Isometric immersions of the hyperbolic plane into the hyperbolic space

Atsufumi Honda

Tokyo Institute of Technology

Jan 27, 2011

Differential Geometry and Tanaka Theory

 \sim Differential System and Hypersurface Theory \sim

Contents

- ∇ Background
 - Non-negative curvature case
 - Developable Surfaces
- \triangledown Geometry of the space of oriented geodesics in H^3
 - Invariant Metrics
 - Representation Formula
- ∇ Complete Developable Surfaces
 - Behavior at infinity
 - Developable Surfaces of Exponential Type

1.1 Negative & Non-negative curvature

Consider isometric immersions between space forms of same curvature with codim. = 1.

- $\nabla f : \mathbf{R}^n \xrightarrow{\text{isom. imms.}} \mathbf{R}^{n+1} \iff \text{Cylinder over plane curve}$ (Hartman-Nirenberg 1959, Massey 1962 (n=2))
- $\nabla f: \mathbf{S}^n \xrightarrow{\text{isom. imms.}} \mathbf{S}^{n+1} \iff \text{Totally geodesic}$ (O'Neil-Stiel 1963)
- $\nabla f: \mathbf{H}^n \xrightarrow{\text{isom. imms.}} \mathbf{H}^{n+1} \rightsquigarrow \exists \text{ Non-Trivial Examples}$ (Nomizu 1973, Abe-Haas 1990)

1.2 **Developable Surfaces**

Fact

Isom. Imms. $f: \mathbf{H}^2 \to \mathbf{H}^3$ \iff Complete **Developable** Surfaces in \mathbf{H}^3 .

- Extrinsically Flat $\stackrel{def}{\Longleftrightarrow}$ product of principal curv. $\equiv 0$.
- $ightharpoonup \operatorname{Ruled} \stackrel{\operatorname{def}}{\Longleftrightarrow} \operatorname{Locus}$ of a motion of geodesics.
- Gauss equation

$$\lambda_1 \lambda_2 = K + 1$$
, $(\lambda_1, \lambda_2 : \text{ principal curv.})$

Proof : an analogue of the method used by Massey for the Euclidean case.

$\mathcal{L}(\mathbf{H}^3)$: the Space of Oriented Geodesics in \mathbf{H}^3 .

Ruled Surfaces in $\mathbf{H}^3 \stackrel{\text{corresp.}}{\longleftrightarrow}$ Curves in $\mathcal{L}(\mathbf{H}^3)$.

Developable Surfaces in $H^3 \stackrel{\text{corresp.}}{\longleftrightarrow} ???$ Curves in $\mathcal{L}(H^3)$.

Theorem I (H)

Developables $\overset{\text{corresp.}}{\longleftrightarrow}$ Curves in $\mathcal{L}(\mathbf{H}^3)$ s.t. $\begin{cases} & \text{null w.r.t. } G \\ & \text{causal w.r.t. } \hat{G}. \end{cases}$

- G, \hat{G} : certain neutral metrics on $\mathcal{L}(\mathbf{H}^3)$.
- A curve $\alpha: \mathbf{R} \longrightarrow (\mathcal{L}(\mathbf{H}^3), \langle \ , \ \rangle)$: **null** (resp. **causal**) $\iff \langle \alpha', \alpha' \rangle = 0$ (resp. $\langle \alpha', \alpha' \rangle \leq 0$).

2 The space of oriented geodesics in H^3

 $\mathcal{L}(\mathbf{H}^3) := \left\{ [\gamma] \mid \gamma : \text{ an unit speed geodesic in } \mathbf{H}^3 \right\}$ (where, $\gamma_1 \sim \gamma_2 \iff \exists T; \ \gamma_1(T+\cdot) = \gamma_2(\cdot)$).

$$\mathcal{L}(\mathbf{H}^3) = \mathbf{S}^2 \times \mathbf{S}^2 \setminus \{\text{Diagonal.}\}\$$

 $\nabla (\mu_1, \mu_2)$: a (complex) coordinate system of $\mathcal{L}(\mathbf{H}^3)$.

$$\mathcal{L}(\mathbf{H}^3) = (\hat{\mathbf{C}} \times \hat{\mathbf{C}}) \setminus \Delta, \qquad (\Delta = \{1 + \mu_1 \bar{\mu}_2 = 0\}).$$

∇ Set

$$G := \operatorname{Im} \left[\frac{4d\mu_1 d\bar{\mu}_2}{(1 + \mu_1 \bar{\mu}_2)^2} \right], \qquad \hat{G} := \operatorname{Re} \left[\frac{4d\mu_1 d\bar{\mu}_2}{(1 + \mu_1 \bar{\mu}_2)^2} \right],$$

: **metrics** on $\mathcal{L}(\mathbf{H}^3)$ (sgn = (+ + --) : neutral).

