy (2).
From a Cli↵ord system P0, . . . Pm, decompose R2l =

E+(P0) � E�(P0) where E±(P0) is the ±1 eigenspace of
P0. Then Ei = P1P1+i 2 o(l), i = 1, . . .m� 1, satisfy (1).
2



Remark 3.2 : (1) The possible pairs (m, l) :

m 1 2 3 4 5 6 7 8 · · · m + 8 · · ·
l = �(m) 1 2 4 4 8 8 8 8 · · · 16�(m) · · ·

(2) W.r.t. the inner product of linear operators on R2l

hP, Qi =
1
2l

Tr(P tQ). (2)

P0, . . . , Pm give an orthonormal basis of the linear space
V of symmetric orthogonal operators, which they span.



Fact 4. (Ferus-Karcher-Münzner ‘81)

When a Cli↵ord system P0, . . . , Pm is given,

F (x) = hx, xi2 � 2
mX

i=0

hPix, xi2 (3)

is a Cartan-Münzner polynomial of degree four．If l �
m� 1 > 0, F |S2l�1 defines isoparametric hypersurfaces in
S2l�1 with g = 4 and m1 = m, m2 = l �m� 1．

Q. Can we express F (x) using a moment map of a

certain group action?



When a Cli↵ord system P0, . . . , Pm is given, PiPj , 0 
i < j  m, are skew, and generate a Lie subalgebra of
o(2l) isomorphic to o(m + 1).

Fact 5. [FKM, ‘81] Spin(m + 1) acts on R2l, and pre-
serves F (x), i.e., is constant on each level set.

Remark 3.3 : If there exists a moment map µ of this action,

kµk is constant along each orbit, and so seems to relate with

F (x). In order to make this action Hamiltonian, we have to

extend it to an action on the symplectic manifold TR2l.



4 Review of symplectic geometry

Definition.

(1) (M2n, !) is a symplectic manifold

, ! is a non-degenerate closed 2-form on M .

(2) The Hamiltonian vector field Hf of f 2 C1(M)
, df = !(Hf , ).

Put Ham(M) = {Hf | f 2 C1(M)}.



K : a compact Lie group acting on M .

Definition. (1) a fundamental vector field on M

, X⇣ =
d

dt

���
t=0

(exp t⇣)x, ⇣ 2 k

(2) K y M is a symplectic action

, k⇤! = !, 8k 2 K.

(3) K y M is a Hamiltonian action

, X⇣ 2 Ham(M), 8⇣ 2 k.
i.e., 9µ⇣ 2 C1(M) s.t. dµ⇣ = !(X⇣ , ).



(4) With respect to the coadjoint action of K on k⇤,
µ : M ! k⇤ is a moment map

,
(i) µ is K equivariant
(ii) dµ(⇣) = !(X⇣ , )

• K y M is Hamiltonian
, 9µ : M ! k⇤, the moment map



Example. (1) (Cn, J, !) with !(X, ) = �hJX, i
K y Cn : Hamiltonian ) dµ⇣(Y ) = !(X⇣ , Y ) =

�hJX⇣ , Y i ) rµ⇣ = �JX⇣ , or X⇣ = Jrµ⇣ .

(2) G/K : a Hermitian symmetric space,
g = k� p : the Cartan decomposition,

9 a center c of k ) 9 a Kähler structure J on p given by

Jx = adz(x) = �adx(z), z 2 c, x 2 p.

) the isotropy action K y p is a Hamiltonian action with
the moment map µF (x) = 1

2 (adx)2z (Ohnita).



Fact 3. (Fujii, F-Tamaru, ‘10) When an isoparametric
hypersurface is given by an isotropy orbit of a Hermitian
symmetric space G/K, the Cartan-Münzner polynomial is
given by

F (x) = akµ0(x)k2 � bkµ1(x)k2.

where µF = µ0 + µ1 : p ! k⇤ is the moment map decom-
posed into the components of k⇤ = c⇤ � k⇤1, and a, b are
constants depending on m1,m2.



5 Spin(m + 1) action on TR2l

A complex structure J̃ on TR2l :

J̃(U, V ) = (�V,U), (U, V ) 2 T(x,Y )(TR2l) ⇠= R2l � R2l.

) TR2l : a symplectic manifold with a symplectic form

!(Z̃, W̃ ) = �hJ̃ Z̃, W̃ i, Z̃, W̃ 2 T(x,Y )(TR2l),

J̃ : parallel ) ! is a non-degenerate closed 2-form.



