Research on Lagrangian intersections and leaf-wise intersections

Satoshi Ueki

Tohoku University

January 27, 2011

Satoshi Ueki (Tohoku University)

Lag and leaf-wise intersections

January 27, 2011 1 / 1

- Weinstein's Lagrangian intersection theory
- Ø Moser's leaf-wise intersection theory
- Main theorem

Definition

- (P^{2n}, Ω) : symplectic manifold
- :⇔
- (1) Ω is a closed 2-form on P
- (2) Ω is nondegenerate

Definition

 $L^n \subset P^{2n}$ is Lagrangian $:\Leftrightarrow \Omega|_{I} = 0$

For any manifold *M*, the cotangent bundle T^*M has the natural symplectic form Ω_M :

$$\Omega_M = \sum_{j=1}^n dx_j \wedge dy_j$$

(x_j : coordinates of M, y_j : fiber coordinates)

This symplectic form Ω_M is called the canonical form on T^*M

Cotangent bundles

Let ϕ be a 1-form on M.

$$L = \phi(M)$$
: Lag $\Leftrightarrow d\phi = 0 \ (\phi \in Z^1(M))$

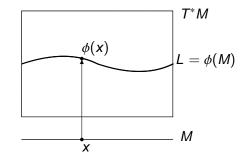


Figure: horizontal Lagrangian submanifold

Satoshi Ueki (Tohoku University)

Lag and leaf-wise intersections

January 27, 2011 5 / 1

Let $L_1 = \phi_1(M)$, $L_2 = \phi_2(M)$ ($\phi_1, \phi_2 \in Z^1(M)$) be horizontal Lagrangian submanifolds. Define

$$\Gamma := \phi_2 - \phi_1 \in Z^1(M)$$
$$G := \frac{1}{2}(\phi_1 + \phi_2) : M \to T^*M$$

Then,

$$\begin{aligned} x \in \operatorname{Zero}(\Gamma) \Rightarrow \ \phi_1(x) &= \phi_2(x) \\ \Rightarrow \ G(x) &= \phi_1(x) = \phi_2(x) \in L_1 \cap L_2 \end{aligned}$$

The intersection of two horizontal Lagrangian submanifolds is given by the zero points of closed 1-form Γ .

A. Weinstein's theorem

A. Weinstein extended this property for Lagrangian intersections of general symplectic manifolds.

Theorem (Weinstein, 1973)

 (P, Ω) : symplectic manifold L_1, L_2 : Lagrangian submanifolds of P $\Sigma := L_1 \cap L_2$ is a submanifold of P

⇒ If a pair of Lagrangian submanifolds (L'_1, L'_2) is C^1 close to (L_1, L_2) , there are

 $\Gamma \in Z^1(\Sigma)$ $G: \Sigma \to P$

such that

$$p \in \operatorname{Zero}(\Gamma) \Rightarrow G(p) \in L'_1 \cap L'_2$$

Satoshi Ueki (Tohoku University)

-

In particular, consider the case that

(P, Ω) = (T*M, Ω_M)
 L₁ = L₂(=: L) : horizontal Lag

Then, $\Sigma = L \cong M$

If L'_1 , L'_2 are C^1 close to L, then L'_1 and L'_2 are also horizontal and the intersection is given by the zero points of some $\Gamma \in Z^1(M)$.

Consider the topological invariant $cat(\Sigma)$, Lusternik-Schnirelmann category of Σ . This is the least number of contractible open sets which cover Σ . Then, the next theorem holds.

Theorem (Lusternik, Schnirelmann)

- Σ : a compact manifold
- f: a smooth function on Σ
- \Rightarrow The number of critical points of *f* is at least cat(Σ)

In the Weinstein's theorem, if Σ is compact and $\Gamma = df$, the number of critical points of *f* (or zero points of Γ) is at least cat(Σ). Therefore $L'_1 \cap L'_2$ has at least cat(Σ) points.

Definition

 $M^{2n-r} \subset P$ is a coisotropic submanifold $(0 \le r \le n)$: $\Leftrightarrow (T_p M)^{\Omega} \subset T_p M \ (p \in M)$

where

$$(T_{\rho}M)^{\Omega} := \left\{ v \in T_{\rho}P \mid \Omega(v,w) = 0 \; (^{\forall}w \in T_{\rho}M) \right\}$$

For example, in the 2*n* dimensional Euclidean space with canonical form $(\mathbb{R}^{2n}, \Omega_0)$, define *M* as follows

$$M := \{ (x_1, \cdots, x_n, y_1, \cdots, y_n) \mid y_{n-r+1} = \cdots = y_n = 0 \}$$

Then, *M* is a coisotropic submanifold.

$$M: Lag \Leftrightarrow (TM)^{\Omega} = TM$$
$$\Leftrightarrow M: coisotropic, r = n$$

Coisotropic submanifolds

For a coisotropic submanifold M, $(TM)^{\Omega} \subset TM$ is a completely integrable distribution in *M*. This defines a foliation of *M*. Let L_{ρ} be the leaf through $\rho \in M$.

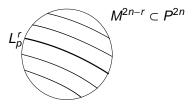


Figure: a coisotropic submanifold with leaves

Since

$$\dim T_p M + \dim (T_p M)^{\Omega} = 2n$$

holds, the dimension of the foliation is r.