2.1 What are G and \hat{G} ?

 $G, \hat{G} : \underbrace{\mathsf{metrics invariant under Isom}_0(\pmb{H}^3) \curvearrowright \mathcal{L}(\pmb{H}^3)}_{(=:\mathsf{Invariant Metrics})}$

Fact (Salvai 2007)

Any invariant metrics on $\mathcal{L}(\mathbf{H}^3)$ can be written as

$$aG + b\hat{G}$$
 $(a, b \in \mathbf{R}).$

What are specific properties of G, \hat{G} ?

Geometric structures ω , J, P on $\mathcal{L}(\mathbf{H}^3)$

 ∇ [Canonical Symplectic Structure ω]

$$\omega := \hat{\pi}_* (d\Theta)$$
.

- $\hat{\pi}: UH^3 \ni (p, v) \longmapsto [\gamma_{p,v}] \in \mathcal{L}(H^3)$: geodesic flow.
- Θ : The canonical contact form of UH^3 (Liouville form).
- ∇ [Minitwistor Complex Structure *J* (Hitchin 1982)]
 - $T_{[\gamma]}\mathcal{L}(\mathbf{H}^3) = \mathcal{J}^{\perp}(\gamma) := \{\text{orthogonal Jacobi field along } \gamma\}.$
 - $J_{[\gamma]}: \mathcal{J}^{\perp}(\gamma) \ni V \longmapsto \gamma' \times_{\gamma} V \in \mathcal{J}^{\perp}(\gamma)$: rotation by 90° , (where \times : vector product of H^3).
- ∇ [para-Complex Structure P (Kaneyuki-Kozai, et al.)]

$$P_{[\gamma]}: T_{[\gamma]}\mathcal{L}(\mathbf{H}^3) \to T_{[\gamma]}\mathcal{L}(\mathbf{H}^3);$$

$$\frac{\partial}{\partial \mu_1} \mapsto -\frac{\partial}{\partial \mu_1}, \quad \frac{\partial}{\partial \mu_2} \mapsto \frac{\partial}{\partial \mu_2}.$$

Characterizations of G, \hat{G}

Proposition (H)

Let ω , J, P as above, then

$$G = 2\omega(J\cdot,\cdot), \qquad \hat{G} = 2\omega(P\cdot,\cdot).$$

(Other characterizations)

- ► Conformally flat invariant metrics $\iff \lambda G \ (\lambda \in R)$
- ► Einstein invariant metrics $\iff \lambda \hat{G} \ (\lambda \in \mathbf{R})$

Some remarks on
$$G = G + \sqrt{-1}\hat{G} = \frac{4d\mu_1 d\bar{\mu}_2}{(1+\mu_1\bar{\mu}_2)^2}$$

- ∇ $-\mathcal{G}$: (complex) metric on $\mathcal{L}(\mathbf{H}^3) = \mathrm{SL}(2, \mathbf{C})/\mathrm{GL}(1, \mathbf{C})$.
- $\nabla (\mathcal{L}(\mathbf{H}^3), \mathcal{G}) = (\mathbb{P}^1, g_{FS})^{\mathbf{C}}$: complexification.

Remark: General case Σ^3 : a 3-dim. space form.

$$G := 2\omega(J\cdot,\cdot)$$

: a neutral metric on $\mathcal{L}(\Sigma^3)$.

 \triangledown [Canonical Symplectic Structure ω]

$$\omega := \hat{\pi}_* (d\Theta)$$
.

- $\hat{\pi}: U\Sigma^3 \ni (p, v) \longmapsto [\gamma_{p,v}] \in \mathcal{L}(\Sigma^3)$: geodesic flow.
- Θ : The canonical contact form of $U\Sigma^3$ (Liouville form).
- ∇ [Minitwistor Complex Structure *J* (Hitchin 1982)]
 - $T_{[\gamma]}\mathcal{L}(\Sigma^3) = \mathcal{J}^{\perp}(\gamma) := \{ \text{orthogonal Jacobi field along } \gamma \}.$
 - $J_{[\gamma]}: \mathcal{J}^{\perp}(\gamma) \ni V \longmapsto \gamma' \times_{\gamma} V \in \mathcal{J}^{\perp}(\gamma)$: rotation by 90° .
 - J is integrable if Σ is a space form .

Proposition (H)

Developable surfaces in $\Sigma^3 \Longrightarrow \text{Null curves in } (\mathcal{L}(\Sigma^3), G)$.