P0, . . . , , Pm : Cli↵ord system on R2l

) ⇣ij = PiPj 2 o(2l), 0  i < j  m, generate o(m+1),
acting on R2l. The Spin(m + 1) action on R2l is given by
(exp tPiPj)x for x 2 R2l, and is extended to TR2l by

s · (x, Y ) = (sx, sY ), s 2 Spin(m + 1), (x, Y ) 2 TxR2l.

The fundamental vector field X̃⇣ is given by

X̃⇣ = (x, Y ; ⇣x, ⇣Y ) 2 T(x,Y )(TR2l), ⇣ 2 o(m + 1)

which we abbreviate to X̃⇣ = (⇣x, ⇣Y ).



Proposition 5.1 Spin(m + 1) y TR2l is symplectic.

Proof : Since

J̃(U, V ) = (�V,U), (U, V ) 2 T(x,Y )(TR2l) ⇠= R2l � R2l,

J̃ is the right action of ⌘ =

 
0 �1
1 0

!
2 u(1) ⇠= o(2), i.e.,

J̃(U, V ) = (U, V )⌘.
) commutes with ⇣ = ⇣ij = PiPj 2 k，(0  i < j  m).

2



Theorem 5.2 Spin(m + 1) y TR2l is Hamiltonian.

Proof : The moment map µ : TR2l ! o⇤(m + 1) is given
by, for ⇣ij = PiPj , 0  i < j  m,

µ((x, Y ))(⇣ij) = 1
2 h⇣ij(x, Y ), J̃(x, Y )i

= 1
2 h(⇣ijx, ⇣ijY ), (�Y, x)i

= h⇣ijY, xi = �h⇣ijx, Y i,

(4)



In fact, this is equivariant w.r.t. the coadjoint action
Spin(m + 1) y o⇤(m + 1), since for s 2Spin(m + 1),

µ(s · (x, Y ))(⇣ij) = h⇣ij(sY ), sxi = hs(s�1⇣ijs)Y, sxi
= h(s�1⇣ijs)Y, xi = h

⇣
(Ads)�1⇣ij

⌘
Y, xi

= µ(x, y) � (Ads)�1⇣ij

= (Ad⇤)s(µ(x, Y ))(⇣ij).

Then for Z̃ 2 T(x,Y )TR2l, using J̃⇣ij = ⇣ij J̃ , we obtain

dµ(⇣ij)(Z̃) = hX̃ij , J̃ Z̃i = �hJ̃X̃ij , Z̃i = !(X̃ij , Z̃).

Thus µ is the moment map. 2



We may regard ⇣ij as an orthonormal frame of o(m+1).

Corollary 5.3 The moment map of the Spin(m + 1) ac-
tion on TR2l is given by

µ(x, Y ) = �
X

0i<jm

h⇣ijx, Y i⇣ij 2 o(m + 1) ⇠= o⇤(m + 1).

From this follows kµ(x, Y )k2 =
P

0i<jmhPiPjx, Y i2.

Since the U(1) y TR2l induced by ⌘ is commutative,
this action is also Hamiltonian．



6 Main Theorem

Theorem 6.1 P0, . . . , Pm on R2l : a Cli↵ord system,

Y : R2l ! TR2l : (not necessarily continuous) vector field;

Yx =

8<
:

P0x, if hP0x, xi = 0
hP1, x, xiP0x� hP0x, xiP1xp

hP1x, xi2 + hP0x, xi2
, if hP0x, xi 6= 0.

)
F (x) = kµ0(x, Yx)k2 � 2kµ(x, Yx)k2,

where µ0+µ is the moment map of U(1)⇥Spin(m+1) y TR2l.



Remark 6.2 : We use the moment map on TR2l, but the
RHS is determined by x 2 R2l.

Remark 6.3 : P0, P1 can be replaced by any two orthog-
onal unit elements of V . This corresponds to that there is
no standard choice of a principal vector for �1 if m1 > 1.

Remark 6.4 : C = {(x, Yx) 2 TR2l} is a 2l dimensional
cone outside x such that hP0x, xi = 0. However, C is not
a Lagrangian cone of TR2l.



7 Homogeneous case
F (x) for the OT-FKM type has been expressed by µ:

non-homogeneous (m1, m2) = (3, 4k), (7, 8k),

etc.

G/K : non-Hermitian

OT-FKM type (4, 4k � 1)

homogeneous: *Hermitian

isotropy orbits (1, k), (2, 2k � 1), (9, 6)

non OT-FKM of G/K *Hermitian (4, 5)

non-Hermitian (2, 2)



Since there are two homogeneous h’s. not of OT-FKM
type, we review homogeneous cases in general :

G/K : a rank two symmetric space
g = k + p : the Cartan decomposition

Extend the isotropy action K y p to Tp in a natural way:
k · (x, Y ) = (Adk(x),Adk(Y )), (x, Y ) 2 Tp, k 2 K.