Leaf-wise intersections

 $M \subset P : \text{coisotropic submanifold} \\ \psi \in \text{Symp}(P) := \{ \psi \in \text{Diff}(P) \mid \psi^* \Omega = \Omega \}$

Definition

 $p \in M$: leaf-wise intersection of ψ : $\Leftrightarrow \psi(p) \in L_p$

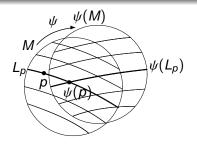


Figure: A leaf-wise intersection

Satoshi Ueki (Tohoku University)

Lag and leaf-wise intersections

∃ **)** ∃

 $LWI_M(\psi)$ denotes the set of the leaf-wise intersections of ψ :

$$LWI_M(\psi) := \{ p \in M \mid \psi(p) \in L_p \}$$

Examples of leaf-wise intersections :

- Fixed points of $\psi \in \text{Symp}(P)$ (r = 0)
- Lagrangian intersections (r = n)
- Periodic orbits in Hamiltonian systems (r = 1)

(1) (r = 0) First example is the case M = P. In this case,

$$(T_{\rho}M)^{\Omega} = \{0\}, \ L_{\rho} = \{\rho\}$$

Then,

$$p \in \text{LWI}_{M}(\psi) \iff \psi(p) = p$$
$$\Leftrightarrow p \in \text{Fix}(\psi)$$

In this example, leaf-wise intersections of ψ are fixed points of ψ .

Satoshi Ueki (Tohoku University)

(2) (r = n) Second example is the case of connected Lagrangian submanifold $M \subset P$.

$$(T_{\rho}M)^{\Omega} = T_{\rho}M, L_{\rho} = M$$

Then,

$$p \in LWI_{M}(\psi) \iff \psi(p) \in M$$
$$\Leftrightarrow \psi(p) \in M \cap \psi(M)$$

Since ψ preserves the symplectic form, $\psi(M)$ is also a Lagrangian submanifold of *P*. In this example, leaf-wise intersections of ψ are Lagrangian intersections of two Lagrangian submanifolds *M*, $\psi(M)$.

Examples of leaf-wise intersections

(3) (r = 1) Third example is about periodic orbits of Hamiltonian systems. Let (P, Ω, H) be a Hamiltonian system. Define the Hamiltonian vector field X_H of H by

$$X_H \rfloor \Omega = dH$$

The integral curves of X_H are called orbits of Hamiltonian system (P, Ω, H).

Let $c \in \mathbb{R}$ be a regular value of H and define

$$M:=H^{-1}(c).$$

Assume that all orbits in *M* are periodic.

For example, consider $(P, \Omega) = (\mathbb{R}^{2n}, \Omega_0)$ and the Hamiltonian function

$$H = \frac{\alpha}{2} \sum_{K=1}^{n} \lambda(\mathbf{x}_{k}^{2} + \mathbf{y}_{k}^{2}) \ (\alpha > 0, \ \lambda_{k} \in \mathbb{N})$$

then, all orbits in $M = H^{-1}(c)$ (c > 0) are periodic.

Examples of leaf-wise intersections

Consider the perturbation $H + \tilde{H}$ of this Hamiltonian system. Here,

$$\widetilde{H}: P \times \mathbb{R} \to \mathbb{R}, \quad \widetilde{H}(\cdot, t) \equiv 0 \ (t \le a, \ b \le t)$$

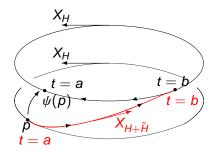


Figure: definition of ψ

 $M = H^{-1}(c)$ is coisotropic and the leaves of *M* are orbits of *H*. If $p \in LWI_M(\psi), \psi(p)$ lies on the orbit of *H* through *p*. Then, the orbit of the perturbed system $(P, \Omega, H + \tilde{H})$ through $p \in LWI_M(\psi)$ at t = a is periodic.

In this example, the leaf-wise intersections of ψ are the periodic orbits.

J. Moser proved the next theorem about leaf-wise intersections.

```
Theorem (Moser, 1978)

(P, \Omega) : simply connected symplectic manifold

\Omega : exact form

M \subset P : compact coisotropic submanifold

\Rightarrow

If \psi \in \text{Symp}(P) is C^1 close to id_P : P \to P, \psi has at least two leaf-wise

intersections.
```

I proved the next theorem by using the Weinstein's theorem.

Main Theorem

 (P, Ω) : symplectic manifold

 $M \subset P$: coisotropic submanifold

 \Rightarrow

If $\psi \in \text{Symp}(P)$ is C^1 close to $id_P : P \to P$, there are

 $\Gamma \in Z^1(M)$ $G: M \to P \times P$

such that

$$p \in \operatorname{Zero}(\Gamma) \implies \pi_1 \circ G(p) \in \operatorname{LWI}_M(\psi)$$

Particularly, if *M* is compact and $\Gamma = df$, then ψ has at least cat(Σ) leaf-wise intersections.

Satoshi Ueki (Tohoku University)

In this theorem, suppose that *P* is simply connected. Then Γ is exact. Moreover, suppose that *M* is compact. Then any smooth function on *M* has at least two critical points. Therefore, ψ has at least two leaf-wise intersections.

Hence,

Main Theorem \Rightarrow Theorem (Moser)

- There is a LS category for foliated manifolds. We only have the evaluation of the critical points of a function which is constant on each leaves by this LS category.
- On the other hand, the function *f* on main theorem is not necessarily constant on each leaves.
- The extended LS category is useless for evaluating the number of leaf-wise intersections of a symplectomorphism ψ .

Thank you very much!