2.2 Representation Formula

Theorem I (H)

Developable surfaces generated by complete geodesics

Curves in $\mathcal{L}(\mathbf{H}^3)$ s.t. null w.r.t. G and causal w.r.t. \hat{G} .

- ▶ Nullity for *G* = Extrinsically Flatness.
- ► Causality for \hat{G} = Regularity (of Surface).

∇ [Representation formula for developables]

A curve
$$\alpha = (\mu_1(s), \mu_2(s)) : \mathbf{R} \to \mathcal{L}(\mathbf{H}^3) \stackrel{\text{bihol}}{\cong} (\hat{C} \times \hat{C}) \setminus \Delta$$
:

s.t.
$$\begin{cases} \operatorname{Im} \frac{4\mu_1'(s)\bar{\mu}_2'(s)}{(1+\mu_1(s)\bar{\mu}_2(s))^2} = 0 & \text{ (i.e., } G(\alpha',\alpha') = 0), \\ \operatorname{Re} \frac{4\mu_1'(s)\bar{\mu}_2'(s)}{(1+\mu_1(s)\bar{\mu}_2(s))^2} \leq 0 & \text{ (i.e., } \hat{G}(\alpha',\alpha') \leq 0). \end{cases}$$

$$\Rightarrow f(s,t) = \frac{1}{2|1 + \mu_1 \bar{\mu}_2|} \begin{pmatrix} (|\mu_2(s)|^2 + 1)e^t + (|\mu_1(s)|^2 + 1)e^{-t} \\ 2(e^t \operatorname{Re} \mu_2(s) - e^{-t} \operatorname{Re} \mu_1(s)) \\ 2(e^t \operatorname{Im} \mu_2(s) - e^{-t} \operatorname{Im} \mu_1(s)) \\ -(|\mu_2(s)|^2 - 1)e^t + (|\mu_1(s)|^2 - 1)e^{-t} \end{pmatrix} \in \boldsymbol{H}^3$$

gives a developable surface, where

$$H^3 = \left\{ \mathbf{x} = {}^t(x_0, x_1, x_2, x_3) \in \mathbf{R}_1^4 \mid \langle \mathbf{x}, \mathbf{x} \rangle = -1, \ x_0 > 0 \right\},$$
(\mathbf{R}_1^4 : the Lorentz-Minkowski 4-space).

(Ex. 1) [Totally Geodesic]

$$\mu_1(s) = -\tanh s, \qquad \mu_2(s) = \tanh s.$$

$$\mathcal{G}(\alpha', \alpha') = \frac{4\mu'_1(s)\bar{\mu}'_2(s)}{(1+\mu_1(s)\bar{\mu}_2(s))^2} = -4.$$

$$G(\alpha', \alpha') = \frac{4\mu'_1(s)\bar{\mu}'_2(s)}{(1+\mu_1(s)\bar{\mu}_2(s))^2} = -4.$$

$$\therefore G(\alpha', \alpha') = 0 & \hat{G}(\alpha', \alpha') < 0.$$

Figure: Totally geodesic.

(Ex. 2) [Hyperbolic analogues of Cylinders]

- $\mu_1(s) = -\zeta(s), \qquad \mu_2(s) = \zeta(s)$ (where, $\zeta(s) : \mathbf{R} \longrightarrow \mathbf{D} \subset \mathbf{C}$: regular curve).
- $\mathcal{G}(\alpha', \alpha') = -\frac{4|\zeta'(s)|^2}{(1+|\zeta(s)|^2)^2} < 0.$ $\therefore \quad G(\alpha', \alpha') = 0 \quad \& \quad \hat{G}(\alpha', \alpha') < 0.$

Figure: $\zeta(s) = e^{is}/3$.

(Ex. 3) [Ideal Cones]

- $\mu_1(s) = {\rm const.}, \qquad \mu_2(s) = \mu(s)$ (where, $\mu(s): \mathbf{R} \longrightarrow \mathbf{C}: {\rm regular\ curve}).$
- $\mathcal{G}(\alpha',\alpha')=0.$

$$\therefore G(\alpha', \alpha') = 0 \& \hat{G}(\alpha', \alpha') = 0.$$

Figure: const. = 0, $\mu(s) = e^{is}/2$.