• On Tp, we define the symplectic struture as before, since
p ⇠= R2l.



Proposition 7.1 G/K : a rank two symmetric space,
) U(1)⇥K y Tp is a Hamiltonian action with the mo-
ment map µ0 + µ : Tp ! u(1)⇤ � k⇤;

µ0(x, Y ) =
1
2
(kxk2 + kY k2)⌘,

µ(x, Y ) = �adx(Y ), (x, Y ) 2 Tp.

Corollary 7.2 If G/K is a Hermitian symmetric space,
for z 2 c ⇢ k s.t. J = adz

) µ(x, 1
2Jx) = µF (x) = 1

2 (adx)2z



Remark 7.3 : The proposition holds not only for g = 4,
but also for all the homogeneous hypersurfaces.

Remark 7.4 : In the OT-FKM case (which cotains some
homogeneous case), we gave an expression of F (x) via the
moment map of the Spin(m + 1) action which is smaller

than K.



8 Case not of OT-FKM type

Fact 6. (FKM) The isotropy orbits of SO(5) ⇥
SO(5)/SO(5), (m1,m2) = (2, 2), and of the Hermitian
symmetric space SO(10)/U(5),(m1,m2) = (4, 5), are not
of OT-FKM type, and these are all the known examples.

In this case, we express F (x) by the moment map of the
isotropy action of K extended to Tp.



For G/K = SO(5)⇥ SO(5)/SO(5), or SO(10)/U(5),

g = k + p : the Cartan decomposition,

a ⇢ p : a maximal abelian subspace,

Put Gij = Eij � Eji 2 o(5) ⇢ u(5), 1  i < j  5, where,
Eij is the matrix with (i, j) component equal to one and
all other components equal to 0.



Theorem 8.1 When (m1,m2) = (2, 2)，(4, 5) which are
not of OT-FKM, using ⌧ = G25 + G45 2 k, put YH =
[H, ⌧ ] 2 p for H 2 a, and extend it to a vector field Yx

on p by the action of K. Restricting µ0 + µ to the cone
C = {(x, Yx) = Adk(H, YH)} ⇢ Tp, we can express

F (x) = pkµ0(x, Yx)k2 � qkµ(x, Yx)k2,

where (p, q) = (3, 4) for (m1,m2) = (2, 2), and (p, q) =

(
3
4
, 1) for (m1,m2) = (4, 5).



Proof : By using the root systems, we can take

H =
p
�1H(⇠1, ⇠2) =

p
�1(⇠1G12+⇠2G34) 2 a ⇠1, ⇠2 2 R.

Then G25 and G45 satisfy

(adH)2G25 = �⇠2
1G25, (adH)2G45 = �⇠2

2G45, H 2 a.

+

µ(H, YH) = �(adH)2⌧ = ⇠2
1G25 + ⇠2

2G45

+

kµ(H, YH)k2 = ⇠4
1 + ⇠4

2 .



We have
kHk2 = ⇠2

1 + ⇠2
2 ,

and from YH = ⇠1G15 + ⇠2G35,

kYHk2 = ⇠2
1 + ⇠2

2 .

Thus from (7.1),

kµ0(x, Yx)k2 = kµ0(H, YH)k2 = (⇠2
1 + ⇠2

2)2.



On the other hand, F (x) is given by Ozeki-Takeuchi,

F (x) =
3
4
(Tr(x2))2 � 2Trx4, x 2 p.

For x = H 2 a, and idij = Eii + Ejj ,

H2 = ⇠2
1 id12 + ⇠2

2 id34, H4 = ⇠4id12 + ⇠4
2 id34.

hold, and we obtain

F (H) = 3(⇠2
1+⇠2

2)2�4(⇠4
1+⇠4

2) = 3kµ0(x, Yx)k2�4kµ(x, Yx)k2,
(5)

which is constant on the orbit through H. 2



9 Summary

Finally, the Cartan-Münzner polynomilas with g = 4
are expressed by using the square norm of the moment
map on TR2l of a certain group action, restricted to the
2l dimensional cone.

All other cases g 6= 4 are homogeneous, and hence applying

the moment map µ obtained in §7, we may express F (x) not

only by kµk, but also by some invariants of the moment map.



Dubrovin, Novikov, Tsarëv and Ferapontov discussed
the integrability of hypersurfaces from the veiw point of
Hamiltonian systems of hydrodynamic type, and studied
the homogeneous case. It is interesting to investigate the
non-homogeneous OT-FKM type from this point of view.

THANK YOU FOR YOUR ATTENTION.