(Ex. 4) [Rectifying Developables of Helices]

$$\begin{split} \mu_1(s) &:= \kappa \frac{4 \sqrt{2} \sqrt{\kappa^2 + \tau^2} i + 4\tau A_-}{(\sqrt{2} \sqrt{\kappa^2 + \tau^2} i + 4\tau A_+)(a_+ + a_-)^2 + 4\kappa A_-} \exp\left(\frac{A_+ + iA_-}{\sqrt{2}} s\right), \\ \mu_2(s) &:= \frac{1}{\kappa} \frac{(\sqrt{2} \sqrt{\kappa^2 + \tau^2} - \tau A_+)(a_+ + a_-)^2 - 4\kappa A_-}{4 \sqrt{2} \sqrt{\kappa^2 + \tau^2} i + 4\tau A_- - (a_+ + a_-)^2 A_+} \exp\left(\frac{-A_+ + iA_-}{\sqrt{2}} s\right) \\ \text{(where, } \kappa, \ \tau \in \pmb{R} \setminus \{0\}, \end{split}$$

$$a_{\pm} := \sqrt{(\kappa \pm 1)^2 + \tau^2}, A_{\pm} := \sqrt{\pm (1 - \kappa^2 - \tau^2) + a_+ a_-}$$

Figure: $\kappa = \tau = 1$.

3.1 Behavior at infinity: Ideal Cones

Proposition

Complete developables corresp. to curves null w.r.t. G, \hat{G} have an end asymptotic to a point in $\partial \mathbf{H}^3$.

Complete developables corresp. to curves null w.r.t. G, \hat{G} $\stackrel{\text{def}}{\Longleftrightarrow}$: Ideal Cones.

3.2 **Developables of Exponential Type**

Lem (Hyperbolic Massey's lemma)

 $f: M^2 \to \mathbf{H}^3$: extrinsically flat surface.

H: mean curvature.

l: an asymptotic curve in non umbilic point set.

t: arc-lenghth parameter of l.

$$\Rightarrow \frac{\partial^2}{\partial t^2} \left(\frac{1}{H} \right) = \frac{1}{H} \quad \text{on } l.$$

 ∇ Thus, $\frac{1}{H} = P \cosh t + Q \sinh t$:

$$\frac{1}{H} = \begin{cases} A \cosh(t+B) \\ Ae^{\pm t} \\ A \sinh(t+B) \end{cases}$$

- ∇ For a **complete** developables, 1/H never vanishes.
 - ⇒ third case does not occur. Thus,
 - (c) $H = a(s)/\cosh(t + b(s))$ or
 - (e) $H = \rho(s)e^t$ holds.
- \triangledown Complete dev. with (e) $\stackrel{def}{\Longleftrightarrow}$: **Exponential Type**.
- ∇ Example: Ideal cones \Rightarrow Exponential Type. (Converse?)

Theorem II (H)

Real analytic developable surfaces of exponential type are ideal cones.

∇ Rem. ∃ non-real-analytic exponential dev. which is not an ideal cone.

(Review.)

 ∇ Lem 1. Two unit speed geodesics in H^3

$$\alpha(t) = (\cosh t)p + (\sinh t)v, \quad \beta(t) = (\cosh t)q + (\sinh t)w$$

are asymptotic if and only if

$$\langle p + v, q + w \rangle = 0.$$

∇ Lem 2.(Frenet-Serret formula) Let $\mathcal{F} = (\gamma, \mathbf{e} = \gamma', \mathbf{n}, \mathbf{b})$ be the Frenet frame for a curve γ in \mathbf{H}^3

$$\Rightarrow \gamma'' = \gamma + \kappa n, \quad n' = -\kappa e + \tau b, \quad b' = -\tau n.$$

Sketch of the proof

 ∇ Let f be a real analytic exponential developable

$$f(s,t) = (\cosh t)\gamma(s) + (\sinh t)\xi(s) \qquad \left(\in \mathbf{H}^3 \subset \mathbf{R}_1^4\right),$$

such that $H(s,t) = \delta(s)e^t$.

∇ By Lem 1, it suffices to prove that

$$(\varphi(s) :=) \langle \gamma(s) + \xi(s), \gamma(s_0) + \xi(s_0) \rangle \equiv 0 \tag{1}$$

for some $s_0 \in \mathbf{R}$.

 ∇ To show (1), we shall determine ξ .

(To determine ξ)

1 [Determine the geodesic foliation of H^2 induced by f] $F(s,t) = (\cosh t)c(s) + (\sinh t)v(s)$: Geod. Foli. of H^2 Codazzi equation \Rightarrow c(s): horocycle.

2 [Represent ξ in terms of e, n, b] Gauss equation \Rightarrow

$$\xi = f_*(v(s)) = \frac{\mathbf{n}(s) + \delta(s)\mathbf{b}(s)}{\kappa(s)}.$$

Finally, applying Lem2 (Frenet-Serret), it holds that

$$\varphi'(s) = \left\langle \gamma(s) + \frac{\mathbf{n}(s) + \delta(s)\mathbf{b}(s)}{\kappa(s)}, \gamma(s_0) + \xi(s_0) \right\rangle' \equiv 0.$$